
Luftgüte in Tirol

Bericht über das Jahr 2011

gemäß Immissionsschutzgesetz Luft und Verordnung über das Messkonzept zum IG-L

INHALTSVERZEICHNIS

	Seite
Einleitung	3
Material und Methoden	4
Bestückung der MessstellenMessprinzipien und KenngrößenQualitätssicherung	4 5 7
Messergebnisse (inkl. Verfügbarkeiten der Messdaten)	10
- Konzentrationsmessungen (Kontinuierliche Messungen für Schwefeldiovid	

- Konzentrationsmessungen (Kontinuierliche Messungen für Schwefeldioxid, Stickstoffmonoxid, Stickstoffdioxid, Kohlenmonoxid, PM10, PM2.5, Ozon; Blei, Cadmium, Nickel, Arsen und B(a)P im PM10 sowie Benzol)

Auswertungen und Ausweisung allfälliger Überschreitungen anhand der gesetzlichen
Immissionsgrenzwerte sowie Feststellung von Überschreitungen gem.

§ 41 BGBl. II 358/1998 und § 7 Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

Trendauswertung für NO und NO2

44

Anhänge

Anhang 1: Grafikteil	48
Anhang 2: Liste mit Überschreitungen von Grenz-, Alarm- bzw. Zielwerten	64
Anhang 3: Lage der Standorte	80
Anhang 4: Abkürzungen	82

Dieser Bericht ist auch im Internet verfügbar:

http://www.tirol.gv.at/uploads/media/jahresbericht-2011.pdf

erstellt von der Abt. Waldschutz beim Amt der Tiroler Landesregierung

Für den Inhalt verantwortlich: Dr. Andreas WEBER (Leiter Fachbereich Luftgüte)

An diesem Bericht haben weiters mitgearbeitet:

Mag. Andreas Krismer, Dionys Schatzer, Ing. Franz Schöler, Ing. Andreas Pöllmann, Michael Allram. Aufstellung, Wartung, Qualitätssicherung und Auswertungen der kontinuierlichen Schadstoffmessungen sowie alle weiteren Probenahmen im Vollzug des IG-L für Tirol wurden von der Abt. Waldschutz vorgenommen, die chemischen Analysen samt Wägearbeiten für die PM10 und PM2,5-Filter von der Chemisch Technische Umweltschutzanstalt beim Amt der Tiroler Landesregierung. Die Probenahmen für die Eintragsuntersuchungen ("Nasse Deposition") erfolgte durch externe Betreuer vor Ort, die österreichweite Auswertung durch die TU Wien.

Titelseite gestaltet von Paul Tschörner

EINLEITUNG

Der Landeshauptmann von Tirol hat in mittelbarer Bundesverwaltung und gestützt auf das Immissionsschutzgesetz-Luft, BGBl. I Nr. 115/1997, i.d.F. BGBl. I Nr. 77/2010 (IG-L), sowie die – für den vorliegenden Bericht noch maßgebliche - Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft, BGBl. II Nr. 263/2004, i.d.F. BGBl. II Nr. 500/2006 (MKVO), ein Luftgütemessnetz zu betreiben. Mit der Vorlage dieses Jahresberichtes, welcher von der Abt. Waldschutz erstellt wurde, erfüllt der Landeshauptmann von Tirol seine gesetzliche Verpflichtung (§ 37 oben zitierter Verordnung).

Dieser Bericht enthält zunächst für jede einzelne Messstelle – tabellarisch zusammengestellt – die erhaltenen Ergebnisse. Im Kapitel "Auswertungen" sind die Ergebnisse des gesamten Messnetzes schadstoffweise zusammengestellt; hier erfolgt auch die Ausweisung von Grenzwertüberschreitungen und die Feststellung über die allfällige Notwendigkeit einer Statuserhebung gem. § 8 IG-L.

Im Grafikteil werden zusätzlich zu den Jahresergebnissen für 2011 verordnungsgemäß auch die Vorjahresergebnisse dargestellt.

Darüber hinaus sind in diesem Bericht enthalten:

- Ergebnisse der Eintragsuntersuchungen aus nasser Deposition, welche als "critical loads" vor allem für die Forst- und Landwirtschaft aber auch für Ökosysteme von Bedeutung sind;
- Ergebnisse der Schwermetalleinträge im Raum Brixlegg ausgewertet nach den Grenzwerten der 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. 199/1984) und
- besondere Ereignisse, welche aus dem Betrieb des Messnetzes im Jahr 2011 aufgetreten sind.

MATERIAL UND METHODEN

Bestückung der Messstellen

Übersicht über die Ausstattung der dauerregistrierenden Tiroler Luftgütemessstellen im Jahr 2011 mit Angabe der in Österreich zugelassenen und typisierten Messgerätschaft. Die Bestückung erfolgte nach Schwerpunkten der Immissionsbelastung, den Standortkriterien gem. Messkonzeptverordnung und den abzudeckenden Schutzzielen.

Messstelle	SO2	СО	NOX	О3	PM10 kont.	PM10	PM2,5	Blei	Benzol
	Туре	Туре	Туре	Туре	Type	grv. Type	grv. Type	Туре	Туре
2705/HÖFEN	Турс	Турс	Турс	APOA	Type	Турс	Турс	Туре	Турс
Lärchbichl				360					
2710/HEITERWANG			APNA	TE	FH 62				
Ort			360	49C	IR				
2315/IMST			API	49C	FH 62				
A12			200E		IR				
2106/INNSBRUCK			APNA	TE	FH 62	DHA			
Andechsstraße			360	49C	IR	80			
2110/INNSBRUCK	APSA	API	APNA	490	FH 62	DHA	DHA		GS
	360	300E	360		IR	80	80		301
Fallmerayerstraße 2113/INNSBRUCK	300	300E		APOA	IK	80	80		301
			APNA						
Sadrach			370	370					
2123/INNSBRUCK				API					
Nordkette			TEE 42	400E	EII (2				
2223/MUTTERS			TE 42		FH 62				
Gärberbach			C		IR FIL (2	DILL			
2227/HALL			APNA		FH 62	DHA			
Sportplatz			360		IR FIL (2	80			
2821/VOMP			TE 42		FH 62	DHA			
Raststätte A12			1		IR FILE	80			
2822/VOMP			APNA		FH 62				
An der Leiten			360		IR				
2519/BRIXLEGG	APSA				FH 62	DHA		DHA	
Innweg	360				IR	80		80	
2538/KRAMSACH			APNA	API					
Angerberg			360	400E					
2550/KUNDL			APNA						
A12			370						
2530/WÖRGL			APNA	APOA	FH 62				
Stelzhamerstr.			360	360	IR				
2552/KUFSTEIN	APSA		APNA		FH 62				
Praxmarerstr.	360		360		IR				
2547/KUFSTEIN				APOA					
Festung				360					
2910/LIENZ	APSA	API	APNA		FH 62	DHA			
Amlacherkreuzung	370	300E	360		IR	80			
2912/LIENZ			APNA	APOA		DHA			
Tiefbrunnen			360	370		80			
Anzahl der Geräte	4	2	15	9	12	7	1	1	1

Messprinzipien und Kenngrößen der kontinuierlich registrierenden Messgeräte

Schwefeldioxid wird nach dem physikalischen Verfahren (UV-Fluoreszenz) gemessen. Die Geräte besitzen folgende Nachweisgrenzen (laut Hersteller):

Geräteserie	$SO2 (\mu g/m^3)$
APSA 360	1,3
APSA 370	1,3

Stickstoffoxidmessungen erfolgen nach dem sog. Chemilumineszenzprinzip, wobei Stickstoffdioxid (=NO2) als Differenz von NOx und NO bestimmt wird.

Die Nachweisgrenzen betragen:

Geräteserie	NO ($\mu g/m^3$)
APNA 360	0,4
APNA 370	0,6
TE 42C	0,3
TE 42I	0,5
API 200E	0,5

Die Messung von Kohlenmonoxid beruht auf dem Infrarot-Absorptionsverfahren. Für die eingesetzten Geräte wird vom Hersteller eine Nachweisgrenze von 0,07 mg/m³ angegeben.

Ozon wird über die UV-Absorption gemessen.

Die Nachweisgrenzen betragen:

Geräteserie	Nachweisgrenze O3 (μg/m³)
APOA 360	1,0
APOA 370	1,0
TE 49C	0,8
API 400E	1,2

Schwebstaub, PM10 und PM2.5

Folgende Geräte werden im Tiroler Luftmessnetz eingesetzt:

Gerätetyp	Nachweisgrenze	Messprinzip
	$(\mu g/m^3)$	
FH 62 IR	3,6	Durchlässigkeit eines β–Strahlers, Probenahmevorrichtung PM10-
		Kopf (Fa. DIGITEL)
DHA 80	1,0	Differenz Ein/Auswaage exponierter Filter, welche mit
		Umgebungsluft über eine typisierte PM10- oder PM2.5
		Ansaugvorrichtung während eines Tages beaufschlagt wurde
		(gravimetrische Methode)

Die mittels kontinuierlich registrierender Gerätschaft (FH 62 IR) ermittelten Rohwerte wurden mit der Korrekturfunktion (Messwert + 0,00143)/0,85 zum PM10-Wert berechnet.

Bei Einsatz beider Gerätetypen an einem Messstandort werden die Ergebnisse der gravimetrischen Messungen im Jahresbericht veröffentlicht.

Die Verordnung zum Messkonzept schreibt zur Bestimmung von Blei, Arsen, Nickel und Cadmium im Schwebstaub (=PM10) seit 1.1.2007 zumindest eine Messung pro Woche vor. Für Brixlegg/Innweg wurde aufgrund der aktuellen Situation eine lückenlose Prüfung des Jahresgrenzwertes für fachlich sinnvoll erachtet und wurden während aller Tage des Jahres

Tagesfilterproben gewonnen, welche zu Perioden zusammengefasst und schließlich zu einem Jahresmittel zusammengefasst werden können; nunmehr werden die Filterproben in analoger Weise für die o.a. Schwermetalle analysiert und ausgewertet.

Zur Bestimmung von Benzol wird im Tiroler Luftgütemessnetz ein aktives Probenahmeverfahren durchgeführt. An der Messstelle Innsbruck/Fallmerayerstraße wurden Sammelröhrchen vom Typ NIOSH (6x70mm) der Fa. Dräger unter Verwendung des 10fach-Wechslers des Aktivprobenahmesystems Desaga GS301 eingesetzt. Mit einem Luftdurchflussvolumen von 1 l/min wurde jeweils über 24 Stunden Luft über die Aktivkohle gesaugt und anschließend im Landeslabor (CTUA) analysiert. Die angegebenen Volumina sind auf 1013 mbar und 20 C bezogen.

Die seit 1.1.2007 ebenfalls erforderliche Messung von Benzo(a)Pyren im PM10 wird an der Trendmessstelle Innsbruck/Fallmerayerstraße durchgeführt. Durch Zusammenfassung ausgestanzter Segmente exponierter PM10-Tagesfilter zu 28-tägigen Proben, anschließender Extraktion mit Toluol, Auftrennung mittels HPLC (Hochdruckflüssigkeitschromatographie) und anschließender Detektion mittels UV bzw. Fluoreszenzanalyse nach DIN ISO 16362 kann somit ebenfalls das gesamte Jahr lückenlos bei gleichzeitig geringen Kosten überprüft werden.

Die Probenahme für den Staubniederschlag (Bergerhoff-Methode) sowie die Analyse auf dessen Inhaltsstoffe (Blei, Nickel, Arsen, Kupfer, Zink und Cadmium im Staubniederschlag) wurde entsprechend der Vorgabe der Verordnung zum Messkonzept nach den Regeln der Technik durchgeführt. Die chemische Analyse der Schwermetalle erfolgte mittels Atomabsorptionsspektroskopie bei der CTUA.

Das Untersuchungsprogramm zur Erfassung des Eintrages an Elementen (Stickstoff, Schwefel) wurde mittels WADOS-Gerätschaft (wet and dry only sampler; "Nasse Deposition") erhoben und in der CTUA auf die Inhaltsstoffe analysiert.

QUALITÄTSSICHERUNG

In der Messkonzeptverordnung (BGBl. II Nr. 263/2004, i.d.F. BGBl. II Nr. 500/2006) zum IG-L wird im § 11 für die Qualitätssicherung von Messdaten gefordert:

§ 11. (1) Jeder Messnetzbetreiber ist für die Qualität der in seinem Messnetz erhobenen Daten gemäß den Datenqualitätszielen der Richtlinie 1999/30/EG, ABI. Nr. L 163/41, über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickoxide, Partikel und Blei in der Luft, Anhang VIII, und Richtlinie 2000/69/EG, ABI. Nr. L 313/12, über Grenzwerte für Benzol und Kohlenmonoxid in der Luft, Anhang VI, verantwortlich. Dazu ist ein den Erfordernissen entsprechendes Qualitätsmanagementsystem aufzubauen und anzuwenden.

Von Vertretern der Länder und des Bundes wurde ein Leitfaden zur Immissionsmessung nach dem Immissionsschutzgesetz-Luft (i.d.g.F) erarbeitet. Er enthält die Anforderungen an eine österreichweit einheitliche Vorgangsweise für die Immissionsmessung nach IG-L, mit der die harmonisierte Umsetzung der EN14211, EN14212, EN14625 und EN14626 sichergestellt werden soll.

Ob die erhobenen Messdaten diesen Qualitätszielen entsprechen, wird durch die Ermittlung der erweiterten kombinierten Messunsicherheit beschrieben. Diese muss zumindest einmal jährlich berechnet werden.

Die kombinierte Messunsicherheit setzt sich aus den messgerätespezifischen und ortsspezifischen Anteilen, Unsicherheiten des Messverfahrens und der zur Kalibration eingesetzten Prüfgasquelle zusammen. Verluste durch die Probennahme werden in der Berechnung nicht berücksichtigt.

Die Repräsentativität der Messstelle kann nur schwer quantifiziert werden und wird daher nicht in die Berechnung der Messunsicherheit einbezogen.

Im Feldbetrieb wird die Messunsicherheit für O3 für den HMW bzw. MW1 und MW8, für CO für den MW8, sowie für SO2 und NO/NO2 für den HMW bzw. MW1 und für den JMW berechnet

Für die kombinierte Messunsicherheit werden alle Beiträge gemäß GUM (ENV 13005) aufsummiert.

Für die erweiterte Messunsicherheit wird das Ergebnis mit 2 multipliziert (95% Vertrauensniveau).

Die erweiterte kombinierte Messunsicherheit wird für den Vergleich mit dem Datenqualitätsziel von 15% durch Bezug auf den jeweiligen Grenzwert in die relative erweiterte kombinierte Messunsicherheit umgerechnet:

SO2:

Messstation	Messunsicherheit	Messunsicherheit	Datenqualitätsziel
	HMW/MW1 [%]	JMW [%]	eingehalten
INNSBRUCK - Fallmerayerstraße	9,9	7,2	ja
BRIXLEGG – Innweg	9,9	7,2	ja
KUFSTEIN – Praxmarerstrasse	10,0	7,2	ja
LIENZ – Amlacherkreuzung	10,0	7,2	ja

CO:

Messstation	Messunsicherheit	Datenqualitätsziel
	MW8 [%]	eingehalten
INNSBRUCK - Fallmerayerstraße	7,2	ja
LIENZ – Amlacherkreuzung	7,2	ja

NO/NO2:

Messstation	Messunsicherheit	Messunsicherheit	Datenqualitätsziel
	HMW/MW1 [%]	JMW [%]	eingehalten
INNSBRUCK – Andechsstraße	9,5	8,7	ja
INNSBRUCK - Fallmerayerstraße	9,5	8,7	ja
INNSBRUCK – Sadrach	9,4	8,7	ja
MUTTERS – Gärberbach*	8,4	10,4	ja
HALL – Sportplatz	9,8	9,1	ja
IMST – A12	8,2	9,4	ja
WÖRGL – Stelzhamerstraße	9,5	8,7	ja
KRAMSACH – Angerberg	9,5	8,7	ja
KUNDL – A12*	9,5	8,7	ja
KUFSTEIN – Praxmarerstraße	9,6	8,7	ja
HEITERWANG – Ort/B179	9,5	8,8	ja
VOMP – Raststätte/A12*	8,5	10,4	ja
VOMP – An der Leiten	9,6	8,7	ja
VOMP – A12/VGM	9,6	8,7	ja
LIENZ – Amlacherkreuzung	9,5	8,7	ja
LIENZ – Tiefbrunnen	9,5	8,7	ja

^{* ...} Im Rahmen eines Ringversuches im Hebst 2011 beim Umweltbundesamt Wien wurde bei den NOx-Analysatoren der Fa. Thermo eine Querempfindlichkeit auf Ammoniak (NH₃) festgestellt, die wesentlich über den Messergebnissen lag, welche bei der Typprüfung für diese Model ermittelt wurde. Infolge wurde als vermutliche Ursache das Fehlen eines Eingangsfülters für Feuchtigkeit und NH₃ festgestellt.

Dies betrifft im Tiroler Luftmessnetz die Messstellen VOMP – Raststätte/A12, KUNDL – A12 und MUTTERS – Gärberbach und bedeutet, dass bei Vorliegen von Ammoniak-Konzentrationen in der Umgebungsluft erhöhte Stickstoffdioxid- Messwerte (NO₂) auftreten könnten. Dies wiederum könnte zu erhöhten Messunsicherheiten führen.

Um eine evtl. Beeinflussung feststellen zu können, werden im laufenden Jahr 2012 Vergleichsmessungen durchgeführt.

Daher sind obige Werte als vorläufig anzusehen und können nach Vorliegen der Ergebnisse der Vergleichsmessungen evtl. korrigiert werden.

03:

Messstation	Messunsicherheit HMW/MW1 [%]	Messunsicherheit MW8 [%]	Datenqualitätsziel eingehalten
INNSBRUCK – Andechsstraße	4,1	4,1	ja
INNSBRUCK – Sadrach	3,4	3,5	ja
INNSBRUCK – Nordkette	3,6	3,7	ja
WÖRGL – Stelzhamerstrasse	3,2	3,3	ja
KRAMSACH – Angerberg	7,5	5,2	ja
KUFSTEIN – Festung	3,9	4,0	ja
HÖFEN – Lärchbichl	3,4	3,5	ja
HEITERWANG – Ort/B179	4,4	4,4	ja
LIENZ – Tiefbrunnen	3,4	3,5	ja

PM10:

Da sich die entsprechende Richtlinie der kontinuierlichen tageszeitauflösenden Staubmessungen derzeit noch in Ausarbeitung befindet, wurde zur Qualitätssicherung das bis dato verwendete Verfahren eingesetzt. Zur Überprüfung der im Messnetz eingesetzten FH62 IR-Analysatoren wurden die dazu verwendeten Standards im nationalen Referenzlabor des Umweltbundesamtes in Wien abgeglichen.

Mit Hilfe dieser Standards wurde jeder einzelne Analysator vor Ort in der Messstelle 4-malig im Jahr 2011 einer Richtigkeitsüberprüfung unterzogen. Dabei wurde die eventuelle Abweichung vom Sollwert ermittelt.

Die Ergebnisse für das Jahr 2011 sind in der folgenden Tabelle in Form eines **mittleren Fehlers** mit der dazugehörigen **Standardabweichung** zusammengefasst:

Messstation	Mittlerer Fehler [%]	Standardabweichung [%]
INNSBRUCK – Andechsstraße	-0,3	1,5
INNSBRUCK - Fallmerayerstraße	-1,2	3,3
MUTTERS – Gärberbach	-0,2	1,5
HALL – Sportplatz	-0,8	1,0
IMST – Imsterau	-0,5	0,6
BRIXLEGG – Innweg	0,0	1,4
WÖRGL – Stelzhamerstraße	0,1	1,3
KUFSTEIN – Praxmarerstraße	0,8	9,6
HEITERWANG – Ort/B179	-0,5	0,5
VOMP – Raststätte/A12	-0,6	1,1
VOMP – An der Leiten	-0,9	5,7
LIENZ – Amlacherkreuzung	-0,7	0,8

MESSERGEBNISSE 2011 (sowie Verfügbarkeiten der Messdaten)

KONZENTRATIONSMESSUNGEN

Die Jahresauswertung erfolgt messstellenbezogen von West nach Osten. In den jeweiligen Tabellen ist auch die Verfügbarkeit der gültigen Einzelwerte angegeben (2. Spalte).

