

Erfassung von Fisch-, Krebs-, Muschel- und Wasserpflanzenarten in ausgewählten Tiroler Seen mittels Detektion von eDNA in Wasserproben

Durchgeführt von: Sinsoma GmbH

Beauftragt vom: Amt der Tiroler Landesregierung, Abteilung Wasserwirtschaft

Dieses Projekt wird durch den Biodiversitätsfonds des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie gefördert.

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Ansprechpersonen Sinsoma:

Dr. Corinna Wallinger (corinna.wallinger@sinsoma.com)

Dr. Karin Wastian (karin.wastian@sinsoma.com)

Probennahme und Labor: Carolin Strutzmann, MSc.; Mag. Janine Leitner; Julia Wagner, MSc.; Christiane Zeisler, MSc.; Rainer Fantur, MSc.; Tobias Wallinger; Anja Ekblad, BSc.; Anna Mutti, MSc.

Bioinformatik: Julia Wagner, MSc., Anna Mutti, MSc.

Berichterstellung: Dr. Karin Wastian, Dr. Corinna Wallinger

Zitiervorschlag:

Sinsoma GmbH 2024: Erfassung von Fisch-, Krebs-, Muschel- und Wasserpflanzenarten inausgewählten Tiroler Seen mittels Detektion von eDNA in Wasserproben, Bericht im Auftrag des Amtes der Tiroler Landesregierung, 157 Seiten

Inhaltsverzeichnis

1. Hintergrund und Zielsetzung	5
2. Methodischer Ansatz	6
Details zur Probenahme	6
Details zur Extraktion der eDNA aus gefilterten Wasserproben	7
Details zur Detektion bzw. Identifikation der eDNA auf Artniveau	7
3. Ergebnisse für ausgewählte Tiroler Seen	10
3.1 Badesee Mieming	11
3.2 Fernsteinsee	14
3.3 Piburger See	17
3.4 Natterer See	20
3.5 Brennersee	24
3.6 Lanser See	27
3.7 Möserer See	28
3.8 Obernberger See	32
3.9 Wildsee	35
3.10 Baggersee Roßau	38
3.11 Badesee Going	41
3.12 Badeteich Brixen	43
3.13 Badesee Kirchberg	46
3.14 Gieringer Weiher	48
3.15 Lauchsee Fieberbrunn	51
3.16 Piller See	55
3.17 Schwarzsee	59
3.18 Berglsteiner See	62
3.19 Buchsee	65
3.20 Hechtsee	68
3.21 Hintersteiner See	72
3.22 Krummsee	76
3.23 Moorstrandbad Kirchbichl	80
3.24 Reintaler See	83
3.25 Reither See	86
3.26 Stimmersee	89

3.27 Thiersee	92
3.28 Walchsee	97
3.29 Badesee Ried	102
3.30 Badeteich Ladis	105
3.31 Tristacher See	108
3.32 Blindsee	111
3.33 Haldensee	114
3.34 Heiterwanger See	117
3.35 Plansee	121
3.36 Urisee	127
3.37 Vilsalpsee	130
3.38 Achensee	134
3.39 Weißlahn	141
3.40 Schlitterer See	144
4. Zusammenfassung	148
Anhänge	149
Tabellen- & Abbildungsverzeichnis	153
l itoratur	156

1. Hintergrund und Zielsetzung

Die Analyse von DNA-Spuren, welche Organismen an ihre Umgebung abgeben, sogenannter Umwelt-DNA (environmental DNA, **eDNA**), hat sich in den letzten Jahren zu einem effizienten und verlässlichen Werkzeug im Monitoring von aquatischen Lebensräumen entwickelt. eDNA kann aus Umweltproben wie Wasser extrahiert werden und ermöglicht eine nicht invasive Bestimmung der darin vorkommenden Arten.