HÖFEN – Lärchbichl

Seehöhe: 877m

gemessene Luftschadstoffe: Ozon (O3)

Messziel: Ozongesetz

(forstrelevante Messstelle, ländliches Gebiet)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max.8 MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
O3 (μ g/m³)	98	56	80	115	149	148	155	155	158

HEITERWANG-Ort/B179

Seehöhe: 985m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2), Stickstoffmonoxid (NO), Feinstaub (PM10), Ozon (O3)

Messziel: Immissionsschutzgesetz-Luft, Ozongesetz

(ländliches Gebiet, verkehrsbeeinflusst)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 3MW	max. 1MW	max. HMW
PM10 (μg/m³)	99	15		51				401
$NO(\mu g/m^3)$	98	7		63				211
NO2 (μg/m³)	98	19		76		119		133
O3 (µg/m³)	93	49	82	114	153	161	164	165

IMST - A12

Seehöhe: 719m

 $gemessene\ Luftschadstoffe:\ Stickstoffdioxid\ (NO2)\ ,$

Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft

(verkehrsbezogene Messstelle)

Schadstoff	Verf. %	JMW	max. TMW	max. 8MW	max. 3MW	max. 1MW	max. HMW
$PM10 (\mu g/m^3)$	99	21	68				171
NO $(\mu g/m^3)$	97	53	265				620
NO2 (μg/m³)	97	45	102		196		214

INNSBRUCK - Andechsstraße

Seehöhe: 570m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2), Stickstoffmonoxid (NO), Feinstaub (PM10), Ozon (O3)

Messziel: Immissionsschutzgesetz-Luft, Ozongesetz (städtische

Belastung, verkehrsnah)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
PM10 g.(μg/m³)	99	25		103					
NO (μg/m³)	97	40		298					585
NO2 (μg/m³)	97	41		113			171		197
O3 (μg/m³)	97	32	61	120	141	134	144	145	145

INNSBRUCK - Fallmerayerstraße

Seehöhe: 577m

gemessene Luftschadstoffe: Schwefeldioxid (SO2), Kohlenmonoxid

(CO), Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Feinstaub (PM10, PM2.5)

Messziel: Immissionsschutzgesetz-Luft (städtischer Zentralraum, verkehrsnah)

Schadstoff	Verf.	JMW	WinterHJ.	max.	max.	max.	max.	max.
	%			TMW	8MW	3MW	1MW	HMW
$SO2 (\mu g/m^3)$	98	3	4	So:2		25	So:6	So:7
				Wi:15			Wi:28	Wi: 29
PM10 g.(μg/m³)	100	23		80				
PM25 g.(μg/m³)	99	16		66				
$NO(\mu g/m^3)$	98	39		213				565
NO2 (μ g/m³)	98	45		123		177		193
CO (mg/m³)	98	0,376		1,169	1,633	2,029	2,306	2,424

INNSBRUCK - Sadrach

Seehöhe: 678m

gemessene Luftschadstoffe: Ozon (O3), Stickstoffmonoxid (NO),

Stickstoffdioxid (NO2)

Messziel: Ozongesetz, Immissionsschutzgesetz-Luft (bodennahe Ozonüberwachung)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	m8M W_EU	max.	max.	max HMW
O3 (µg/m³)	97	46	72	129	145	141	148	149	149
NO (μg/m³)	97	11		104			202		309
$NO2 (\mu g/m^3)$	97	23		81			120		131

INNSBRUCK/NORDKETTE

Seehöhe: 1958m

gemessene Luftschadstoffe: Ozon (O3)

Messziel: Ozongesetz (Ökosysteme und Vegetation)

Schadstoff	Verf. %	JMW	MW 9-16	max.	max.	m8M	max.	max.	max.
			Veg.P.	TMW	8MW	W_EU	3MW	1MW	HMW
O3 (μg/m³)	98	94	93	144	155	154	157	159	160

MUTTERS – GÄRBERBACH A13

Seehöhe: 688m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft

(verkehrsbezogene Messstelle)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
$PM10 (\mu g/m^3)$	99	22	81				153
NO (μg/m³)	97	58	186				393
NO2 (μg/m³)	96	51	89		143		176

HALL - Sportplatz

Seehöhe: 588m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft (kleinstädtisches

Mischgebiet)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 g. $(\mu g/m^3)$	100	25	98				
$NO(\mu g/m^3)$	97	49	285				629
NO2 (μg/m³)	97	43	113		207		230

VOMP - Raststätte A12

Seehöhe: 557m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft

(verkehrsbezogene Messstelle)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 g. (μg/m³)	100	23	81				
NO $(\mu g/m^3)$	97	101	324				783
NO2 (μg/m³)	97	66	128		194		222

VOMP – An der Leiten

Seehöhe: 543m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft

(verkehrsbelastetes Wohngebiet)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 (μg/m³)	99	22	100				254
$NO (\mu g/m^3)$	98	42	227				528
NO2 (μg/m³)	98	42	98		128		157

BRIXLEGG - Innweg

Seehöhe: 519m

gemessene Luftschadstoffe: Schwefeldioxid (SO2), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft (industriebezogene Überwachung)

Schadstoff	Verf. %	JMW	Winter	max.	max.	max.	max.	max.
			HJ.	TMW	8MW	3MW	1MW	HMW
SO2 (μ g/m³)	98	3	2	So:28 Wi:11		102	So:210 Wi: 110	So:281 Wi:159
PM10 g. (μg/m³)	99	22		75				

KRAMSACH - Angerberg

Seehöhe: 602m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Ozon (O3)

Messziel: Immissionsschutzgesetz-Luft, Ozongesetz

(Immissionsschutzgesetz-Luft - Ökosysteme und Vegetation)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8 MW EU	max. 3MW	max. 1MW	max. HMW
NO $(\mu g/m^3)$	97	11		85					213
NO2 (μg/m³)	97	25		78			95		101
NOx-IGL (μg/m³)	97	41							
O3 (μg/m³)	97	42	66	120	138	138	146	150	155

KUNDL – A12

Seehöhe: 507m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO)

Messziel: Immissionsschutzgesetz-Luft

(verkehrsbezogene Messstelle)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
NO $(\mu g/m^3)$	97	67	201				455
NO2 (μ g/m³)	97	53	101		141		163

WÖRGL - Stelzhamerstraße

Seehöhe: 508m

gemessene Luftschadstoffe: Stickstoffdioxid (NO2), Stickstoffmonoxid (NO), Feinstaub (PM10), Ozon (O3)

Messziel: Immissionsschutzgesetz-Luft, Ozongesetz

(kleinstädtischer Hintergrund)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 3MW	max. 1MW	max. HMW
PM10 (μg/m³)	99	22		81				378
$NO(\mu g/m^3)$	97	22		132				386
NO2 (μg/m³)	97	30		85		115		139
O3 (μg/m³)	90	34	67	92	138	147	149	151

KUFSTEIN - Praxmarerstraße

Seehöhe: 489m

gemessene Luftschadstoffe: Schwefeldioxid (SO2), Stickstoffdioxid

(NO2), Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft (kleinstädtisch,

verkehrsnah)

Schadstoff	Verf. %	JMW	Winter	max.	max.	max.	max.	max.
			HJ.	TMW	8MW	3MW	1MW	HMW
$SO2 (\mu g/m^3)$	98	1	2	So: 4 Wi: 5		7	So: 6 Wi: 15	So: 7 Wi: 26
PM10 (μg/m³)	99	20		58				126
$NO (\mu g/m^3)$	98	18		136				230
NO2 (μg/m³)	98	29		80		99		103

KUFSTEIN - Festung

Seehöhe: 550m

gemessene Luftschadstoffe: Ozon (O3)

Messziel: Ozongesetz

(bodennahe Ozonüberwachung)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
$O3 \left[\mu g/m^3\right]$	97	36	67	101	149	147	153	156	157

LIENZ - Amlacherkreuzung

Seehöhe: 675m

gemessene Luftschadstoffe: Schwefeldioxid (SO2), Kohlenmonoxid

(CO), Stickstoffdioxid (NO2),

Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft (kleinstädtisch, verkehrsbezogener Standort)

Schadstoff	Verf. %	JMW	Winter	max.	max.	max.	max.	max.
			HJ.	TMW	8MW	3MW	1MW	HMW
$SO2 (\mu g/m^3)$	97	1	2	So: 2 Wi: 4		7	So: 4 Wi: 7	So: 4 Wi: 8
PM10 g.(μg/m³)	99	22		70				
NO (μg/m³)	97	60		271				652
NO2 (μg/m³)	97	40		88		149		175
CO (mg/m³)	98	0,539		1,778	2,470	2,936	3,492	3,869

LIENZ - Tiefbrunnen

Seehöhe: 681m

gemessene Luftschadstoffe: Ozon (O3)

Messziel: Ozongesetz

(bodennahe Ozonüberwachung)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	m8M W_EU	max. 3MW	max. 1MW	max. HMW
O3 (μ g/m³)	97	44	75	102	133	132	138	141	147

AUSWERTUNGEN der Messergebnisse und AUSWEISUNG von allfälligen ÜBERSCHREITUNGEN bestehender österreichischer Gesetze

Gemäß IG-L sind die Überschreitungen von Grenz-, Alarm- und Zielwerten auszuweisen und in den Jahresbericht aufzunehmen.

Alarm- Grenz- und Zielwerte sowie AEI zum Schutz des Menschen

Anlage 1: Grenzwerte: in µg/m³ (a	ausgenomme	n bei angege	ebenen Dimens	ionen)	
	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200*)			120	
Kohlenmonoxid			10 mg/m³)		
Stickstoffdioxid	200				30**)
PM10				50***)	40
PM2,5					25****)
Blei in der PM10-Fraktion					0,5
Benzol					5
Anlage 2: Grenzwerte in mg/m ² *d	1				
Staubniederschlag					210
Blei im Staubniederschlag					0,100
Cadmium im Staubniederschlag					0,002
Anlage 4: Alarmwerte in μg/m ³		•			
Schwefeldioxid		500			
Stickstoffdioxid		400			
Anlage 5: Zielwerte					
Stickstoffdioxid				80 μg/m³	
PM2,5					25 μg/m³
Arsen in der PM10-Fraktion					6 ng/m3
Kadmium in der PM10-Fraktion					5 ng/m3
Nickel in der PM10-Fraktion					20 ng/m3
Benzo(a)pyren in der PM10- Fraktion					1 ng/m3
*) Drei Halbstundenmittelwerte pro Tag, je Konzentration von 350 μg/m³gelten nicht a **) Der Immissionsgrenzwert von 30 μg/m Inkrafttreten dieses Bundesgesetzes und wit Toleranzmarge von 10 μg/m3 gilt gleich bleibend ab 1. Jänner 2010. Im Jund 2011 durchzuführen. Auf Grundlage dund Wasserwirtschaft im Einvernehmen m Entfall der Toleranzmarge mit Verordnung ***) Pro Kalenderjahr ist die folgende Zah ****) Der Immissionsgrenzwert von 25 μg diesen Grenzwert wird ausgehend vom 11. gleichen Prozentsatz bis auf 0% am 1. Jänr	als Überschreitung ist ab 1. Jänner eibend ab 1. Jänner eibend ab 1. Jär Jähr 2012 ist ein ieser Evaluierur it dem Bundesm anzuordnen. 1 von Überschreichm ist ab dem Juni 2008 am fo	ng. er 2012 einzuh: jedes Jahres b uner 2005 bis 3 e Evaluierung ng hat der Bund uinister für Wir itungen zuläss 1. Jänner 2015 blgenden 1. Jän	alten. Die Toleranz is 1. Jänner 2005 u 1. Dezember 2009 der Wirkung der T desminister für Lantschaft, Familie un ig: ab 2010: 25. einzuhalten. Die T	zmarge beträgt 30 m 5 μg/m3 verrir 0. Die Toleranzmarge für nd- und Forstwirts nd Jugend gegebe. Γoleranzmarge vo	μg/m3 bei agert. Die rge von 5 μg/n die Jahre 2010 schaft, Umwelt nenfalls den

Der AEI wird berechnet als Durchschnittswert über alle Jahresmittelwerte der Messstellen, die gemäß der Verordnung

gemäß § 4 zur Berechnung des AEI herangezogen werden.

20

Für die Festlegung von Maßnahmen in einem Programm gemäß § 9a IG-L ist seit der Novelle BGBl. I Nr. 77/2011 hinsichtlich des Tagesmittelswertes für PM10 die Anzahl von 35 Überschreitungen pro Jahr und hinsichtlich des Jahresmittelwertes für NO2 der um 10 μg/m³ erhöhte Grenzwert gemäß Anlage 1a maßgeblich.

Grenz- und Zielwerte zum Schutz der Vegetation (BGBl. II Nr. 298/2001)

Grenzwerte aufgrund des § 3 Abs. 3 IG-L (μg/m³)										
Luftschadstoff	HMW	MW3	MW8	TMW	JMW					
Schwefeldioxid					20 1)					
Stickstoffoxide*					30					
Zielwerte in μg/m³	Zielwerte in µg/m³									
Schwefeldioxid				50						
Stickstoffdioxid				80						
1) gilt für das Kalenderjahr und o	¹⁾ gilt für das Kalenderjahr und das Winterhalbjahr (1.Oktober bis 31.März)									

^{*}NOx = Stickstoffoxide im Sinne dieser Verordnung sind die Summe von Stickstoffmonoxid und Stickstoffdioxid, ermittelt durch die Addition als Teile auf eine Milliarde Teile und ausgedrückt als Stickstoffdioxid in $\mu g/m3$.

Die Komponente Ozon wurde im Bundesgesetz vom 11. Juni 2003 (BGBl. 34/2003 i.d.g.F.) aus dem Immissionsschutzgesetz-Luft herausgenommen; gleichzeitig wurden in diesem Gesetz durch Änderung des Ozongesetzes Informations- und Warnwerte sowie (langfristige) Zielwerte zur menschlichen Gesundheit und der Vegetation eingeführt.

BGBl. Nr. 34/2003

Informations- und Warnwerte für Ozon						
Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Zielwerte für Ozon ab dem Jahr 2011						
Zum Schutz der menschlichen Gesundheit	120 μg/m³ als Achtstundenmittelwert*) eines Tages dürfen im Mittel über drei Jahre an höchstens 25 Tagen pro Kalenderjahr überschritten werden					
Zum Schutz der Vegetation	AOT40**) von 18000μg/m³.h, berechnet aus der Einstundenmittelwerten von Mai bis Juli, gemittelt über 5 Jahre					
Langfristige Ziele für Ozon für das Jahr 2020						
Zum Schutz der menschlichen Gesundheit	120 μg/m³ als höchster Achtstundenmittelwert*) innerhalb eines Kalenderjahres					
Zum Schutz der Vegetation	AOT40**) von 6000μg/m³.h; berechnet aus den Einstundenmittelwerten von Mai bis Juli					
*)Der Achtstundenmittelwert ist gleitend aus de	en Einstundenmittelwerten zu berechnen; jeder					
Achtstundenmittelwert gilt für den Tag, an de	m der Mittelungszeitraum endet.					
	zwischen den Konzentrationen über 80µg/m³ als					
Einstundenmittelwerte und 80μg/m³ unter ausschließlicher Verwendung der						
Einstundenmittelwerte zwischen 8 und 20 Uhr	r MEZ.					

In der 2. Verordnung gegen forstschädliche Luftverunreinigungen (=Verordnung des Bundesministers für Land- und Forstwirtschaft vom 24. April 1984 über forstschädliche Luftverunreinigungen) sind u.a. Grenzwerte für Schwermetalle für die Waldvegetation festgelegt; die Einhaltung dieser Bundesverordnung wird in diesem Bericht mit überprüft.

§ 4. (3) Als Höchstmengen im Staubniederschlag werden im Sinne des § 48 lit. b des Forstgesetzes 1975 festgesetzt:

	Jahresmittelwert (kg pro ha und Jahr)
Blei (=Pb)	2,5
Zink (=Zn)	10,0
Cu (=Kupfer)	2,5
Cd (=Cadmium)	0,05

Auf den folgenden Seiten wird die Auswertung der gewonnenen Messdaten luftschadstoffweise nach den vorstehenden genannten gesetzlichen Limiten vorgenommen.

Vorab ist anzumerken, dass im Jahr 2011 die im IG-L genannten

• ALARMWERTE (für NO2 und SO2)

an allen Tiroler Luftgütemessstellen eingehalten sind.

Ebenso ist die

• ALARMSCHWELLE gem. BGBl. 34/2003 für Ozon im Berichtsjahr

überall eingehalten.

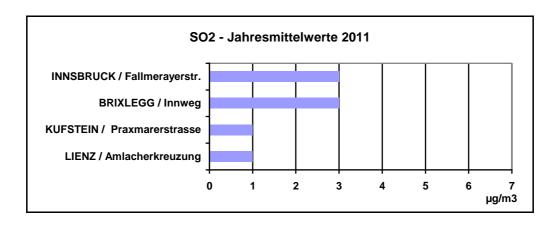

Schwefeldioxid (=SO2)

Tabelle: Ergebnisse der Auswertungen 2011 für Schwefeldioxid:

	JMW	Max.TMW	Max.3MW	Max.HMW
INNSBRUCK/Fallmerayerstraße	3	So: 2 Wi:15	25	So:7 Wi:29
BRIXLEGG/Innweg	3	So:28 Wi:11	102	So:281 Wi:159
KUFSTEIN/Praxmarerstraße	1	So: 4 Wi: 5	7	So: 7 Wi: 26
LIENZ/Amlacherkreuzung	1	So: 2 Wi: 4	7	So:4 Wi: 8

Angaben in µg/m³ Luft

An allen 4 Standorten sind die Alarm-, Grenz- und Zielwerte für diese Komponente gem. IG-L zum Schutz der menschlichen Gesundheit wie auch der Ökosysteme und der Vegetation eingehalten.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Schwefeldioxid (=SO2) im Jahr 2011 liegen unterhalb des gesetzlichen Grenzwertes gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

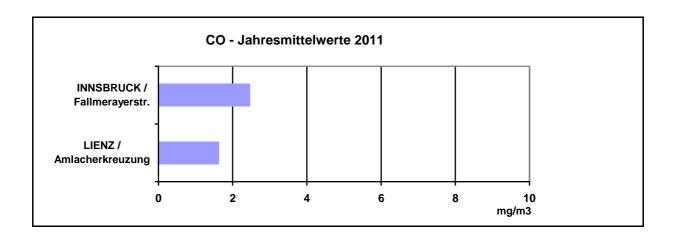

Kohlenstoffmonoxid (=CO)

Tabelle: Ergebnisse der Auswertungen 2011 für Kohlenmonoxid:

	Max. 8MW			
INNSBRUCK/Fallmerayerstraße	1,6			
LIENZ/Amlacherkreuzung	2,5			

Alle Angaben in mg/m³ Luft

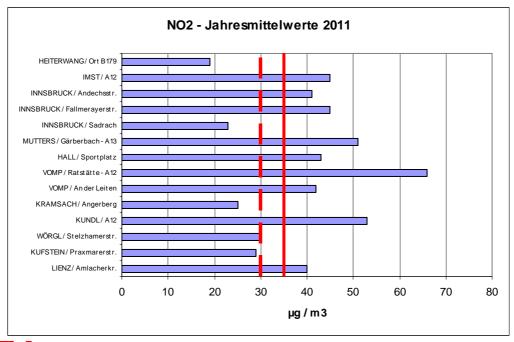
Damit ist der Grenzwert von 10 mg/m³ zum Schutz der menschlichen Gesundheit gem. IG-L für Kohlenmonoxid überall bei weitem eingehalten.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Kohlenmonoxid (=CO) im Jahr 2011 liegen unterhalb des gesetzlichen Grenzwertes gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

Stickstoffdioxid (=NO2)

Tabelle: Ergebnisse der Auswertungen 2011 für Stickstoffdioxid (in μg/m³)


Tuberie. Ergeomsse der Flaswerte	JMW	Max	Anzahl Tage Zielwertüber-	Max	Max	Anzahl der IG-L
		TMW	schreitung	3MW	HMW	Grenzwertüber- schreitungen
HEITERWANG/Ort B179	19	76	0	119	133	
IMST/A12	<mark>45</mark>	102	27	196	214	4
INNSBRUCK /Andechsstr.	<mark>41</mark>	113	29	171	197	
INNSBRUCK/Fallmerayerstr.	<mark>45</mark>	123	28	177	193	
INNSBRUCK/Sadrach	23	81	1	120	131	
MUTTERS/Gärberbach – A13	<mark>51</mark>	89	11	143	176	
HALL/Sportplatz	<mark>43</mark>	113	26	207	230	3
VOMP/Raststätte – A12	<mark>66</mark>	128	77	194	222	5
VOMP/An der Leiten	<mark>42</mark>	98	11	128	157	
KRAMSACH/Angerberg	25	78	0	95	101	
KUNDL/A12	<mark>53</mark>	101	18	141	163	
WÖRGL/Stelzhamerstraße	30	85	2	115	139	
KUFSTEIN/Praxmarerstraße	29	80	0	99	103	
LIENZ/Amlacherkreuzung	<mark>40</mark>	88	5	149	175	

Angaben in µg/m³ Luft

X Messwert liegt zwischen 30 und 35 μg NO2/m³.

X Messwert liegt über 35 μg NO2/m³ (über dem gesetzlichen Grenzwert gem. IG-L und der für 2011 zulässigen Toleranzmarge von 5 μg/m³).

X Messwert liegt über dem gesetzlichen Grenzwert für den Halbstundenmittelwert von 200 μg/m³.

- Grenzwert zum Schutz des Menschen gem. IG-L

- Grenzwert + zulässige Toleranzmarge <u>für 2011</u> gem. IG-L

Auswertung nach IG-L:

Der für das Jahr 2011 gesetzlich zulässige Jahresmittelwert für das Jahr 2011 (= $35 \mu g/m^3$) ist an den Standorten

• IMST/A12, INNSBRUCK/Andechsstraße, INNSBRUCK/Fallmerayerstraße, MUTTERS/Gärberbach – A13, HALL/Sportplatz, VOMP/Raststätte – A12, VOMP/An der Leiten, KUNDL/A12 und LIENZ/Amlacherkreuzung

überschritten,

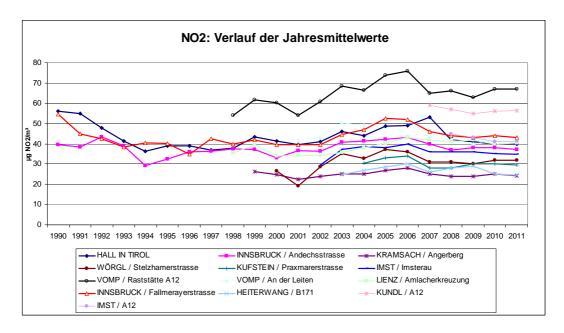
während dieser in:

• in WÖRGL/Stelzhamerstraße, HEITERWANG/Ort B179, INNSBRUCK/Sadrach, KRAMSACH/Angerberg, INNSBRUCK/Nordkette sowie KUFSTEIN/Praxmarerstraße eingehalten worden ist.

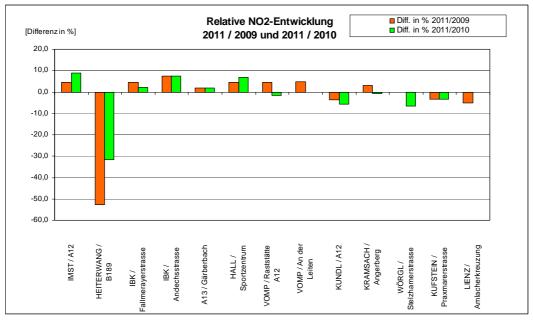
An den 3 Standorten

• Imst/A12, HALL/Sportplatz und Vomp/Raststätte A12 wurde der Kurzzeitgrenzwert von 200 µg/m³ NO2 **überschritten**.

Feststellung nach § 7 IG-L:


Da für den Luftschadstoff NO2 in den von Grenzwertüberschreitungen betroffenen Gebieten bereits Statuserhebungen erstellt sowie Sanierungsgebiete ausgewiesen (bzw. aufgrund von erstellten Statuserhebungen vorgeschlagen) wurden und sich die Emissionssituation in den betreffenden Gebieten nicht wesentlich geändert hat, ist gem. § 8 Abs. 7 Z 1 für die 2011 als überschritten ausgewiesenen Messstandorte keine neuerliche Statuserhebung erforderlich.

Die Auswertung nach <u>EU-RL 2008/50</u> für NO2 als diskreter 1MW ergibt zwar 2 Überschreitungen für HALL/Sportplatz und 1 für VOMP/Raststätte A12, dieses Kriterium ist allerdings als eingehalten einzustufen, da pro Kalenderjahr 18 Überschreitungen zulässig sind.


Trend der NO2-Immissionen

Entwicklung der NO2-Jahresmittelwerte seit 1990:

Die NO2-Immissionsentwicklung über die vergangenen Jahre zeigt nach einem hohen Niveau vor 1990 eine Absenkung und Stagnation in den 90er Jahren, seit 2002 eine ansteigende Tendenz. Seit 2007 ist im Vergleich aller Standorte eine uneinheitliche Tendenz feststellbar, einige Standorte weisen eine fallende Tendenz, manche eine steigende Tendenz auf und wiederum manche sind gleich bleibend.

Folgende Abbildung zeigt die Veränderungen an den Messstellen 2011 im Vergleich zu 2010 und 2009:

Die auffällige Verminderung in HEITERWANG/B189 hängt mit der Eröffnung der Umfahrung Heiterwang im Oktober 2010 zusammen; nur mehr ein geringer Teil der bisher durchschnittlich etwa 12.000 Fahrzeuge (DTV) fährt seitdem nahe der Luftgütemessstelle vorbei.

Überschreitungsstatistik Jahresgrenzwert (inkl. Toleranzmarge):

Jahr	zulässiger NO2-Jahres- mittelwert (in µg/m³)	Anzahl überschrittener Messstellen
2011	35	9 von 14
2010	<mark>35</mark>	9 von 15
2009	40	7 von 15
2008	40	8 von 15
2007	40	7 von 14
2006	40	7 von 13
2005	40	6 von 13
2004	45	4 von 13
2003	50	1 von 13
2002	55	1 von 12
2001	60	0 von 12

Überschreitungsstatistik Zielwert gem. IG-L (= $80 \mu g/m^3$ als Tagesmittelwert):

T 1	A 11 m 1 m No 4 m
Jahr	Anzahl überschrittener Messstellen
2011	11 von 14
<mark>2010</mark>	13 von 15
2009	13 von 15
2008	11 von 15
2007	9 von 14
2006	12 von 13
2005	12 von 13
2004	11 von 13
2003	9 von 13
2002	7 von 12
2001	5 von 12

Stickstoffoxide (=NO2 + NO)

Tabelle: Ergebnisse der Auswertungen 2011 für Stickstoffoxide (= NO + NO2 gerechnet als NO2):

	JMW
KRAMSACH / Angerberg	41

Angaben in μg/m³ Luft (im Sinne des IG-L ist NO als NO2 zu rechnen).

Für die Überprüfung der Einhaltung des Jahresgrenzwertes zum Schutz der Ökosysteme und der Vegetation gem. IG-L i.d.g.F. von 30 μg/m³ sind von den insgesamt 15 Luftmessstellen mit Stickoxidbestückung aufgrund der Bestimmungen der Messkonzeptverordnung lediglich die Messstelle Kramsach-Angerberg relevant; in Ballungsräumen ist dieser Grenzwert nicht anzuwenden.

Für KRAMSACH/Angerberg ist aufgrund der gemessenen NOx-Immissionen von 40 μg NOx/m³ als Jahresmittelwert für 2011 erneut eine Grenzwertverletzung auszuweisen.

Feststellung nach § 7 IG-L:

Da bereits im Jahr 2002 eine Überschreitung ausgewiesen wurde, gem. § 8 Abs. 2 Z 4 IG-L ein Sanierungsgebiet ermittelt worden ist und hierüber bereits eine Statuserhebung vorliegt (siehe http://www.tirol.gv.at/uploads/media/Stat_2002_Kramsach_NOx.pdf), ist eine erneute Erstellung einer Statuserhebung gem. § 8 Abs. 7 Z 1 IG-L nicht vonnöten.

Die Messung dieses Schadstoffes erfolgt konform zur Messkonzeptverordnung in zweifacher Weise:

- PM10-Messungen mittels kontinuierlicher Registrierung. Diese Messmethode ist für den täglichen Luftgütebericht notwendig und liefert zudem eine tageszeitliche Auflösung durch Dauerregistrierung (=> verbesserte Zuwehungsinterpretation).
- PM10-Messungen mittels gravimetrischer Methode. Diese Methode entspricht unmittelbar den Erfordernissen der EN 12341 und dient zur qualifizierten Bestimmung des Feinstaubes in der Luft (=> verbesserte Inhaltsbestimmung).

Anmerkung zur kontinuierlichen Messung. Aufgrund des durchgeführten österreichischen Äquivalenzfeldringversuches (Ergebnisse siehe Tabelle Seite 9) sind die ermittelten Rohwerte mit einer Korrekturfunktion zu belegen.

Tabelle: Ergebnisse der Auswertungen 2011 für PM10

	JMW	Max. TMW	Anzahl der Tage	Anzahl der Tage mit
			mit einem	einem TMW >50µg/m³
			$TMW > 50 \mu g/m^3$	nach Abzug von NaCl
HEITERWANG/Ort/B 179	15	51	1	
IMST/A12	21	68	7	
INNSBRUCK/Andechsstraße*	25	103	46	38
INNSBRUCK/Fallmerayerstraße*	23	80	18	
MUTTERS/Gärberbach-A13	22	81	9	
HALL/Sportplatz*	25	98	34	31
VOMP/Raststätte A12*	23	81	14	
VOMP/An der Leiten	22	100	11	
BRIXLEGG/Innweg*	22	75	16	14
WÖRGL/Stelzhamerstraße	22	81	11	
KUFSTEIN/Praxmarerstraße	20	58	4	
LIENZ/Amlacherkreuzung*	22	70	10	8

Angaben in $\mu g/m^3$ Luft; TMW = Tagesmittelwert

- * Ergebnisse mittels gravimetrischer Messmethode
- X Oberhalb der zulässigen Anzahl an Tagesgrenzwertüberschreitungen (für 2011 sind gem. IG-L 25 Überschreitungen zulässig)
- X Oberhalb der zulässigen Anzahl an Tagesgrenzwertüberschreitungen gem. EU-RL 2008/50 (hier sind nur 35 Überschreitungen erlaubt).

Die Möglichkeit des Abzuges von winterdienstbedingtem Streusalz (=NaCl) wurde für die Standorte INNSBRUCK/Andechsstraße, HALL/Sportplatz, BRIXLEGG/Innweg und

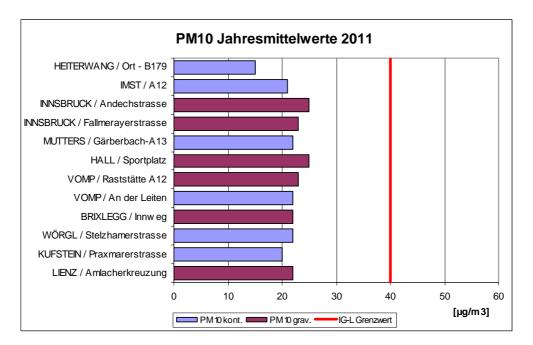
LIENZ/Amlacherkreuzung durchgeführt, indem die exponierten PM10-Filtern einzeln im Labor auf deren Salzgehalt untersucht und anschließend vom gravimetrisch ermittelten PM10-Wert abgezogen wurden (siehe Tabelle auf Seite 72ff). Die derart ermittelte Anzahl an

Tagesgrenzwertüberschreitungen ist in der 5. Spalte der oben angeführten Tabelle zusammengestellt.

Für die Überschreitungen der zulässigen Anzahl an Tagesgrenzwerten in HALL/Sportplatz können als unmittelbare Ursache die sehr nahe an der Messstelle stattgefundenden Grabungs-/Bauarbeiten zugeordnet werden (worüber bereits im Vorjahresbericht eine ausführliche Abhandlung hierüber erstattet worden ist).

In INNSBRUCK/Andechsstraße verbleibt trotz des Abzuges winterdienstbedingten Salzanteiles im PM10 immer noch eine überhöhte Anzahl an Tagesgrenzwertüberschreitungen.

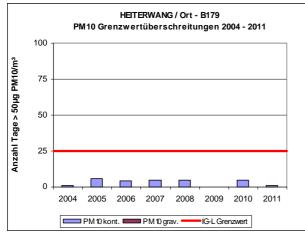
Auswertung nach den Grenzwerten für PM10 gem. IG-L zum Schutz der menschlichen Gesundheit:

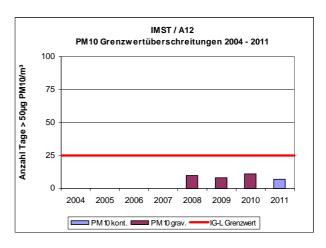

An jedem Standort ist der PM10-<u>Tages</u>grenzwert von 50 µg/m³ gem. IG-L zumindest an einem Tag des Jahres 2011 überschritten. Allerdings ist das gesetzlich festgelegte Kriterium (zulässige Anzahl; = 25-malige Überschreitung des Tagesgrenzwertes; sog. Perzentilregelung) im Jahr 2011 mit Ausnahme der Standorte

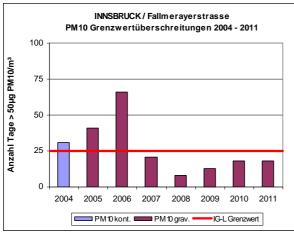
- INNSBRUCK/Andechsstraße und
- HALL/Sportplatz

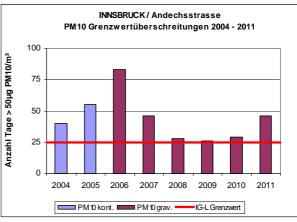
überall eingehalten.

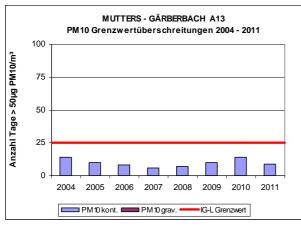
Der zweite im IG-L für PM10 angeführte Grenzwert als <u>Jahresmittel</u>wert von 40 μ g/m³ ist überall eingehalten.

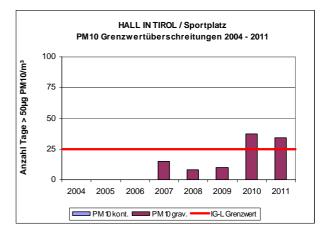

In nachfolgender Abbildung sind die Ergebnisse der PM10-Messungen im Tiroler Luftgütemessnetz graphisch dargestellt:

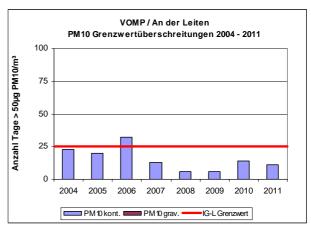


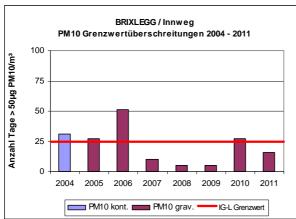

Feststellung nach § 7 IG-L:

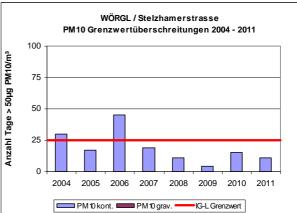

Wegen bereits erfolgter Statuserhebungen betreffend PM10 ist gem. § 8 Abs. 7 Z 1 und Z 2 keine erneute Statuserhebung für die 2011 über dem gesetzlichen Grenzwert ausgewiesenen Messstandorte erforderlich.

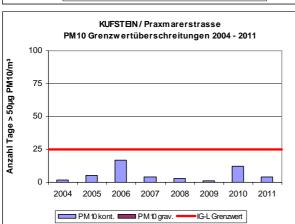

Entwicklung der Überschreitungsanzahlen des PM10-Tagesgrenzwertes

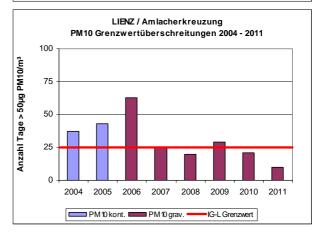












PM2.5-Feinstaub

(particulate matter mit einer aerodynamischen Korngröße von weniger als 2,5 μm).

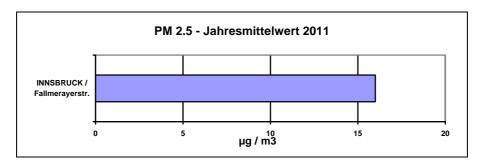

Die Messung dieses Schadstoffes erfolgt konform zur Messkonzeptverordnung (siehe §31 MKVO, BGBl. II Nr. 263/2004, i.d.F. BGB. II Nr. 500/2006); Trendmessstelle) an einem Standort, an dem bereits PM10 gravimetrisch erfasst wird.

Tabelle: Ergebnisse der Auswertungen 2011 für PM2.5:

	JMW	Max.TMW
INNSBRUCK/Fallmerayerstraße*	16	66

Angaben in μg/m³ Luft

^{*} Ergebnisse mittels gravimetrischer Messmethode

Wie in den vergangenen 3 Jahren liegt die PM2,5-Konzentration auch im Berichtsjahr 2011 bei $16 \mu g/m^3$.

Das Verhältnis zu den PM10-Messungen am gleichen Standort ist ebenfalls gleich wie im Vorjahr (0,7); d.h. der Großteil – nämlich ca. 70 Prozent des PM10-Schwebstaubes - ist bereits in der Fraktion 2,5 µm aerodynamischen Korngrößendurchmessers enthalten.

Für PM2.5 ist der gem. IG-L erst 2015 ein Grenzwert von 25 μ g/m³ gültig; dieser ist 2011 bei weitem eingehalten, ebenso der bereits 2011 mit der IG-L-Novelle geltende gleich hohe Zielwert. Zudem liegt der gemessene Wert von 16 μ g/m³ unterhalb der oberen Beurteilungsschwelle gem. der entsprechenden EU-RL 2008/50/EG.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an PM2,5 im Jahr 2011 liegen unterhalb des gesetzlichen Grenzwertes gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

Blei in der PM10-Fraktion

Mit dem ermittelten Jahreswert 2011 von 0,150 μg/m³ Blei im PM10 an der Messstelle BRIXLEGG/Innweg ist die Belastung gegenüber 2010 annähernd unverändert. An der Messstelle HALL/Sportplatz wurde ein Jahreswert von 0,007 μg/m³ Blei im PM10 ermittelt. Der **Grenzwert** zum Schutz der menschlichen Gesundheit gem. IG-L (0,5 μg/m³ Blei im PM10) ist deutlich eingehalten.

Nickel in der PM10-Fraktion

Unterhalb der (im Landeslabor verbesserten) analytischen Nachweisgrenze der Bestimmungsmethode liegt die Nickelbelastung. Somit wird ein Wert von weniger als 3,7 ng/m³ Nickel im PM10 für 2011 an der Messstelle BRIXLEGG/Innweg ausgewiesen.

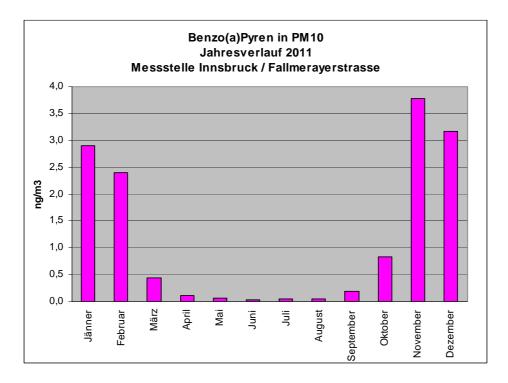
An der Messstelle HALL/Sportplatz wurde ein Jahreswert von 2,6 ng/m³ Nickel im PM10 ermittelt. Der **Zielwert** zum Schutz der menschlichen Gesundheit gem. IG-L (20 ng/m³ Nickel im PM10) für diese Komponente ist eingehalten.