So erlauben eDNA-Analysen eine wetter- und tageszeitenunabhängige Beprobung und bei gleichem Personal- und Zeitaufwand können damit deutlich mehr Gewässer beprobt werden als mit herkömmlichen Methoden. Darüber hinaus hängt ein Nachweis eines Taxons nicht vom Lebensstadium des Organismus (Ei, Larve, adultes Tier) oder der Expertise des Beprobenden ab. Ein zusätzlicher Vorteil ist die Möglichkeit, verschiedene Organismengruppen (Tiere, Pflanzen, Pilze, Bakterien) aus ein und derselben Probe zu bestimmen, was zu einer enormen Reduktion des Umfangs von Feldarbeiten führen kann.

Um eDNA analysieren zu können, wird die Wasserprobe in der Regel filtriert, sodass sich die eDNA auf dem Filter konzentriert. In der jüngeren Vergangenheit hat sich das Filtrieren durch eingekapselte Einwegfilter als Methode der Wahl durchgesetzt. Dies verhindert effektiv eine Kreuzkontamination (Übertragung) der DNA einzelner Proben untereinander. Auch im vorliegenden Auftrag wurde eDNA in den Gewässern basierend auf **Filterproben** analysiert.

Grundsätzlich kann bei den molekularen Detektionsmethoden zwischen zwei Verfahren unterschieden werden: dem diagnostischen Ansatz, bei dem gezielt nach der DNA einzelner oder mehrerer Arten gesucht wird, und dem **Metabarcoding**, anhand dessen das Artenspektrum von Organismengruppen identifizieren werden kann. Jede dieser Methoden hat Vor- und Nachteile. So eignen sich diagnostische Ansätze aufgrund ihrer hohen Sensitivität und Spezifität sehr gut, um gezielt nach seltenen oder verborgen lebenden Arten sowie bspw. geschützten oder invasiven Arten (Neobiota). Ein Metabarcoding hingegen ermöglicht die **Charakterisierung ganzer Organismengemeinschaften im Überblick**, birgt jedoch das Risiko, dass das eDNA-Signal sehr häufiger Arten jenes von seltenen Arten überdeckt, und das Vorkommen der Spezies mit geringer Individuenzahl dadurch übersehen wird.

Das vorliegende Projekt präsentiert eine umfassende Erhebung der aquatischen Fauna und Flora, nämlich der Fisch-, Krebs-, Muschel- und Wasserpflanzenarten, in 40 ausgewählten Tiroler Seen mittels Metabarcoding. Die Kenntnis über das Vorkommen bzw. Fehlen von Arten ist eine wesentliche Grundlage, um die Biodiversität zu erfassen, zu erhalten und zu fördern sowie langfristige Zustände und Trends bewerten und eine Bewirtschaftung der Seen entsprechend gestalten zu können. Anhand der generierten Artenlisten kann die Verbreitung einerseits von wirtschaftlich relevanten Arten und andererseits von seltenen und gefährdeten Spezies sowie aquatischer Neobiota abgeleitet werden.

2. Methodischer Ansatz

Im August 2023 (zwischen dem 07.08. und 31.08.2023) wurden aus jedem der beauftragten Gewässer **Wasserproben** an verschiedenen Probenstellen filtriert und die auf den Filtern anhaftende **eDNA** anschließend extrahiert und mittels **Metabarcoding** identifiziert. Die Anzahl der Proben je Gewässer war abhängig von der Größe des Sees bzw. von der jeweiligen Uferlänge. Seen mit einer Uferlänge unter 3 km wurden an drei Stellen mit für das Gewässer unterschiedlichen charakteristischen Uferstrukturen beprobt. Bei Seen mit einer Uferlänge über 3 km wurde innerhalb eines jeden Kilometers entlang der Uferlinie eine Probe genommen um ein möglichst repräsentatives Bild für die Artenzusammensetzung zu erhalten. Von einer Beprobung tieferer Wasserschichten wurde in diesem Projekt abgesehen, da dadurch der Einsatz eines Bootes erforderlich geworden wäre und somit der Beprobungsaufwand enorm gestiegen wäre.