Arsen in der PM10-Fraktion

Mit dem ermittelten Jahreswert von 2,0 ng/m³ Arsen im PM10 im Jahr 2011 an der Messstelle BRIXLEGG/Innweg ist der **Zielwert** zum Schutz der menschlichen Gesundheit gem. IG-L (6 ng/m³ Arsen im PM10) für diese Komponente eingehalten¹. Ebenso an der Messstelle HALL/Sportplatz wo ein Jahreswert von 0,5 ng/m³ Arsen im PM10 ermittelt wurde.

Cadmium in der PM10-Fraktion

Mit dem ermittelten Jahreswert von 1,2 ng/m³ Cadmium im PM10 an der Messstelle BRIXLEGG/Innweg und 0,2 ng/m³ an der Messstelle HALL/Sportplatz ist der **Zielwert** zum Schutz der menschlichen Gesundheit gem. IG-L (5 ng/m³ Cadmium im PM10) für diese Komponente eingehalten.


Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Blei, Nickel, Arsen und Cadmium im PM10 im Jahr 2011 liegen unterhalb der gesetzlichen Grenz-/Zielwerte gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

¹ (2009 noch mit 6,9 ng/m³Arsen im PM10 oberhalb des Zielwertes)

Benzo(a)Pyren in der PM10-Fraktion

Der ermittelte Jahreswert 2011 an der Trendmessstelle INNSBRUCK/Fallmerayerstraße beträgt 1,17 ng Benzo(a)Pyren/m³. Damit ist der Zielwert zum Schutz der menschlichen Gesundheit gem. IG-L (1 ng/m³) für diese Komponente erreicht jedoch als nicht überschritten auszuweisen.

Deutlich ersichtlich ist aus der Darstellung des Jahresverlaufes, dass die Belastungen im Winterhalbjahr (insbesonders bedingt durch verstärkten Betrieb von Feststoffheizungsanlagen aber auch wegen häufiger und stabiler Inversionswetterlagen im Winter) auftreten.

Feststellung nach § 7 IG-L:

Das Erreichen des Grenzwertes für Benzo(a)Pyren im Jahr 2011 an der Trendmessstelle INNSBRUCK/Fallmerayerstraße stellt gem. IG-L keine Überschreitung dar; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

Benzol

Die Benzolmessergebnisse an der Messstelle INNSBRUCK/Fallmerayerstraße (jeden dritten Tag wurde eine Tagesprobe gezogen) ergeben eine mittlere Jahresbelastung von 1,52 µg Benzol/m³. Dieser Wert ist gegenüber 2011 (1,32 µg Benzol/m³) allerdings leicht gestiegen.

Somit ist der Grenzwert zum Schutz der menschlichen Gesundheit gem. IG-L (5 μg Benzol/m³) für diese Komponente eingehalten.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Benzol im Jahr 2011 liegen unterhalb des gesetzlichen Grenzwertes gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

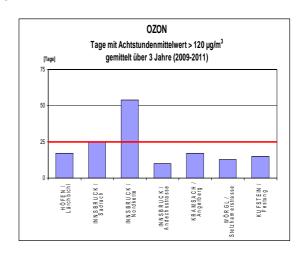
Ozon

Wie bereits auf Seite 26 angeführt, ist dieser Luftschadstoff mit dem Gesetz BGBl. I Nr. 34/2003 aus dem IG-L herausgenommen worden. Mit Art. II wurde weiters das Ozongesetz (BGBl. 210/1992, i.d.F. BGBl. I 108/2001) novelliert . Dabei wurden den EU-Erfordernissen angepasste Immissionswerte festgelegt. Die nachstehenden Auswertungen nehmen auf diese Änderungen Bezug.

Auswertung für Ozon im Jahr 2011 (inkl. Vergleich mit 2010):

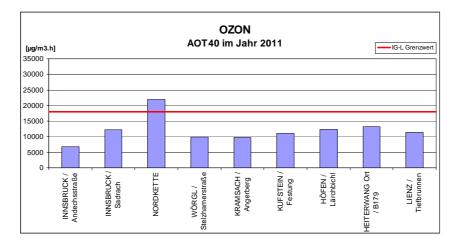
	max. MW8	Anzahl der Tage MW8>120 μg/m³	Anzahl der Tage MW8>120 μg/m³	Anzahl Tage mit MW1>180 μg/m³)
	2011	2011	2010	2011
HÖFEN/Lärchbichl	149	18	20	0
INNSBRUCK/Andechsstraße	141	9	10	0
INNSBRUCK/Sadrach	145	21	32	0
INNSBRUCK/Nordkette	155	44	58	0
KRAMSACH/Angerberg	138	15	23	0
KUFSTEIN/Festung	149	12	22	0
LIENZ/Tiefbrunnen	133	12	19	0
HEITERWANG/Ort	153	22	-	0
WÖRGL/Stelzhamerstraße	138	13	-	0

Insgesamt ist gegenüber dem Vorjahr bodennah eine leichte Verringerung der allgemeinen Ozonimmissionen feststellbar.

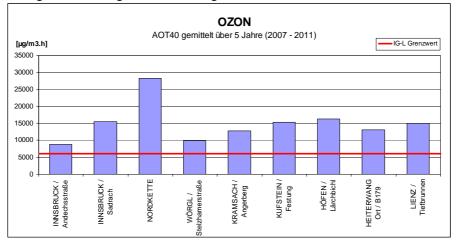

In Bezug auf die **Alarmschwelle** (240 μ g O3/m³ als Einstundenmittelwert) wie auch der **Informationsschwelle** (180 μ g O3/m³ als diskreter Einstundenmittelwert) ist im Jahr 2011 <u>keine Überschreitung</u> auszuweisen.

Die Auswertung für den gem. BGBl.34/2003 für Ozon festgelegten Zielwert zum Schutz der menschlichen Gesundheit (= $120~\mu g/m^3$ als Achtstundenwert, gemittelt über 3 Kalenderjahre; 25 Überschreitungen zulässig) ergibt folgendes Bild:

Tabelle und Grafik: Anzahl der über die Jahre 2009-2011 gemittelten Achtstundenmittelwerte:


	Zielwertüber-
	schreitungen
HÖFEN/Lärchbichl	17
INNSBRUCK/Sadrach	25
INNSBRUCK/Nordkette	<mark>54</mark>
INNSBRUCK/Andechsstraße	10
KRAMSACH/Angerberg	17
WÖRGL/Stelzhamerstraße	13
KUFSTEIN/Festung	15

X oberhalb der zulässigen Anzahl von 25 Zielwertüberschreitungen gemäß Ozongesetz



Die höher gelegene Stationen INNSBRUCK/NORDKETTE liegt deutlich über dem Zielkriterium ab dem Jahr 2011, da die mit 25 festgelegte Anzahl an zulässigen Überschreitungen hier bei weitem überschritten ist. An den anderen Standorten ist dieses Kriterium eingehalten. Allerdings ist das <u>langfristige Ziel</u> zur menschlichen Gesundheit, welches für 2020 vorgesehen ist, derzeit an keinem Standort eingehalten. Auswertung nach dem <u>Vegetationsschutz</u>:

Der Zielwert zum Schutz der Vegetation gem. Ozongesetz i.d.g.F. (AOT-Wert) von $18000 \,\mu\text{g/m}^3$.h für die Monate Mai bis Juli und gemittelt über 5 Jahre; welcher ab **2011** gilt, ist am Standort INNSBRUCK/Nordkette als überschritten auszuweisen, wie aus der folgenden Grafik hervorgeht.

Als <u>langfristiges Ziel zum Schutz der Vegetation</u> ist ab dem Jahr **2020** ein Dosiswert AOT 6.000 µg/m³ festgelegt. Nachstehende Grafik zeigt die diesbezügliche Auswertung für die 9 Tiroler Standorte im Jahr 2011:

INNSBRUCK/Nordkette ist auch hinsichtlich des Zielwertes zum Schutz der Vegetation gem. Ozongesetz i.d.g.F. (AOTWert² von 18000 µg/m³.h für die Monate Mai bis Juli; welcher ab 2011 gilt) als bei weitem überschritten auszuweisen. Aber auch die am Talboden oder den talbodennahen Hanglagen befindlichen Standorte sind derzeit deutlich überschritten.

Die ab dem Jahr 2011 geltenden Zielwerte sowohl zum Schutz des Menschen wie auch der Vegetation sind an der Messstelle (INNSBRUCK/NORDKETTE) überschritten, die restlichen 8 Standorte sind als eingehalten auszuweisen.

Die für 2020 festgelegten Kriterien (Langfristige Ziele für Ozon 2020) sind sowohl zum Schutz er menschlichen Gesundheit wie auch zum Schutz der Vegetation derzeit an allen Standorten überschritten. Eine Feststellung über die Notwendigkeit einer Statuserhebung ist gem. Ozongesetz nicht vorgesehen.

-

² AOT 40 bedeutet die Summe der Differenzen zwischen den Konzentrationen über 80 μg/m³ als Einstundenmittelwerte und 80 μg/m³ unter ausschließlicher Verwendung der Einstundenmittelwerte zwischen 8 und 20 Uhr MEZ der Monate Mai bis Juli.

DEPOSITIONSMESSERGEBNISSE Staubniederschlag (gem. IG-L i.d.g.F.; Anlage 2)

<u>Gesamtstaubniederschlag</u>: Die zeitliche Verfügbarkeit des zu überprüfenden Jahresgrenzwertes für den Staubniederschlag (und dessen Schwermetallanteile) beträgt durchwegs mehr als 75 %; allfällig geringere Verfügbarkeiten sind explizit (*)angemerkt.

IMST (Jahresmittelwerte in [mg/m2*d])

Im 1	Im 2	Im 3	Im 4	Im 5
HTL-Garten	B 171-Tankstelle	Brennbichl	Fabrikstraße	Auf Arzill
152	169	132	151*	198

^{*} Verfügbarkeit < 75%

INNSBRUCK (Jahresmittelwerte in [mg/m2*d])

Ibk 1	Ibk 2	Ibk 3	Ibk 4	Ibk 5	Ibk 6
IUK I	_	10K 3	10K 4		
Zentrum	O-Dorf (An	Reichenau	Innpromenade-	Hungerburg-	Höttinger Au
(Fallmerayerstr.)	der Lan Str.)	(Andechsstr.)	Rennweg	Talstation	(Daneyg.)
121	131	92	88	155	100

BRIXLEGG (Jahresmittelwerte in [mg/m2*d])

Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9	
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-	
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp	
238	142	212	86	102	89	93	82	
	77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

⁼ Überschreitung gem. IG-L

WÖRGL (Jahresmittelwerte in [mg/m2*d])

W 1	W 2	W 4	
Peter-Anich-Straße	Salzburgerstraße-Garten	Ladestraße-Hochaus Dach	
169	176	95	

ST.JOHANN/OBERNDORF (Jahresmittelwerte in [mg/m2*d])

O 2	O 4	O 6	O 10	O11
Griesbach	Weiberndorf	Apfeldorf	Sommerer	Prantlstraße 34
197*	143	164	150	116

^{*} Verfügbarkeit < 75%

Aus den Messergebnissen ist ersichtlich, dass im Jahr 2011 der Grenzwert für den Staubniederschlag von 210 mg/m². Tag in Brixlegg an 2 Standorten überschritten wurde.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Staubniederschlag im Jahr 2011 liegen an 2 Standorten über dem gesetzlichen Grenzwert gem. IG-L; demnach ist eine Statuserhebung nach § 8 IG-L durchzuführen.

INHALTSSTOFFE IM STAUBNIEDERSCHLAG

An insgesamt 10 Orten in zwei Staubniederschlagsmessnetzen (2 in Innsbruck und 8 im Raum Brixlegg) werden die Blei- sowie Cadmiumanteile im Staubniederschlag untersucht. Die Auswertungen ergeben für das Berichtsjahr 2011am Standort Brixlegg-Container eine Überschreitung des seit 1.1.2003 gültigen Grenzwertes für Blei. Der Camiumgrenzwert wurde überall eingehalten.

Blei im Staubniederschlag

INNSBRUCK Jahresmittelwerte in [mg/m2*d]

Ibk 1	Ibk 5
Zentrum	Hungerburg
(Fallmerayerstraße)	Talstation
0,009	0,004

BRIXLEGG Jahresmittelwerte in [mg/m2*d]

Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg- Bahnhof	Brixlegg- Kirche	Reith- Matzenköpfl	Reith- Matzenau	Münster- Innufer	Brixlegg- Container	Kramsach- Hagau	Kramsach- Volldöpp
0,099	0,015	0,029	0,016	0,021	0,176	0,020	0,006

Überschreitung des Grenzwertes gem. IG-L

Cadmium im Staubniederschlag

INNSBRUCK Jahresmittelwerte in [mg/m2*d]

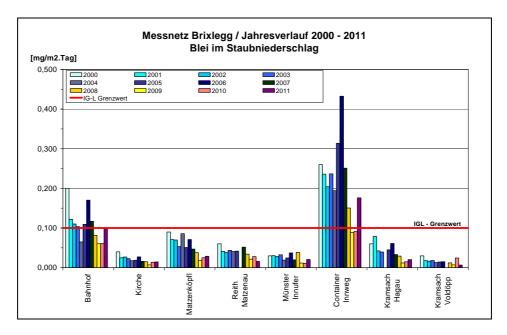
Ibk 1	Ibk 5
Zentrum (Fallmerayerstraße)	Hungerburg Talstation
0,0004	0,0002

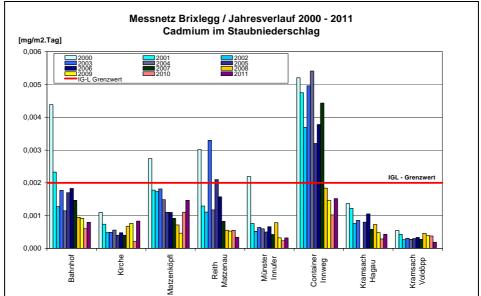
BRIXLEGG Jahresmittelwerte in [mg/m2*d]

Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp
0,0008	0,0008	0,0015	0,0003	0,0003	0,0015	0,0004	0,0002

Kupfer im Staubniederschlag

BRIXLEGG Jahresmittelwerte in [kg/ha*a]

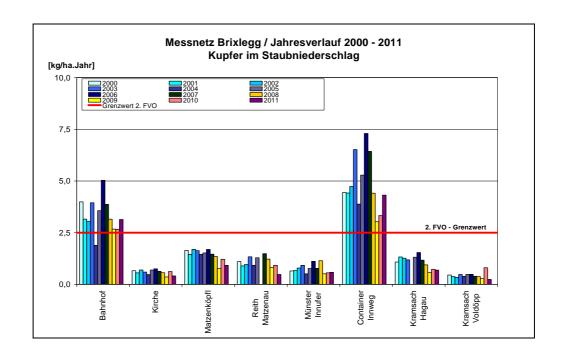

Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp
3,14	0,41	0,92	0,48	0,58	4,32	0,69	0,24

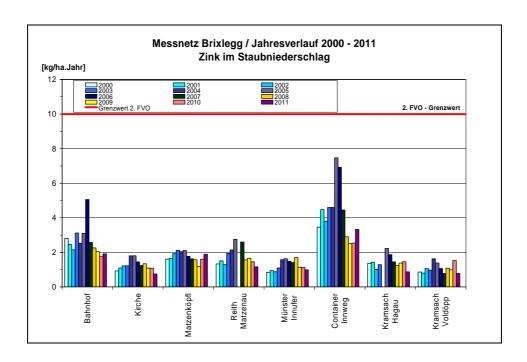


Überschreitung des Grenzwertes gem. 2. FVO

Entwicklung der Blei-, Cadmium-, Kupfer- und Zinkgehalte im Staubniederschlag

Die folgende Grafik der Bleigehalte im Staubniederschlag für das Messnetz Brixlegg zeigt den Trend an den Staubniederschlagspunkten von 2000 bis 2011:

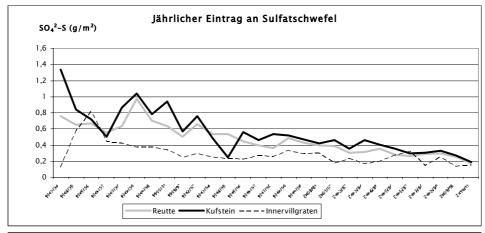

Feststellung nach § 7 IG-L:

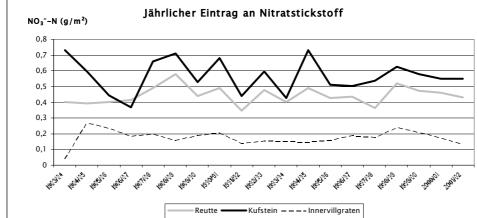

Die gemessenen <u>Bleig</u>ehalte im Staubniederschlag liegen am Messpunkt BRIXLEGG/Innweg im Jahr 2011 über dem Grenzwert gem. IG-L.

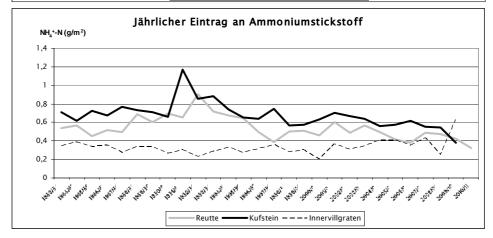
Beim <u>Cadmium</u> im Staubniederschlag liegen die erhobenen Werte im Jahr 2011 unterhalb des gesetzlichen Grenzwertes gem. IG-L.

Eine Statuserhebung nach § 8 IG-L ist dennoch nicht erforderlich, da hiefür bereits eine derartige Untersuchung durchgeführt worden ist und sich die Emissionsstruktur nicht erheblich geändert hat.

Zusätzlich zu den im IG-L genannten Grenzwerten werden hier noch die Auswertungen für die Grenzwerte zu Kupfer und Zink gem. 2. Verordnung gegen forstschädliche Luftverunreinigung behandelt. Der für Kupfer festgelegte Grenzwert von 2,5 kg/ha. Jahr ist nahezu an allen Standorten geringer als in den Vorjahren. An den beiden Standorten Brixlegg/Container-Innweg und Brixlegg/Bahnhof ist der Grenzwert jedoch immer noch überschritten, während der Grenzwert für Zink von 10 kg/ha. Jahr überall deutlich eingehalten ist.



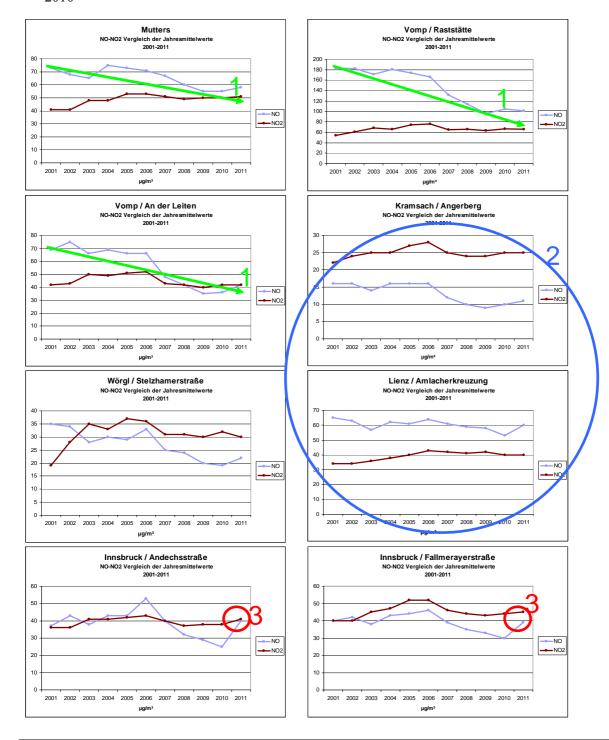



EINTRAGSMESSERGEBNISSE aus NASSER DEPOSITION (sog. "critical loads")

Gem. §23 (5) IG-L wird in Tirol an 3 Standorten seit 1986 der Eintrag an versauernden und eutrophierenden Schadstoffeinträgen gemessen. Elementeinträge beeinflussen den Boden und das Bodenleben und können Bedeutung für die Nutzung land- und forstwirtschaftlicher Kulturen und darüber hinaus auch für die Artenzusammensetzung der heimischen Pflanzenwelt haben.

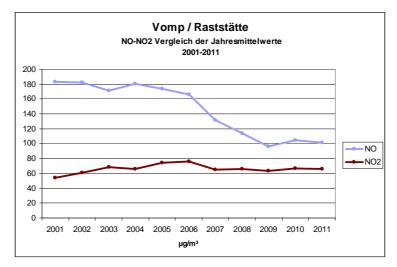
Die Ergebnisse der Niederschlagsmessstellen Reutte, Kufstein und Innervillgraten sind in nachstehenden Grafiken dargestellt:

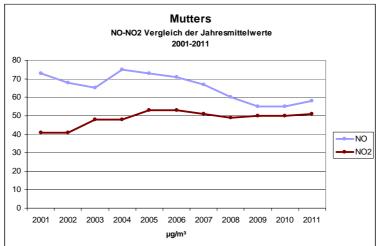
An allen Standorten ist ein sinkender Trend über die Jahre feststellbar, beim Schwefel allerdings deutlich stärker und einheitlicher. Ebenso deutlich ist der seit Anfang der Messungen doch deutlich geringere Anteil an Stickstoff aus Nitrat in Innervillgraten südlich des Alpenhauptkammes.


Es bleibt abzuwarten, ob sich der überraschend hohe Ammonium-Stickstoffeintrag der Station Innervillgraten im Folgejahr bestätigt.

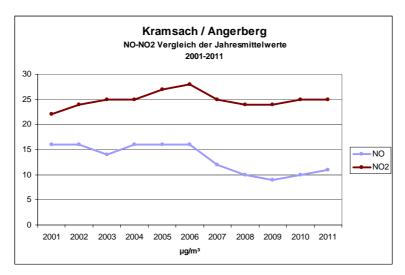
1. <u>Langjähriger Vergleich der NO2- und NO-Jahresmittelwerte an den Tiroler Messstellen</u>

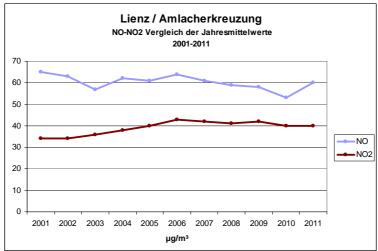
Die Zusammenstellung der inzwischen langjährig durchgeführten NO/NO2-Immissionsmessungen ergibt folgendes interessantes Übersichtsbild:


Auffallend sind hierbei zumindest 3 Phänomene


- 1) NO wird im Laufe der Jahre eher weniger, NO2 aber nicht
- 2) an verkehrsnahen Standorten ist die NO-Konzentration höher als die NO2-Konzentration, an verkehrsfernen Standorten dominiert hingegen das NO2
- 3) stark gestiegene NO-Jahresmittel bei leicht erhöhten/gleichbleibenden NO2-Jahresmittel 2011 gegenüber 2010

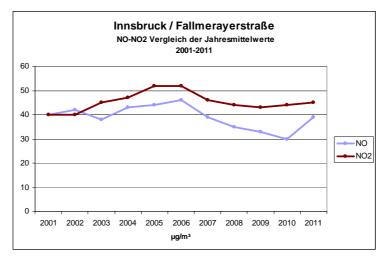
Interpretation

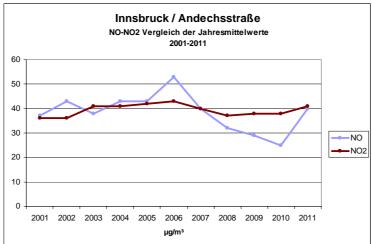

zu 1) NO wird im Laufe der Jahre an den autobahnnahen Messstellen deutlich weniger, NO2 aber nicht.



Dieser Effekt ist an den Standorten VOMP/Raststätte und MUTTERS/Gärberbach (und weiteren) deutlich sichtbar und spiegelt die in den letzten Jahren eingetretene **motorentechnische Verbesserungen** der Kraftfahrzeuge wider. Gegenüber alten EURO-Fahrzeugklassen wird offenbar deutlich weniger NO emittiert; allerdings stieg der relative Anteil an NO2-Emissionen (sog. NO2-Dirketemission). Diese <u>emissionsseitige Verschiebung</u> von NOx-<u>Emissionen</u> hin zu mehr direkt emittiertem NO2 ist für die Immissionsseite allerdings nicht förderlich, da dadurch keine Entlastung für das NO2 als Schadgas, für welches gesetzliche Grenzwerte gelten, eintritt.

zu 2) an verkehrsnahen Standorten ist die NO-Konzentration höher als die NO2-Konzentration, an verkehrsfernen Standorten dominiert hingegen das NO2


Auffallend ist hier, dass in KRAMSACH/Angerberg höhere NO2-Immissionen auftreten als NO-Jahreswerte, während es in LIENZ/Amlacherkreuzung umgekehrt ist.


Als Ursache hiefür ist der **unterschiedliche Standort in Bezug auf die Emissionen** zu nennen. Die Lienzer Station liegt in unmittelbarer Nähe eines wesentlichen Emittenten (B100 Drautalbundesstraße). Die Messstelle KRAMSACH/Angerberg befindet sich hingegen in südexponierter Hanglage ca. 100 m über dem Talgrund und ca. 500 m von der A12 Inntalautobahn entfernt.

Die an der Hangstation gemessenen Luftschadstoffe (NO \pm NO2) werden von Emittenten am Talboden herangeführt. Während dieses Transportprozesses tritt neben einer Verdünnung auch die Umwandlung von NO durch in der Luft vorhandenes Ozon zu NO2 ein. Es handelt sich um sog. "gealterte Luftmassen".

An den Innsbrucker Innenstadtstandorten (s.u.) tritt eine Kombination der beiden Effekt auf. Beide Messstellen befinden sich zwar direkt an stark befahrenen Straßen, jedoch kommen die NOx-Emissionen aus einer Vielzahl an Straßen und z.T. auch aus Hausbrand, die einen relativ höheren Hintergrundspiegel an NO2-Immissionen verursachen, hinzu.

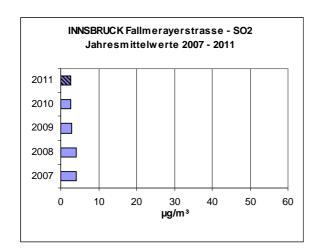
zu 3) hoher Anstieg der NO-Werte für 2011

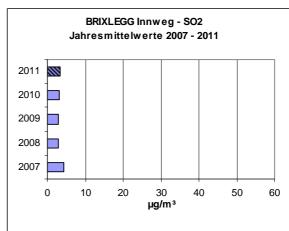
Besonders an beiden Innsbrucker Messstellen sind die NO-Jahresmittelwerte im Jahr 2011 gegenüber dem Vorjahr stark gestiegen, die NO2-Jahresmittele folgten diesem Trend jedoch bei weitem nicht.

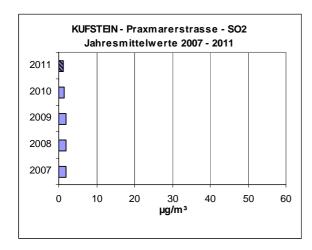
An sich wäre zu erwarten, dass sich bei erhöhten NO-Jahresmittelwerten auch die NO2-Jahresmittel in ähnlichem Ausmaß erhöhen, da die meteorologischen Ausbreitungsverhältnisse (Verwehung, Verdünnung) für beide Schadstoffe gleich sind.

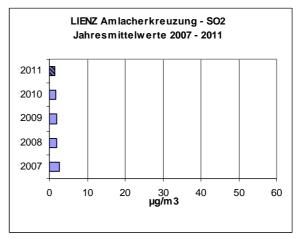
Das unterschiedliche Verhalten der beiden Stickoxidkomponenten ist auf die bereits zuvor erwähnte Umwandlung von NO mit Ozon zu NO2, in der Fachwelt als **Konversion** bezeichnet, zurückzuführen. KFZ-Motorenabgas wird im Trägermedium Luft nicht nur verfrachtet und verdünnt, sondern zusätzlich noch luftchemisch umgesetzt (=konvertiert). NO wird dabei durch Reaktion mit Ozon in der Luft zu NO2 oxidiert. Durch das größere Ozonangebot auf Grund der stärkeren Sonneneinstrahlung ist im Sommer die Konversionsrate deutlich höher als in den Wintermonaten.

Die Untersuchung einzelner Monatsmittelwerte hat gezeigt, dass vor allem die Monate Feber und November des Jahres 2011 aufgrund ungünstiger Ausbreitungsbedingungen (schlechte Verdünnung und Abtransport der Luftschadstoffe) massiv höher lagen als der Feber und November des Vorjahres.

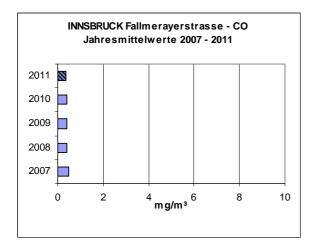

Die naturgemäß geringen Ozongehalte im Feber und November und die damit verbundene geringe Umwandlungsrate von NO zu NO2 hatte einen ungleich höheren NO-Anstieg im Vergleich zu NO2 zur Folge, wodurch insbesondere der NO-Jahresmittelwert an diesen beiden Stationen deutlich höher ausfiel. Der gleiche Effekt ist auch an anderen Stationen im Tiroler Luftgütemessnetz in geringerem Ausmaß aufgetreten.

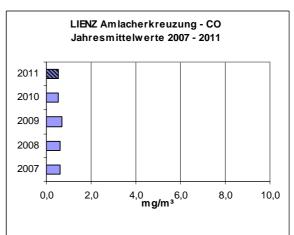

ANHANG 1

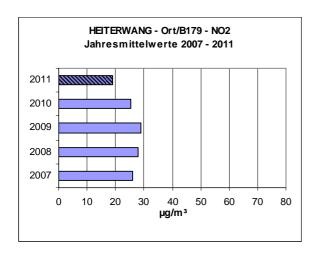

GRAFIKTEIL

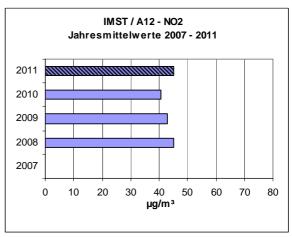

Gemäß Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft (i.d.g.F.) hat der Jahresbericht Vergleiche mit den Jahreswerten der vorangegangenen Jahre zu enthalten. Diese Vorgabe wird im Folgenden in grafischer Form entsprochen.

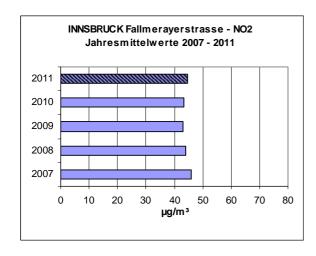
SCHWEFELDIOXID

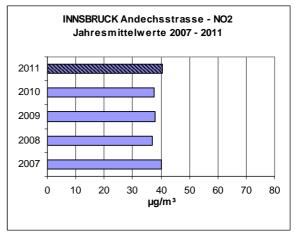


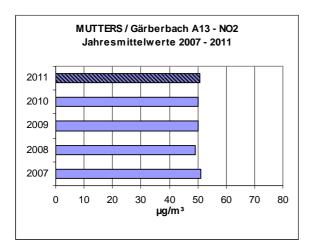


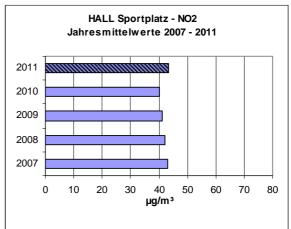


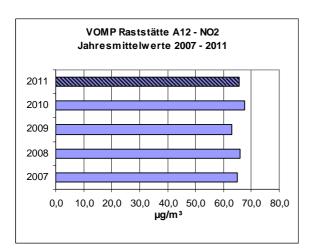

KOHLENMONOXID

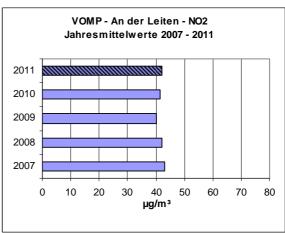


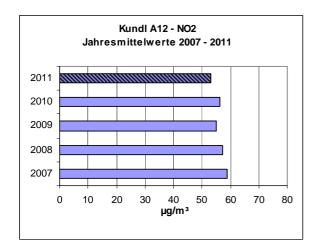


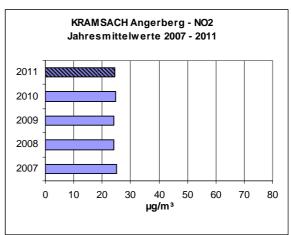

STICKSTOFFDIOXID

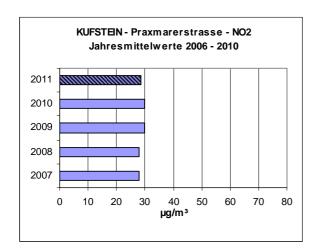


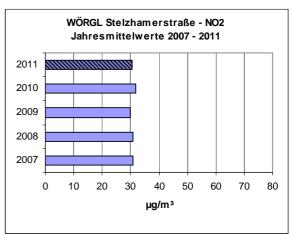


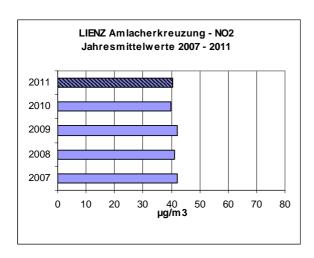


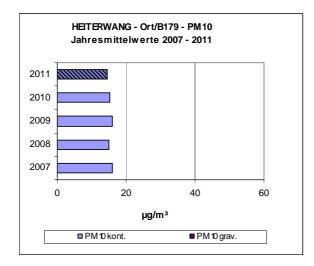


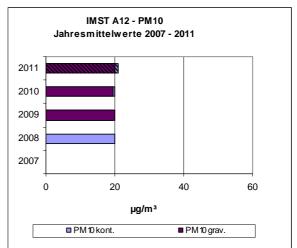


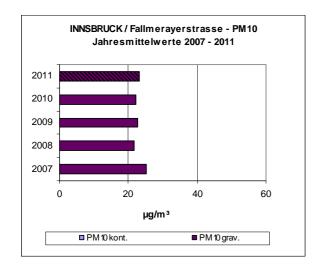


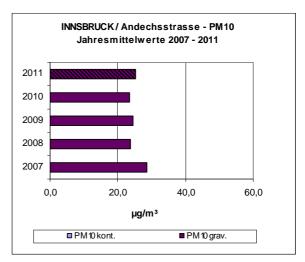


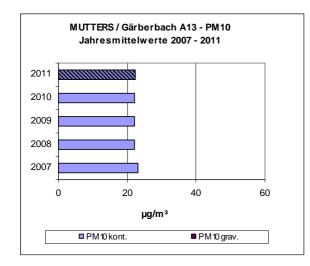


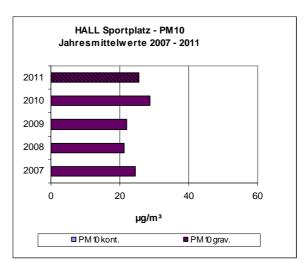


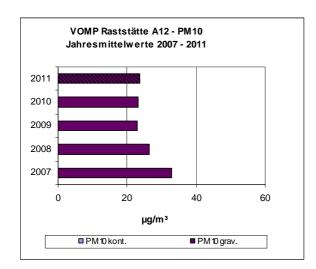


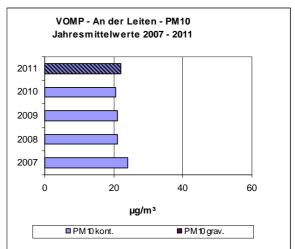


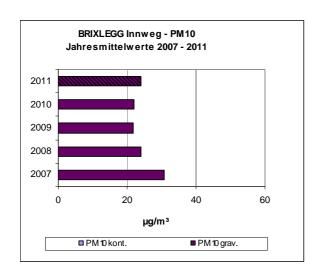


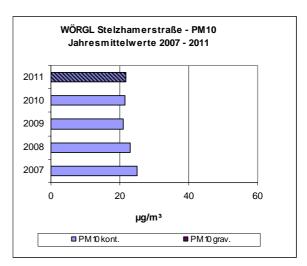

PM10 STAUB

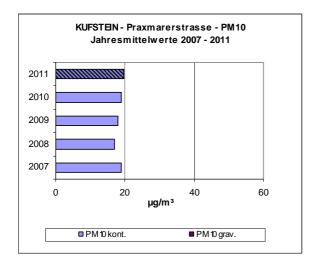


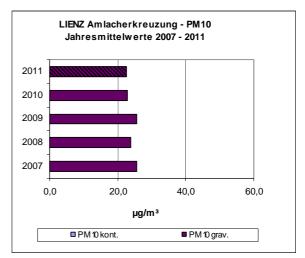


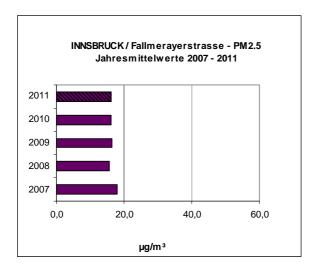


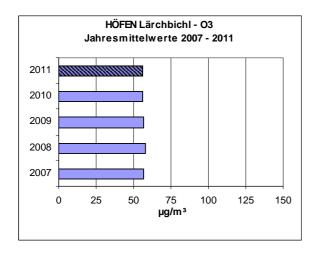


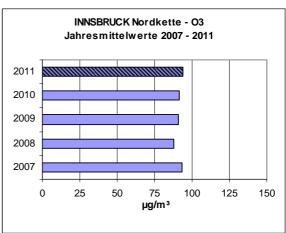


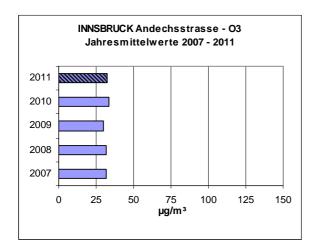


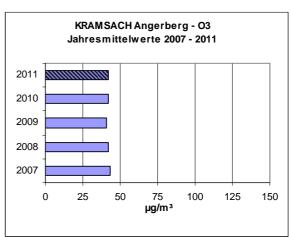


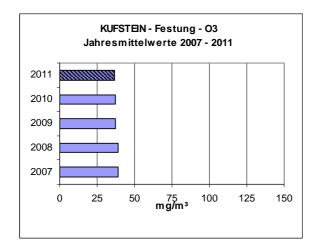


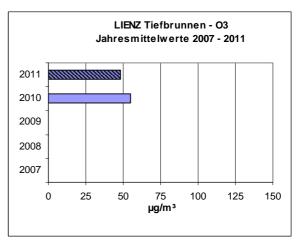


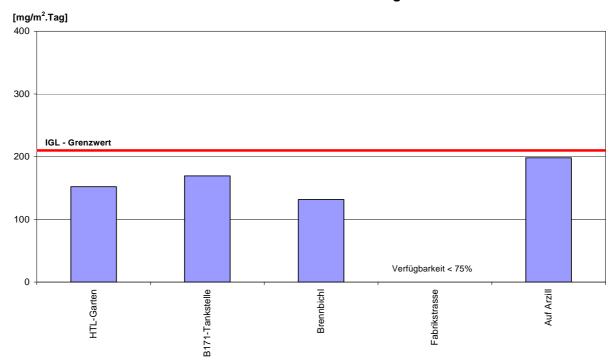


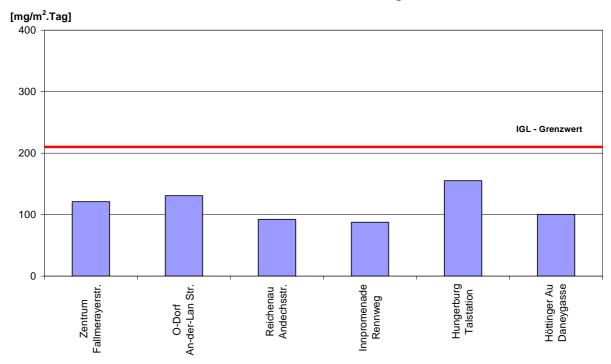

PM2.5 STAUB

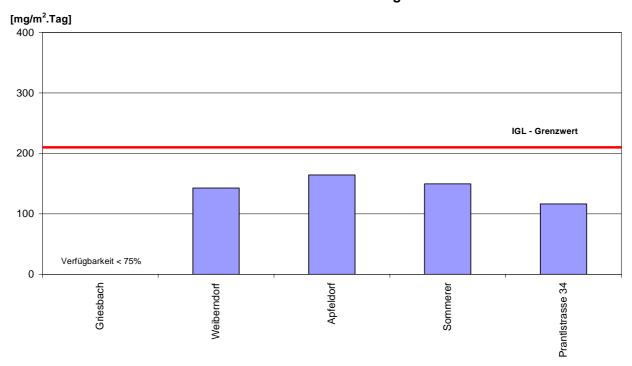


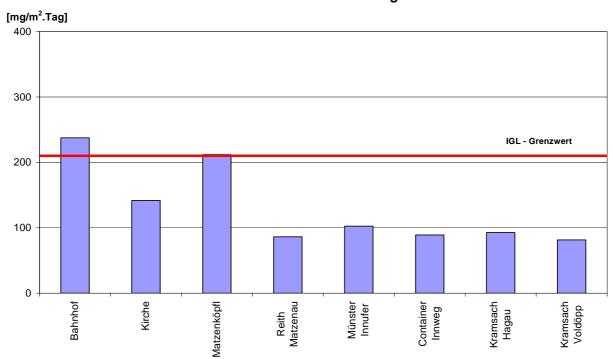

OZON

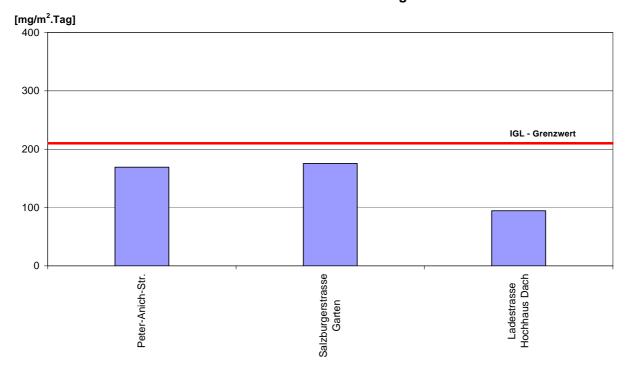


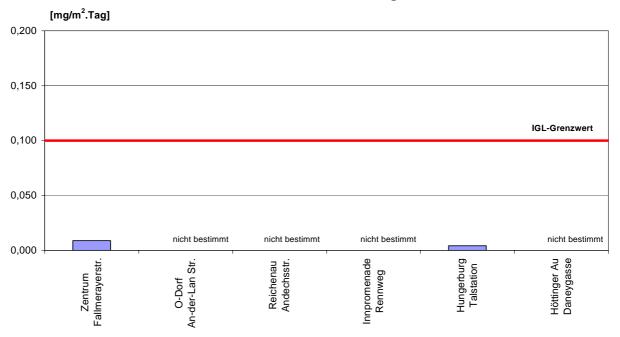


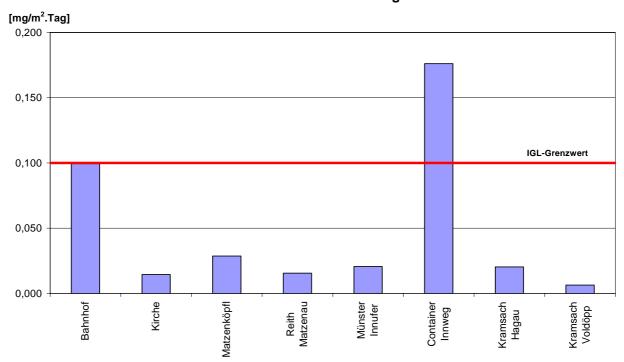


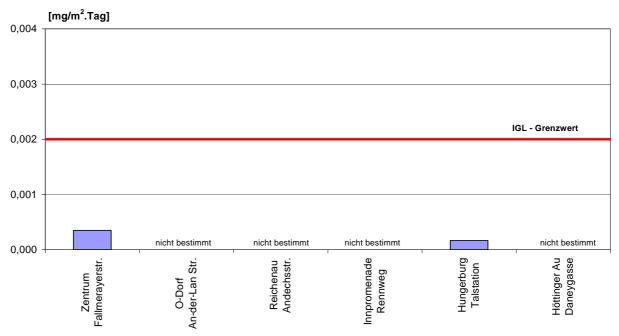

Messnetz Imst 2011 Gesamtstaubniederschlag

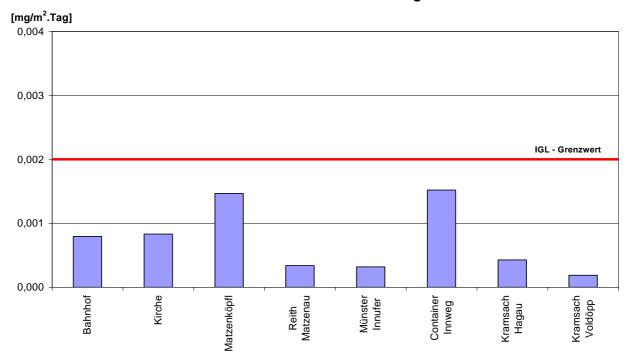

Messnetz Innsbruck 2011 Gesamtstaubniederschlag


Messnetz St.Johann 2011 Gesamtstaubniederschlag

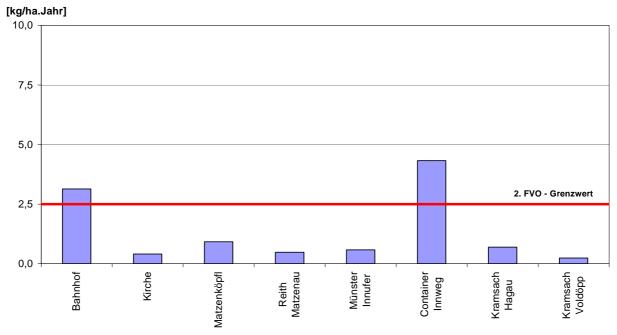

Messnetz Brixlegg 2011 Gesamtstaubniederschlag


Messnetz Wörgl 2011 Gesamtstaubniederschlag

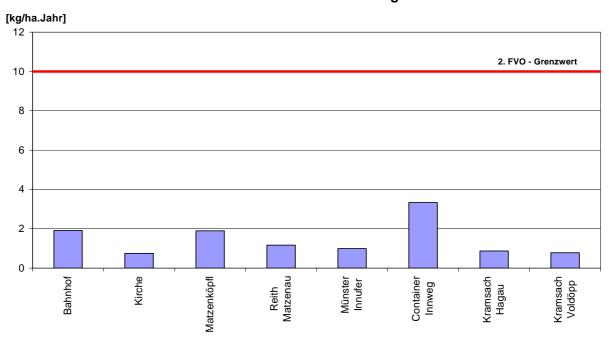

Messnetz Innsbruck 2011 Blei im Staubniederschlag


Messnetz Brixlegg 2011 Blei im Staubniederschlag

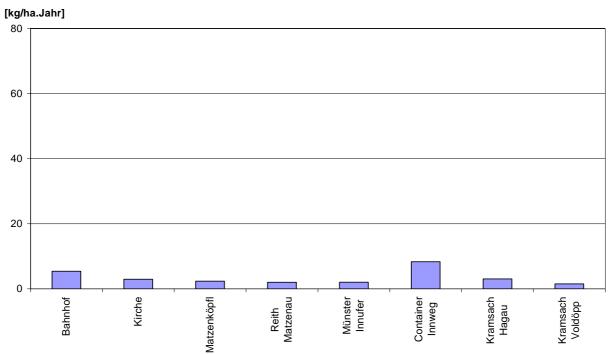
Messnetz Innsbruck 2011 Cadmium im Staubniederschlag

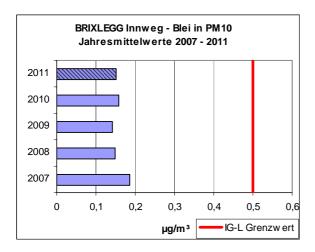


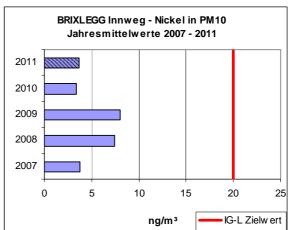
Messnetz Brixlegg 2011 Cadmium im Staubniederschlag

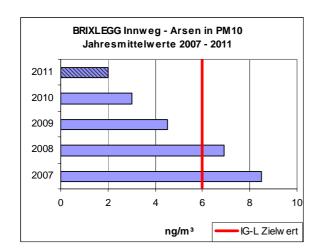


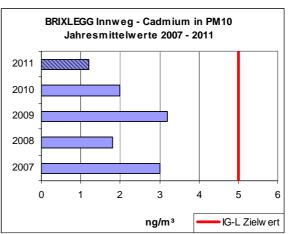
Weitere Schwermetalle sowie Eisen im Staubniederschlag

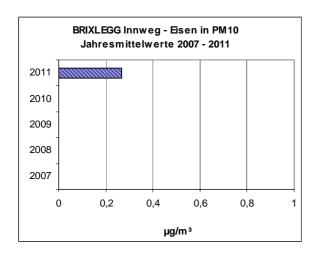


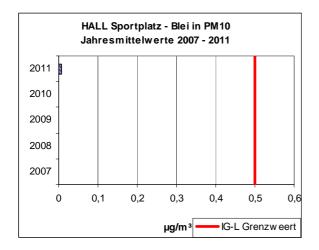

Messnetz Brixlegg 2011 Zink im Staubniederschlag

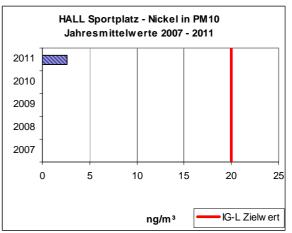


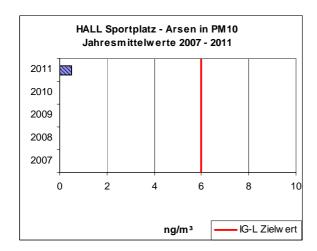

Messnetz Brixlegg 2011 Eisen im Staubniederschlag

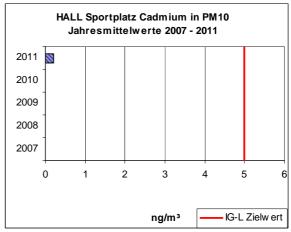


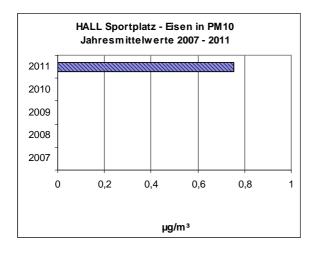

PM10 Schwermetallanalysen











ANHANG 2

Liste mit Überschreitungen von Grenz-, Alarm- und Zielwerten bzw. von Informations- und Warnwerten

Liste der Überschreitungen der in den Anlagen 1, 2, 4 und 5 IG-L sowie in Verordnungen gemäß § 3 Abs. 3 IG-L genannten Grenz-, Alarm- bzw. Zielwerte sowie der Informations- und Alarmschwelle gemäß Anlage 1 des Ozongesetzes.

SCHWEFELDIOXID

IG-L Alarmwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Dreistundenmittelwert>500μg/m3

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Halbstundenmittelwert>200 $\mu g/m3$

MESSSTELLE	Datum	WERT[μ g/m ³]
BRIXLEGG/Innweg	04.05.2011 12:30	281

Anzahl: 1

ÖKOSYSTEME/VEGETATION Zielwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011, Tagesmittelwert>50µg /m3

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Achtstundenmittelwert>10mg/m3

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID (NO2)

IG-L Alarmwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Dreistundenmittelwert>400µg/m3

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

EU-RL 1999/30/EG Grenzwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Einstundenmittelwert > 200µg/m3

MESSSTELLE	Datum	WERT[µg/m³]
HALL IN TIROL/Sportplatz	22.12.2011 20:00	213
HALL IN TIROL/Sportplatz	22.12.2011 21:00	215

Anzahl: 2

 MESSSTELLE
 Datum
 WERT[μg/m³]

 VOMP/Raststätte A12
 05.02.2011 09:00
 207

Anzahl: 1

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Halbstundenmittelwert>200μg/m3

MESSSTELLE	Datum	WERT[μg/m³]
IMST/A12	25.11.2011 16:30	202
IMST/A12	25.11.2011 17:30	214
IMST/A12	02.12.2011 17:00	207
IMST/A12	02.12.2011 17:30	213

Anzahl: 4

 MESSSTELLE
 Datum
 WERT[μg/m³]

 HALL/Sportplatz
 22.12.2011 20:00
 230

 HALL/Sportplatz
 22.12.2011 20:30
 220

 HALL/Sportplatz
 22.12.2011 21:00
 209

Anzahl: 3

MESSSTELLE	Datum	WERT[μg/m³]
VOMP/Raststätte A12	03.02.2011 17:30	204
VOMP/Raststätte A12	05.02.2011 09:00	216
VOMP/Raststätte A12	07.02.2011 08:00	217
VOMP/Raststätte A12	08.02.2011 08:00	222
VOMP/Raststätte A12	21.12.2011 17:30	206

Anzahl: 5

IG-L Zielwertüberschreitungen im Zeitraum 1.1.2011- 31.12.2011 Tagesmittelwert>80μg/m3

MESSSTELLE	Datum	WERT[μg/m³]
IMST/A12	05.01.2011	102
IMST/A12	06.01.2011	82
IMST/A12	07.01.2011	84
IMST/A12	08.01.2011	88
IMST/A12	28.01.2011	83
IMST/A12	29.01.2011	88
IMST/A12	30.01.2011	85

IMST/A12	01.02.2011	84
IMST/A12	03.02.2011	87
IMST/A12	04.02.2011	84
IMST/A12	05.02.2011	82
IMST/A12	07.02.2011	85
IMST/A12	08.02.2011	81
IMST/A12	09.02.2011	86
IMST/A12	10.02.2011	88
IMST/A12	11.02.2011	81
IMST/A12	12.02.2011	81
IMST/A12	17.11.2011	83
IMST/A12	21.11.2011	84
IMST/A12	22.11.2011	89
IMST/A12	25.11.2011	96
IMST/A12	27.11.2011	85
IMST/A12	28.11.2011	82
IMST/A12	29.11.2011	89
IMST/A12	02.12.2011	99
IMST/A12	27.12.2011	81
IMST/A12	28.12.2011	91

MESSSTELLE	Datum	WERT[µg/m³]
INNSBRUCK/Andechsstraße	05.01.2011	90
INNSBRUCK/Andechsstraße	13.01.2011	90
INNSBRUCK/Andechsstraße	17.01.2011	87
INNSBRUCK/Andechsstraße	18.01.2011	83
INNSBRUCK/Andechsstraße	25.01.2011	93
INNSBRUCK/Andechsstraße	02.02.2011	85
INNSBRUCK/Andechsstraße	03.02.2011	94
INNSBRUCK/Andechsstraße	04.02.2011	110
INNSBRUCK/Andechsstraße	05.02.2011	102
INNSBRUCK/Andechsstraße	06.02.2011	95
INNSBRUCK/Andechsstraße	07.02.2011	103
INNSBRUCK/Andechsstraße	08.02.2011	100
INNSBRUCK/Andechsstraße	09.02.2011	87
INNSBRUCK/Andechsstraße	10.02.2011	90
INNSBRUCK/Andechsstraße	11.02.2011	113
INNSBRUCK/Andechsstraße	25.02.2011	81
INNSBRUCK/Andechsstraße	17.11.2011	83
INNSBRUCK/Andechsstraße	18.11.2011	87
INNSBRUCK/Andechsstraße	21.11.2011	91
INNSBRUCK/Andechsstraße	22.11.2011	90
INNSBRUCK/Andechsstraße	25.11.2011	95
INNSBRUCK/Andechsstraße	28.11.2011	89
INNSBRUCK/Andechsstraße	29.11.2011	103
INNSBRUCK/Andechsstraße	30.11.2011	96
INNSBRUCK/Andechsstraße	01.12.2011	92
INNSBRUCK/Andechsstraße	21.12.2011	82
INNSBRUCK/Andechsstraße	22.12.2011	100
INNSBRUCK/Andechsstraße	28.12.2011	85
INNSBRUCK/Andechsstraße	29.12.2011	81

MESSSTELLE	Datum	WERT[µg/m³]
INNSBRUCK/Fallmerayerstr.	04.01.2011	82
INNSBRUCK/Fallmerayerstr.	05.01.2011	89
INNSBRUCK/Fallmerayerstr.	13.01.2011	92
INNSBRUCK/Fallmerayerstr.	25.01.2011	99
INNSBRUCK/Fallmerayerstr.	26.01.2011	83
INNSBRUCK/Fallmerayerstr.	01.02.2011	84
INNSBRUCK/Fallmerayerstr.	02.02.2011	91
INNSBRUCK/Fallmerayerstr.	03.02.2011	96
INNSBRUCK/Fallmerayerstr.	04.02.2011	109
INNSBRUCK/Fallmerayerstr.	05.02.2011	97
INNSBRUCK/Fallmerayerstr.	06.02.2011	94
INNSBRUCK/Fallmerayerstr.	07.02.2011	99
INNSBRUCK/Fallmerayerstr.	08.02.2011	95
INNSBRUCK/Fallmerayerstr.	09.02.2011	87
INNSBRUCK/Fallmerayerstr.	10.02.2011	94
INNSBRUCK/Fallmerayerstr.	11.02.2011	123
INNSBRUCK/Fallmerayerstr.	25.02.2011	83
INNSBRUCK/Fallmerayerstr.	18.11.2011	81
INNSBRUCK/Fallmerayerstr.	21.11.2011	81
INNSBRUCK/Fallmerayerstr.	22.11.2011	81
INNSBRUCK/Fallmerayerstr.	25.11.2011	90
INNSBRUCK/Fallmerayerstr.	29.11.2011	89
INNSBRUCK/Fallmerayerstr.	30.11.2011	89
INNSBRUCK/Fallmerayerstr.	01.12.2011	84
INNSBRUCK/Fallmerayerstr.	21.12.2011	89
INNSBRUCK/Fallmerayerstr.	22.12.2011	94
INNSBRUCK/Fallmerayerstr.	28.12.2011	84
INNSBRUCK/Fallmerayerstr.	29.12.2011	81

MESSSTELLE	Datum	WERT[μg/m³]
INNSBRUCK/Sadrach	04.02.2011	81

Anzahl: 1

MESSSTELLE	Datum		WERT[$\mu g/m^3$]
MUTTERS/Gärberbach - A13	25.01	.2011	85
MUTTERS/Gärberbach - A13	26.01	.2011	82
MUTTERS/Gärberbach - A13	29.01	.2011	86
MUTTERS/Gärberbach - A13	01.02	2.2011	86
MUTTERS/Gärberbach - A13	02.02	2.2011	89
MUTTERS/Gärberbach - A13	03.02	2.2011	86
MUTTERS/Gärberbach - A13	04.02	2.2011	88
MUTTERS/Gärberbach - A13	11.02	2.2011	88
MUTTERS/Gärberbach - A13	25.02	2.2011	88
MUTTERS/Gärberbach - A13	21.12	2.2011	83
MUTTERS/Gärberbach - A13	22.12	2.2011	84

MESSSTELLE	Datum		WERT[μg/m³]
HALL IN TIROL/Sportplatz		05.01.2011	92
HALL IN TIROL/Sportplatz		13.01.2011	90
HALL IN TIROL/Sportplatz		25.01.2011	84

HALL IN TIROL/Sportplatz	03.02.2011	86
HALL IN TIROL/Sportplatz	04.02.2011	97
HALL IN TIROL/Sportplatz	05.02.2011	94
HALL IN TIROL/Sportplatz	07.02.2011	88
HALL IN TIROL/Sportplatz	08.02.2011	86
HALL IN TIROL/Sportplatz	09.02.2011	82
HALL IN TIROL/Sportplatz	10.02.2011	85
HALL IN TIROL/Sportplatz	11.02.2011	97
HALL IN TIROL/Sportplatz	18.11.2011	84
HALL IN TIROL/Sportplatz	21.11.2011	89
HALL IN TIROL/Sportplatz	22.11.2011	87
HALL IN TIROL/Sportplatz	25.11.2011	87
HALL IN TIROL/Sportplatz	26.11.2011	81
HALL IN TIROL/Sportplatz	28.11.2011	90
HALL IN TIROL/Sportplatz	29.11.2011	98
HALL IN TIROL/Sportplatz	30.11.2011	94
HALL IN TIROL/Sportplatz	01.12.2011	98
HALL IN TIROL/Sportplatz	02.12.2011	86
HALL IN TIROL/Sportplatz	21.12.2011	90
HALL IN TIROL/Sportplatz	22.12.2011	113
HALL IN TIROL/Sportplatz	23.12.2011	88
HALL IN TIROL/Sportplatz	28.12.2011	87
HALL IN TIROL/Sportplatz	29.12.2011	86

MESSSTELLE	Datum	WERT[µg/m³]
VOMP/Raststätte A12	02.01.2011	81
VOMP/Raststätte A12	03.01.2011	88
VOMP/Raststätte A12	04.01.2011	104
VOMP/Raststätte A12	05.01.2011	111
VOMP/Raststätte A12	07.01.2011	83
VOMP/Raststätte A12	08.01.2011	98
VOMP/Raststätte A12	10.01.2011	88
VOMP/Raststätte A12	13.01.2011	95
VOMP/Raststätte A12	17.01.2011	90
VOMP/Raststätte A12	18.01.2011	87
VOMP/Raststätte A12	20.01.2011	84
VOMP/Raststätte A12	24.01.2011	85
VOMP/Raststätte A12	25.01.2011	119
VOMP/Raststätte A12	26.01.2011	109
VOMP/Raststätte A12	28.01.2011	92
VOMP/Raststätte A12	29.01.2011	111
VOMP/Raststätte A12	30.01.2011	93
VOMP/Raststätte A12	31.01.2011	85
VOMP/Raststätte A12	01.02.2011	94
VOMP/Raststätte A12	02.02.2011	102
VOMP/Raststätte A12	03.02.2011	117
VOMP/Raststätte A12	04.02.2011	121
VOMP/Raststätte A12	05.02.2011	128
VOMP/Raststätte A12	06.02.2011	90
VOMP/Raststätte A12	07.02.2011	107
VOMP/Raststätte A12	08.02.2011	100
VOMP/Raststätte A12	09.02.2011	100
VOMP/Raststätte A12	10.02.2011	104

VOMP/Pagtatätta A12	11.02.2011	100
VOMP/Raststätte A12	11.02.2011	108 94
VOMP/Raststätte A12	12.02.2011 15.02.2011	
VOMP/Raststätte A12 VOMP/Raststätte A12	24.02.2011	88
VOMP/Raststatte A12 VOMP/Raststatte A12		86
	25.02.2011	85
VOMP/Raststätte A12	26.02.2011	
VOMP/Raststätte A12 VOMP/Raststätte A12	03.03.2011 08.03.2011	84 83
	08.03.2011	84
VOMP/Raststätte A12 VOMP/Raststätte A12		81
	10.03.2011	83
VOMP/Raststätte A12	11.03.2011	
VOMP/Raststätte A12	16.03.2011	87
VOMP/Raststätte A12	20.04.2011	81
VOMP/Raststätte A12	21.04.2011	93
VOMP/Raststätte A12	22.04.2011	82
VOMP/Raststätte A12	11.05.2011	81
VOMP/Raststätte A12	19.09.2011	82
VOMP/Raststätte A12	28.10.2011	82
VOMP/Raststätte A12	15.11.2011	90
VOMP/Raststätte A12	17.11.2011	93
VOMP/Raststätte A12	18.11.2011	98
VOMP/Raststätte A12	19.11.2011	84
VOMP/Raststätte A12	21.11.2011	98
VOMP/Raststätte A12	22.11.2011	96
VOMP/Raststätte A12	23.11.2011	85
VOMP/Raststätte A12	25.11.2011	99
VOMP/Raststätte A12	26.11.2011	85
VOMP/Raststätte A12	27.11.2011	81
VOMP/Raststätte A12	28.11.2011	92
VOMP/Raststätte A12	29.11.2011	105
VOMP/Raststätte A12	30.11.2011	98
VOMP/Raststätte A12	01.12.2011	89
VOMP/Raststätte A12	02.12.2011	97
VOMP/Raststätte A12	06.12.2011	90
VOMP/Raststätte A12	07.12.2011	90
VOMP/Raststätte A12	09.12.2011	88
VOMP/Raststätte A12	14.12.2011	86
VOMP/Raststätte A12	15.12.2011	83
VOMP/Raststätte A12	17.12.2011	85
VOMP/Raststätte A12	18.12.2011	81
VOMP/Raststätte A12	19.12.2011	97
VOMP/Raststätte A12	20.12.2011	81
VOMP/Raststätte A12	21.12.2011	128
VOMP/Raststätte A12	22.12.2011	122
VOMP/Raststätte A12	23.12.2011	88
VOMP/Raststätte A12	27.12.2011	103
VOMP/Raststätte A12	28.12.2011	113
VOMP/Raststätte A12	29.12.2011	100
VOMP/Raststätte A12	30.12.2011	94

MESSSTELLE	Datum	WERT[µg/m³]
VOMP/An der Leiten	05.01.2011	85
VOMP/An der Leiten	25.01.2011	91

VOMP/An der Leiten	29.01.2011	81
VOMP/An der Leiten	03.02.2011	92
VOMP/An der Leiten	04.02.2011	98
VOMP/An der Leiten	05.02.2011	98
VOMP/An der Leiten	07.02.2011	82
VOMP/An der Leiten	11.02.2011	83
VOMP/An der Leiten	21.12.2011	86
VOMP/An der Leiten	22.12.2011	86
VOMP/An der Leiten	28.12.2011	87

MESSSTELLE	Datum	WERT[µg/m³]
KUNDL/A12	02.01.2011	82
KUNDL/A12	05.01.2011	88
KUNDL/A12	06.01.2011	93
KUNDL/A12	07.01.2011	82
KUNDL/A12	08.01.2011	101
KUNDL/A12	09.01.2011	87
KUNDL/A12	25.01.2011	95
KUNDL/A12	03.02.2011	83
KUNDL/A12	04.02.2011	96
KUNDL/A12	05.02.2011	97
KUNDL/A12	07.02.2011	81
KUNDL/A12	08.02.2011	89
KUNDL/A12	11.02.2011	98
KUNDL/A12	12.02.2011	90
KUNDL/A12	25.02.2011	85
KUNDL/A12	02.12.2011	81
KUNDL/A12	21.12.2011	84
KUNDL/A12	22.12.2011	83

Anzahl: 18

MESSSTELLE	Datum	WERT[μg/m³]
WÖRGL/Stelzhamerstraße	07.01.2011	82
WÖRGL/Stelzhamerstraße	04.02.2011	85

Anzahl: 2

MESSSTELLE	Datum	WERT[$\mu g/m^3$]
LIENZ/Amlacherkreuzung	07.01.2011	88
LIENZ/Amlacherkreuzung	03.02.2011	85
LIENZ/Amlacherkreuzung	04.02.2011	88
LIENZ/Amlacherkreuzung	28.11.2011	86
LIENZ/Amlacherkreuzung	02.12.2011	86

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Tagesmittelwerte> $50\mu g/m3$

MESSSTELLE	Datum	WERT[μ g/m ³]
IMST/A12	01.01.2011	53
IMST/A12	08.01.2011	68
IMST/A12	10.01.2011	57
IMST/A12	01.02.2011	65
IMST/A12	02.02.2011	52
IMST/A12	03.02.2011	54
IMST/A12	04.02.2011	62

Anzahl: 7

MESSSTELLE	Datum	WERT[µg/m³]
HEITERWANG Ort/B179	29.01.2011	51

Anzahl: 1

MESSSTELLE	Datum	WERT[µg/m³]
MUTTERS/Gärberbach - A13	31.01.2011	81
MUTTERS/Gärberbach - A13	01.02.2011	78
MUTTERS/Gärberbach - A13	02.02.2011	78
MUTTERS/Gärberbach - A13	03.02.2011	56
MUTTERS/Gärberbach - A13	04.02.2011	55
MUTTERS/Gärberbach - A13	16.02.2011	56
MUTTERS/Gärberbach - A13	17.02.2011	60
MUTTERS/Gärberbach - A13	22.02.2011	55
MUTTERS/Gärberbach - A13	02.03.2011	60

Anzahl: 9

MESSSTELLE	Datum	WERT[μ g/m ³]
VOMP/An der Leiten	01.01.2011	100
VOMP/An der Leiten	25.01.2011	60
VOMP/An der Leiten	31.01.2011	71
VOMP/An der Leiten	01.02.2011	71
VOMP/An der Leiten	02.02.2011	68
VOMP/An der Leiten	03.02.2011	56
VOMP/An der Leiten	04.02.2011	51
VOMP/An der Leiten	02.03.2011	59
VOMP/An der Leiten	06.03.2011	52
VOMP/An der Leiten	28.12.2011	58
VOMP/An der Leiten	29.12.2011	55

MESSSTELLE	Datum	WERT[μ g/m ³]
WÖRGL/Stelzhamerstraße	01.01.2011	81
WÖRGL/Stelzhamerstraße	25.01.2011	53
WÖRGL/Stelzhamerstraße	30.01.2011	54
WÖRGL/Stelzhamerstraße	31.01.2011	63
WÖRGL/Stelzhamerstraße	01.02.2011	62
WÖRGL/Stelzhamerstraße	02.02.2011	57
WÖRGL/Stelzhamerstraße	02.03.2011	58

WÖRGL/Stelzhamerstraße	03.03.2011	52
WÖRGL/Stelzhamerstraße	04.03.2011	51
WÖRGL/Stelzhamerstraße	05.03.2011	56
WÖRGL/Stelzhamerstraße	06.03.2011	51

MESSSTELLE	Datum		WERT[μ g/m ³]
KUFSTEIN/Praxmarerstraße	(01.01.2011	51
KUFSTEIN/Praxmarerstraße	(01.02.2011	53
KUFSTEIN/Praxmarerstraße	(02.02.2011	52
KUFSTEIN/Praxmarerstraße	(05.03.2011	58

Anzahl: 4

PM10 gravimetrisch

Tagesmittelwerte>50µg/m3 im Zeitraum 1.1.2011 - 31.12.2011

MESSSTELLE	Datum	PM10 [μg/m³]	NaCl [µg/m³]	PM10 ohne NaCl [μg/m³]
INNSBRUCK/Andechsstraße	01.01.2011	87,0	9,2	77,8
INNSBRUCK/Andechsstraße	04.01.2011	63,1	18,5	44,6
INNSBRUCK/Andechsstraße	05.01.2011	68,0	18,4	49,5
INNSBRUCK/Andechsstraße	13.01.2011	55,2	1,8	53,4
INNSBRUCK/Andechsstraße	17.01.2011	63,6	2,6	61,0
INNSBRUCK/Andechsstraße	18.01.2011	59,0	4,0	55,0
INNSBRUCK/Andechsstraße	25.01.2011	60,4	2,6	57,8
INNSBRUCK/Andechsstraße	30.01.2011	51,5	4,2	47,3
INNSBRUCK/Andechsstraße	31.01.2011	74,5	2,6	71,9
INNSBRUCK/Andechsstraße	01.02.2011	76,7	4,9	71,8
INNSBRUCK/Andechsstraße	02.02.2011	81,8	3,8	78,0
INNSBRUCK/Andechsstraße	03.02.2011	71,8	11,9	59,8
INNSBRUCK/Andechsstraße	04.02.2011	92,1	16,6	75,5
INNSBRUCK/Andechsstraße	05.02.2011	76,4	7,2	69,2
INNSBRUCK/Andechsstraße	06.02.2011	74,0	8,9	65,1
INNSBRUCK/Andechsstraße	07.02.2011	77,4	10,0	67,4
INNSBRUCK/Andechsstraße	08.02.2011	72,8	7,5	65,3
INNSBRUCK/Andechsstraße	09.02.2011	59,4	5,8	53,6
INNSBRUCK/Andechsstraße	10.02.2011	59,6	6,7	52,8
INNSBRUCK/Andechsstraße	11.02.2011	103,4	13,9	89,5
INNSBRUCK/Andechsstraße	12.02.2011	55,3	3,7	51,6
INNSBRUCK/Andechsstraße	14.02.2011	51,3	3,7	47,6
INNSBRUCK/Andechsstraße	16.02.2011	52,1	2,7	49,3
INNSBRUCK/Andechsstraße	17.02.2011	55,4	2,1	53,3
INNSBRUCK/Andechsstraße	23.02.2011	52,0	4,9	47,1
INNSBRUCK/Andechsstraße	02.03.2011	54,3	0,8	53,5
INNSBRUCK/Andechsstraße	16.11.2011	52,3	0,9	51,3
INNSBRUCK/Andechsstraße	17.11.2011	60,9	0,8	60,0
INNSBRUCK/Andechsstraße	18.11.2011	55,1	0,9	54,2
INNSBRUCK/Andechsstraße	19.11.2011	50,6	1,0	49,6
INNSBRUCK/Andechsstraße	21.11.2011	58,6	1,5	57,2
INNSBRUCK/Andechsstraße	22.11.2011	61,9	1,5	60,4
INNSBRUCK/Andechsstraße	24.11.2011	54,3	1,3	53,1
INNSBRUCK/Andechsstraße	25.11.2011	68,6	2,4	66,2

INNSBRUCK/Andechsstraße	26.11.2011	59,1	2,3	56,8
INNSBRUCK/Andechsstraße	27.11.2011	60,9	2,0	58,9
INNSBRUCK/Andechsstraße	28.11.2011	70,4	2,3	68,1
INNSBRUCK/Andechsstraße	29.11.2011	83,5	2,6	80,9
INNSBRUCK/Andechsstraße	30.11.2011	75,9	2,6	73,4
INNSBRUCK/Andechsstraße	01.12.2011	67,3	2,3	65,0
INNSBRUCK/Andechsstraße	03.12.2011	53,8	1,7	52,1
INNSBRUCK/Andechsstraße	21.12.2011	52,1	3,0	49,1
INNSBRUCK/Andechsstraße	22.12.2011	62,3	2,1	60,1
INNSBRUCK/Andechsstraße	27.12.2011	53,8	1,3	52,5
INNSBRUCK/Andechsstraße	28.12.2011	67,3	2,1	65,2
INNSBRUCK/Andechsstraße	29.12.2011	61,6	2,2	59,4

Überschreitungen: 46; mit Salzabzug 38

MESSSTELLE	Datum	WERT[μg/m³]
INNSBRUCK/Fallmerayerstr.	01.01.2011	77
INNSBRUCK/Fallmerayerstr.	02.01.2011	51
INNSBRUCK/Fallmerayerstr.	04.01.2011	52
INNSBRUCK/Fallmerayerstr.	05.01.2011	51
INNSBRUCK/Fallmerayerstr.	25.01.2011	54
INNSBRUCK/Fallmerayerstr.	31.01.2011	78
INNSBRUCK/Fallmerayerstr.	01.02.2011	74
INNSBRUCK/Fallmerayerstr.	02.02.2011	80
INNSBRUCK/Fallmerayerstr.	03.02.2011	62
INNSBRUCK/Fallmerayerstr.	04.02.2011	63
INNSBRUCK/Fallmerayerstr.	11.02.2011	75
INNSBRUCK/Fallmerayerstr.	17.02.2011	55
INNSBRUCK/Fallmerayerstr.	23.02.2011	56
INNSBRUCK/Fallmerayerstr.	02.03.2011	52
INNSBRUCK/Fallmerayerstr.	24.11.2011	52
INNSBRUCK/Fallmerayerstr.	25.11.2011	55
INNSBRUCK/Fallmerayerstr.	30.11.2011	54
INNSBRUCK/Fallmerayerstr.	29.12.2011	52

Überschreitungen: 18

MESSSTELLE	Datum	PM10 [μ g/m³]	NaCl [μg/m³]	PM10 ohne NaCl [µg/m ³
HALL IN TIROL/Sportplatz	01.01.2011	83,7	8,2	75,5
HALL IN TIROL/Sportplatz	25.01.2011	57,0	2,3	54,7
HALL IN TIROL/Sportplatz	31.01.2011	71,3	2,1	69,2
HALL IN TIROL/Sportplatz	01.02.2011	67,9	2,6	65,3
HALL IN TIROL/Sportplatz	02.02.2011	70,6	3,3	67,3
HALL IN TIROL/Sportplatz	03.02.2011	59,8	7,3	52,5
HALL IN TIROL/Sportplatz	04.02.2011	60,5	8,6	51,9
HALL IN TIROL/Sportplatz	07.02.2011	60,0	5,6	54,4
HALL IN TIROL/Sportplatz	08.02.2011	68,4	4,9	63,5
HALL IN TIROL/Sportplatz	09.02.2011	58,4	2,8	55,6
HALL IN TIROL/Sportplatz	10.02.2011	66,9	4,2	62,7
HALL IN TIROL/Sportplatz	11.02.2011	86,4	9,5	76,9
HALL IN TIROL/Sportplatz	14.02.2011	98,1	3,7	94,4
HALL IN TIROL/Sportplatz	15.02.2011	64,5	3,0	61,5
HALL IN TIROL/Sportplatz	16.02.2011	79,5	3,6	75,9
HALL IN TIROL/Sportplatz	17.02.2011	72,6	2,2	70,4

HALL IN TIROL/Sportplatz	18.02.2011	51,5	2,0	49,5
HALL IN TIROL/Sportplatz	23.02.2011	70,6	8,6	61,9
HALL IN TIROL/Sportplatz	28.02.2011	52,1	1,2	50,9
HALL IN TIROL/Sportplatz	01.03.2011	55,9	1,2	54,7
HALL IN TIROL/Sportplatz	02.03.2011	63,8	1,0	62,8
HALL IN TIROL/Sportplatz	03.03.2011	51,8	1,2	50,7
HALL IN TIROL/Sportplatz	04.03.2011	50,5	1,4	49,1
HALL IN TIROL/Sportplatz	06.03.2011	51,2	1,0	50,2
HALL IN TIROL/Sportplatz	21.11.2011	51,6	0,9	50,7
HALL IN TIROL/Sportplatz	25.11.2011	55,7	2,3	53,5
HALL IN TIROL/Sportplatz	28.11.2011	54,6	1,7	52,9
HALL IN TIROL/Sportplatz	29.11.2011	58,5	1,6	56,9
HALL IN TIROL/Sportplatz	30.11.2011	64,6	1,9	62,7
HALL IN TIROL/Sportplatz	01.12.2011	63,9	1,9	62,0
HALL IN TIROL/Sportplatz	02.12.2011	68,1	3,9	64,2
HALL IN TIROL/Sportplatz	06.12.2011	60,4	1,9	58,5
HALL IN TIROL/Sportplatz	28.12.2011	52,4	1,3	51,0
HALL IN TIROL/Sportplatz	29.12.2011	55,5	2,0	53,5

Überschreitungen: 34; mit Salzabzug 31

MESSSTELLE	Datum	WERT[$\mu g/m^3$]
VOMP/Raststätte A12	01.01.2011	81
VOMP/Raststätte A12	05.01.2011	53
VOMP/Raststätte A12	25.01.2011	63
VOMP/Raststätte A12	30.01.2011	58
VOMP/Raststätte A12	31.01.2011	73
VOMP/Raststätte A12	01.02.2011	73
VOMP/Raststätte A12	02.02.2011	68
VOMP/Raststätte A12	03.02.2011	56
VOMP/Raststätte A12	22.02.2011	57
VOMP/Raststätte A12	02.03.2011	55
VOMP/Raststätte A12	05.03.2011	53
VOMP/Raststätte A12	06.03.2011	52
VOMP/Raststätte A12	28.12.2011	52
VOMP/Raststätte A12	29.12.2011	54

VOMP/Raststätte A12 Überschreitungen: 14

MESSSTELLE	Datum	PM10 [μ g/m³]	NaCl [μg/m³]	PM10 ohne NaCl [µg/m³]
BRIXLEGG/Innweg	01.01.2011	71,6	6,1	65,6
BRIXLEGG/Innweg	25.01.2011	51,1	2,3	48,8
BRIXLEGG/Innweg	30.01.2011	57,1	2,0	55,1
BRIXLEGG/Innweg	31.01.2011	69,6	2,1	67,5
BRIXLEGG/Innweg	01.02.2011	68,1	2,0	66,2
BRIXLEGG/Innweg	02.02.2011	68,4	2,0	66,4
BRIXLEGG/Innweg	17.02.2011	52,9	3,2	49,7
BRIXLEGG/Innweg	20.02.2011	55,4	2,0	53,3
BRIXLEGG/Innweg	21.02.2011	67,6	2,3	65,3
BRIXLEGG/Innweg	22.02.2011	74,7	2,2	72,5
BRIXLEGG/Innweg	01.03.2011	61,0	1,4	59,6
BRIXLEGG/Innweg	02.03.2011	68,4	1,3	67,1
BRIXLEGG/Innweg	03.03.2011	54,3	1,3	53,0
BRIXLEGG/Innweg	04.03.2011	53,5	1,4	52,1
BRIXLEGG/Innweg	05.03.2011	61,1	1,4	59,6
BRIXLEGG/Innweg	06.03.2011	66,5	3,0	63,5

Bericht über die Luftgüte in Tirol im Jahr 2011

Überschreitungen: 16; mit Salzabzug 14

MESSSTELLE	Datum	PM10 [μ g/m ³]	NaCl [µg/m³]	PM10 ohne NaCl [µg/m³]
LIENZ/Amlacherkreuzung	01.01.2011	53,7	3,0	50,7
LIENZ/Amlacherkreuzung	05.01.2011	50,9	5,4	45,5
LIENZ/Amlacherkreuzung	10.01.2011	58,6	1,9	56,7
LIENZ/Amlacherkreuzung	25.01.2011	52,1	5,1	47,0
LIENZ/Amlacherkreuzung	02.02.2011	59,3	7,3	52,0
LIENZ/Amlacherkreuzung	03.02.2011	70,4	11,8	58,7
LIENZ/Amlacherkreuzung	04.02.2011	61,5	7,9	53,5
LIENZ/Amlacherkreuzung	25.11.2011	57,0	1,1	55,8
LIENZ/Amlacherkreuzung	02.12.2011	57,5	2,0	55,4
LIENZ/Amlacherkreuzung	03.12.2011	53,3	2,0	51,3

Überschreitungen: 10; mit Salzabzug 8

OZON

Überschreitungen der IG-L Alarmschwelle im Zeitraum 1.1.2011 - 31.12.2011 Einstundenmittelwert>240µg/m3

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der IG-L Informationsschwelle im Zeitraum 1.1.2011 - 31.12.2011 Einstundenmittelwert> $180\mu g/m3$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 1.1.2011 - 31.12.2011 Achtstundenmittelwert>120μg/m3

Datum	WERT[μg/m³]
19.04.2011 24:00	125
20.04.2011 24:00	133
21.04.2011 24:00	144
22.04.2011 24:00	127
23.04.2011 24:00	134
24.04.2011 24:00	124
25.04.2011 24:00	135
26.04.2011 24:00	123
06.05.2011 24:00	134
07.05.2011 24:00	139
08.05.2011 24:00	131
10.05.2011 24:00	149
11.05.2011 24:00	136
26.05.2011 24:00	125
28.06.2011 24:00	123
29.06.2011 24:00	122
05.07.2011 24:00	139
06.07.2011 24:00	145
	19.04.2011 24:00 20.04.2011 24:00 21.04.2011 24:00 22.04.2011 24:00 23.04.2011 24:00 24.04.2011 24:00 25.04.2011 24:00 26.04.2011 24:00 06.05.2011 24:00 07.05.2011 24:00 08.05.2011 24:00 10.05.2011 24:00 11.05.2011 24:00 26.05.2011 24:00 26.05.2011 24:00 27.05.2011 24:00 28.06.2011 24:00 29.06.2011 24:00 29.06.2011 24:00

MESSSTELLE	Datum	WERT[μ g/m³]
HEITERWANG Ort/B179	26.03.2011 24:00	123
HEITERWANG Ort/B179	18.04.2011 24:00	122
HEITERWANG Ort/B179	19.04.2011 24:00	129
HEITERWANG Ort/B179	20.04.2011 24:00	141
HEITERWANG Ort/B179	21.04.2011 24:00	153
HEITERWANG Ort/B179	22.04.2011 24:00	129
HEITERWANG Ort/B179	23.04.2011 24:00	144
HEITERWANG Ort/B179	24.04.2011 24:00	130
HEITERWANG Ort/B179	25.04.2011 24:00	141
HEITERWANG Ort/B179	26.04.2011 24:00	132
HEITERWANG Ort/B179	06.05.2011 24:00	132
HEITERWANG Ort/B179	07.05.2011 24:00	138
HEITERWANG Ort/B179	08.05.2011 24:00	132
HEITERWANG Ort/B179	09.05.2011 24:00	123
HEITERWANG Ort/B179	10.05.2011 24:00	148
HEITERWANG Ort/B179	11.05.2011 24:00	136
HEITERWANG Ort/B179	25.05.2011 24:00	121
HEITERWANG Ort/B179	28.06.2011 24:00	123
HEITERWANG Ort/B179	29.06.2011 24:00	122
HEITERWANG Ort/B179	04.07.2011 24:00	121
HEITERWANG Ort/B179	05.07.2011 24:00	141
HEITERWANG Ort/B179	06.07.2011 24:00	143

MESSSTELLE	Datum	WERT[µg/m³]
INNSBRUCK/Andechsstraße	20.04.2011 24:00	133
INNSBRUCK/Andechsstraße	21.04.2011 24:00	123
INNSBRUCK/Andechsstraße	22.04.2011 24:00	132
INNSBRUCK/Andechsstraße	23.04.2011 24:00	141
INNSBRUCK/Andechsstraße	24.04.2011 24:00	124
INNSBRUCK/Andechsstraße	25.04.2011 24:00	123
INNSBRUCK/Andechsstraße	06.05.2011 24:00	122
INNSBRUCK/Andechsstraße	07.05.2011 24:00	129
INNSBRUCK/Andechsstraße	06.07.2011 24:00	122

MESSSTELLE	Datum	$WERT[\mu g/m^3]$
INNSBRUCK/Sadrach	19.04.2011 24:00	129
INNSBRUCK/Sadrach	20.04.2011 24:00	139
INNSBRUCK/Sadrach	21.04.2011 24:00	132
INNSBRUCK/Sadrach	22.04.2011 24:00	135
INNSBRUCK/Sadrach	23.04.2011 24:00	145
INNSBRUCK/Sadrach	24.04.2011 24:00	134
INNSBRUCK/Sadrach	25.04.2011 24:00	132
INNSBRUCK/Sadrach	26.04.2011 24:00	125
INNSBRUCK/Sadrach	06.05.2011 24:00	136
INNSBRUCK/Sadrach	07.05.2011 24:00	141
INNSBRUCK/Sadrach	08.05.2011 24:00	126
INNSBRUCK/Sadrach	25.05.2011 24:00	124
INNSBRUCK/Sadrach	06.06.2011 24:00	127
INNSBRUCK/Sadrach	07.06.2011 24:00	125

INNSBRUCK/Sadrach	05.07.2011 24:00	123
INNSBRUCK/Sadrach	06.07.2011 24:00	141
INNSBRUCK/Sadrach	07.07.2011 24:00	127
INNSBRUCK/Sadrach	12.07.2011 24:00	121
INNSBRUCK/Sadrach	24.08.2011 24:00	128
INNSBRUCK/Sadrach	25.08.2011 24:00	127
INNSBRUCK/Sadrach	26.08.2011 24:00	129

MESSSTELLE	Datum	WERT[µg/m³]
NORDKETTE	09.03.2011 24:00	122
NORDKETTE	26.03.2011 24:00	123
NORDKETTE	18.04.2011 24:00	123
NORDKETTE	19.04.2011 24:00	135
NORDKETTE	20.04.2011 24:00	147
NORDKETTE	21.04.2011 24:00	146
NORDKETTE	22.04.2011 24:00	144
NORDKETTE	23.04.2011 24:00	149
NORDKETTE	24.04.2011 24:00	140
NORDKETTE	25.04.2011 24:00	144
NORDKETTE	26.04.2011 24:00	136
NORDKETTE	27.04.2011 24:00	128
NORDKETTE	28.04.2011 24:00	124
NORDKETTE	06.05.2011 24:00	142
NORDKETTE	07.05.2011 24:00	145
NORDKETTE	08.05.2011 24:00	145
NORDKETTE	09.05.2011 24:00	130
NORDKETTE	10.05.2011 24:00	149
NORDKETTE	11.05.2011 24:00	155
NORDKETTE	12.05.2011 24:00	141
NORDKETTE	14.05.2011 24:00	145
NORDKETTE	23.05.2011 24:00	122
NORDKETTE	25.05.2011 24:00	129
NORDKETTE	26.05.2011 24:00	140
NORDKETTE	27.05.2011 24:00	124
NORDKETTE	31.05.2011 24:00	127
NORDKETTE	05.06.2011 24:00	124
NORDKETTE	06.06.2011 24:00	139
NORDKETTE	07.06.2011 24:00	141
NORDKETTE	04.07.2011 24:00	122
NORDKETTE	05.07.2011 24:00	142
NORDKETTE	06.07.2011 24:00	144
NORDKETTE	07.07.2011 24:00	144
NORDKETTE	08.07.2011 24:00	129
NORDKETTE	09.07.2011 24:00	129
NORDKETTE	12.07.2011 24:00	130
NORDKETTE	13.07.2011 24:00	132
NORDKETTE	03.08.2011 24:00	122
NORDKETTE	04.08.2011 24:00	122
NORDKETTE	24.08.2011 24:00	150
NORDKETTE	25.08.2011 24:00	140
NORDKETTE	26.08.2011 24:00	145
NORDKETTE	27.08.2011 24:00	132
NORDKETTE	01.09.2011 24:00	128

Anzahl: 44

MESSSTELLE	Datum	WERT[µg/m³]
WÖRGL/Stelzhamerstraße	20.04.2011 24:00	123
WÖRGL/Stelzhamerstraße	21.04.2011 24:00	133
WÖRGL/Stelzhamerstraße	23.04.2011 24:00	125
WÖRGL/Stelzhamerstraße	25.04.2011 24:00	121
WÖRGL/Stelzhamerstraße	06.05.2011 24:00	129
WÖRGL/Stelzhamerstraße	07.05.2011 24:00	137
WÖRGL/Stelzhamerstraße	10.05.2011 24:00	126
WÖRGL/Stelzhamerstraße	11.05.2011 24:00	134
WÖRGL/Stelzhamerstraße	26.05.2011 24:00	123
WÖRGL/Stelzhamerstraße	06.07.2011 24:00	137
WÖRGL/Stelzhamerstraße	07.07.2011 24:00	130
WÖRGL/Stelzhamerstraße	24.08.2011 24:00	130
WÖRGL/Stelzhamerstraße	25.08.2011 24:00	130

MESSSTELLE	Datum	WERT[$\mu g/m^3$]
KRAMSACH/Angerberg	19.04.2011 24:00	123
KRAMSACH/Angerberg	20.04.2011 24:00	130
KRAMSACH/Angerberg	21.04.2011 24:00	136
KRAMSACH/Angerberg	22.04.2011 24:00	126
KRAMSACH/Angerberg	23.04.2011 24:00	133
KRAMSACH/Angerberg	06.05.2011 24:00	128
KRAMSACH/Angerberg	07.05.2011 24:00	138
KRAMSACH/Angerberg	08.05.2011 24:00	121
KRAMSACH/Angerberg	10.05.2011 24:00	131
KRAMSACH/Angerberg	11.05.2011 24:00	135
KRAMSACH/Angerberg	29.06.2011 24:00	122
KRAMSACH/Angerberg	06.07.2011 24:00	137
KRAMSACH/Angerberg	24.08.2011 24:00	124
KRAMSACH/Angerberg	25.08.2011 24:00	134
KRAMSACH/Angerberg	26.08.2011 24:00	122

Anzahl: 15

MESSSTELLE	Datum	WERT[µg/m³]
KUFSTEIN/Festung	21.04.2011 24:00	131
KUFSTEIN/Festung	06.05.2011 24:00	126
KUFSTEIN/Festung	07.05.2011 24:00	134
KUFSTEIN/Festung	10.05.2011 24:00	126
KUFSTEIN/Festung	11.05.2011 24:00	149
KUFSTEIN/Festung	25.05.2011 24:00	122
KUFSTEIN/Festung	26.05.2011 24:00	127
KUFSTEIN/Festung	29.06.2011 24:00	126
KUFSTEIN/Festung	06.07.2011 24:00	137
KUFSTEIN/Festung	07.07.2011 24:00	135
KUFSTEIN/Festung	24.08.2011 24:00	138
KUFSTEIN/Festung	25.08.2011 24:00	131

MESSSTELLE	Datum	WERT[μg/m³]
LIENZ/Tiefbrunnen	20.04.2011 24:00	124
LIENZ/Tiefbrunnen	21.04.2011 24:00	126
LIENZ/Tiefbrunnen	22.04.2011 24:00	129
LIENZ/Tiefbrunnen	23.04.2011 24:00	132
LIENZ/Tiefbrunnen	25.04.2011 24:00	122
LIENZ/Tiefbrunnen	07.05.2011 24:00	128
LIENZ/Tiefbrunnen	08.05.2011 24:00	121
LIENZ/Tiefbrunnen	11.05.2011 24:00	127
LIENZ/Tiefbrunnen	31.05.2011 24:00	121
LIENZ/Tiefbrunnen	05.07.2011 24:00	121
LIENZ/Tiefbrunnen	25.08.2011 24:00	128
LIENZ/Tiefbrunnen	26.08.2011 24:00	133

ANHANG 3

Lage der Messstandorte:

1. Standorte mit dauerregistrierenden Messgeräten

Standort	geo. Länge	geo. Breite
Höfen-Lärchbichl	10° 40' 56,22"	47° 28' 11,41"
Heiterwang – Ort/B179	10° 44' 38,82"	47° 26' 51,35"
Imst - A12	10° 44' 08,58"	47° 13' 01,01"
Innsbruck-Andechsstraße	11° 25' 01,00"	47° 16' 16,64"
Innsbruck-Fallmerayerstraße	11° 23' 32,50"	47° 15' 45,43"
Innsbruck-Sadrach	11° 22' 28,78"	47° 16' 11,65"
Innsbruck-Nordkette	11° 22' 33,59"	47° 18' 20,24"
Mutters-Gärberbach/A13	11° 23' 26,35"	47° 14' 22,39"
Hall-Sportplatz	11° 30' 44,99"	47° 16' 41,04"
Vomp-Raststätte A12	11° 41' 31,30"	47° 20' 55,59"
Vomp-An der Leiten	11° 41' 40,35"	47° 20' 59,97"
Brixlegg-Innweg	11° 52' 18,49"	47° 25' 42,79"
Kramsach-Angerberg	11° 54' 35,82"	47° 27' 31,38"
Kundl A12	11° 57' 28,93"	47° 28' 08,20"
Wörgl-Stelzhamerstraße	12° 03' 59,88"	47° 29' 18,81"
Kufstein-Praxmarerstraße	12° 10' 20,68"	47° 34' 54,51"
Kufstein-Festung	12° 10' 09,28"	47° 34' 56,04"
Lienz-Tiefbrunnen	12° 45' 56,57"	46° 49' 08,98"
Lienz-Amlacherkreuzung	12° 45' 56,24"	46° 49' 39,84"

Die nähere Charakterisierung (Karte, Ansicht, etc.) kann unter www.tirol.gv.at/luft eingesehen werden.

2. Staubniederschlagsstandorte in Tirol

Bezeichnung	geogr. Länge	geogr. Breite
Brixlegg u. Umgebung	88 8-	88
Brixlegg-Bahnhof	11° 52' 44,10"	47° 25' 59,08"
Brixlegg-Kirche	11° 52' 44,21"	47° 25' 41,83"
Reith-Matzenköpfl	11° 51' 59,44"	47° 25' 26,85"
Reith-Matzenau	11° 51' 49,01"	47° 25' 24,53"
Münster-Innufer	11° 51' 57,00"	47° 25' 39,00"
Brixlegg-Container	11° 52' 18,42"	47° 25' 42,79"
Kramsach-Hagau	11° 52' 16,08"	47° 25' 54,66"
Kramsach-Voldöpp	11° 53' 30,36"	47° 26' 48,06"
Imst		
HTL-Garten	10° 44' 48,84"	47° 13' 28,62"
B 171-Tankstelle	10° 44' 48,97"	47° 13' 37,27"
Brennbichl	10° 44' 49,87"	47° 13' 24,93"
Fabrikstraße	10° 44' 58,89"	47° 14' 05,74"
Auf Arzill	10° 44' 49,26"	47° 13' 53,82"
Innsbruck		
Zentrum (Fallmerayerstraße)	11° 23' 32,45"	47° 15' 45,45"
O-Dorf (An der Lan Str.)	11° 26' 30,90"	47° 16' 20,70"
Reichenau (Andechsstraße)	11° 25' 01,01"	47° 16' 16,60"
Innpromenade-Rennweg	11° 24' 07,57"	47° 16' 44,58"
Hungerburg-Talstation	11° 24' 12,98"	47° 16' 44,22"
Höttinger Au (Daneygasse)	11° 21' 59,82"	47° 15' 40,56"
Wörgl		
Peter-Anich-Straße	12° 04' 08,80"	47° 29' 36,70"
Salzburgerstraße-Garten	12° 04' 19,76"	47° 29' 28,23"
Ladestraße-Hochhaus Dach	12° 04' 18,35"	47° 29' 27,50"
C4 Johann : Transl Harris		
St. Johann i.T. und Umgebung	120 221 47 44"	479 201 05 6911
Griesbach Weiberg deut	12° 23' 47,44"	47° 30' 05,68"
Weiberndorf	12° 24' 22,82"	47° 30' 36,24"
Apfeldorf	12° 24' 53,22"	47° 30' 52,94"
Prantlstraße 34	12° 25' 10,26"	47° 31' 08,34"
Sommerer	12° 25' 28,32"	47° 30' 45,57"

3. WADOS - Standorte in Tirol:

Bezeichnung	geogr. Länge	geogr. Breite
Wängle	10° 40' 54,81"	47° 29' 08,60"
Niederndorferberg	12° 13' 36,65"	47° 39' 43,60"
Innervillgraten	12° 21' 06,14"	46° 49' 04,74"

ANHANG 4

Abkürzungen

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid NO Stickstoffmonoxid NO2 Stickstoffdioxid

NOx Stickstoffoxide im Sinne dieser Verordnung (BGBl. II Nr. 298/2001) sind

die Summe von Stickstoffmonoxid und Stickstoffdioxid, ermittelt durch die Addition als Teile auf eine Milliarde Teile und ausgedrückt als

Stickstoffdioxid in µg/m3.

O3 Ozon

CO Kohlenmonoxid

PM10 "particulate matter" Schwebstaub mit einem Korngrößenanteil von

mindestens 50 % kleiner als 10 μm aerodynamischen Luftdurchmessers

PM2.5 "particulate matter" Schwebstaub mit einem Korngrößenanteil von

mindestens 50 % kleiner als 2,5 µm aerodynamischen Luftdurchmessers

JMW Jahresmittelwert MMW Monatsmittelwert

MW8 Achtstundenmittelwert (gleitend)

MW1 Einstundenmittelwert

WinterHJ Winterhalbjahr 1.Oktober des Vorjahres bis 31. März des Berichtsjahres

TMW Tagesmittelwert

IGL8-MW Maximaler Achtstundenmittelwert laut Immissionsschutzgesetz Luft

Max 8-MW Maximaler Achtstundenmittelwert (gleitend)
Max 3-MW Maximaler Dreistundenmittelwert (gleitend)

Max 1-MWMaximaler EinstundenmittelwertMax HMWMaximaler Halbstundenmittelwertmg/m³Milligramm pro Kubikmeterμg/m³Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen % Promille = Anzahl Teile in tausend Teilen

Ver. Verfügbarkeit der Messwerte (Anteil gültiger Messwerte zu theoretischer

Anzahl an Messwerten; Angaben in Prozent)

IG-L Immissionsschutzgesetz-Luft (BGBl. Nr. I 115/97, i.d.g.F.)

MKVO Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft

(MKVO, BGBl. II Nr. 263/2004)

2.FVO Zweite Verordnung gegen forstschädliche Luftverschmutzungen BGBl.

Nr. 199/1984)

CTUA Chemisch Technische Umweltschutzanstalt beim Amt der Tiroler

Landesregierung

GUM Guide to the expression of uncertainty in measurement", ISO 13005 ENV 1305: ÖNORM 1305 - Leitfaden zur Angabe der Messunsicherheit

beim Messen

DTV Durchschnittliche tägliche Verkehrsstärke

AEI Average Exposure Indicator, Indikator für die durchschnittliche

Exposition

IG-L Immissionsschutzgesetz - Luft