Die molekulare Analyse beinhaltete die Extraktion der eDNA aus den gefilterten Wasserproben sowie die Detektion und Identifikation dieser DNA auf Artniveau mittels Metabarcoding. **Zielarten** waren sämtliche Arten der Gruppen **Fische und Neunaugen, Krebse** und **Muscheln**, die in Europa heimisch oder eingebürgert sind oder als Neozoa vorkommen, sowie die in der EU-Verordnung zu **invasiven gebietsfremden** Arten geführten **Wasserpflanzen** sogenannter Neophyta (siehe Anhang, Tabelle B).

Die molekularen Analysen erfolgten in einem Speziallabor für molekulare Diagnostik der Sinsoma GmbH mit getrennten Laboren für Prä- und Post-PCR. Interne Kontrollstandards wurden bereits im Feld nach der Filtration sowie vor der Extraktion jeder Probe beigegeben, um ggf. eine nicht sachgemäße Probennahme, eine fehlgeschlagene DNA-Extraktion bzw. eine Inhibition der PCR, welche eine Vervielfältigung der vorhandenen eDNA verhindern würde, feststellen zu können. Bei allen 167 analysierten Proben in diesem Projekt konnte dies jedoch ausgeschlossen werden. Die DNA-Extraktion und PCR erwiesen sich als erfolgreich, da in jeder der Probe DNA von mindestens einer Organismengruppe detektiert wurde.

Details zur Probenahme

Die Probennahme wurde mittels Sinsoma-eDNA-Beprobungskit durchgeführt. An jeder Probenstelle wurde mit Hilfe eines Einweg-Plastikbeutels an mehreren Stellen Wasser entnommen. Diese integrierten Proben wurden anschließend mittels einer Akku-Peristaltikpumpe (Solinst Modell 410, Georgetown, Canada) oder Vampire Probensammler (BuerkleTM 5327-1000, Bad Bellingen, Deutschland) durch einen Kapselfilter filtriert (eDNA Dual Filter Capsule, Sylphium, Groningen, Niederlande) (Abb. A und B). Das filtrierte Volumen betrug in fast allen Fällen 1,5 L (Ausnahme: URI-03 [1,4 L] und MOO-01 sowie WEI-01 und WIE-03 [1,3 L]). Die so gewonnene eDNA wurden durch Zugabe einer Pufferlösung stabilisiert und konserviert. Während aller Arbeitsschritte wurden Einweghandschuhe getragen und ausschließlich Einwegmaterialien verwendet, um das Risiko einer Kreuzkontamination von eDNA zwischen den einzelnen Probenstellen zu verhindern. Abschließend wurden die Filter bei 4-8 °C in Kühlboxen in das Labor der Sinsoma GmbH geliefert.

Abbildung A: Akku-Peristaltikpumpe (Solinst Modell 410) und eDNA Dual Filter Capsule (Sylphium) zur automatisierten Beprobung von eDNA

Abbildung B: Filtration mittels dem Buerkle[™] Vampire Probensammler im Feld

Details zur Extraktion der eDNA aus gefilterten Wasserproben

Nach einer Inkubation der Proben für 12 Stunden im Thermoschrank bei 56 °C (Lysis) wurde für die DNA-Extraktion ein Extraktionsroboter (KingfisherTM Flex, Thermo Fisher Scientific) unter Verwendung des BioSprint 96 DNA Blood Kit (Qiagen, Hilden, Deutschland) und des Protokolls des Herstellers eingesetzt.

Details zur Detektion bzw. Identifikation der eDNA auf Artniveau

Um einen Überblick über das Artenspektrum der vier ausgewählten Organismengruppen zu erhalten, wurde ein Metabarcoding durchgeführt. Bei dieser Methode wird, im Gegensatz zum DNA-Barcoding, bei dem immer nur die DNA eines einzelnen Zielorganismus vervielfältigt, gelesen und identifiziert wird, eine Vielzahl von DNA-Barcodes gleichzeitig gelesen (sog. Next Generation Sequencing, NGS).

In einem ersten Schritt wurde ein spezifisches DNA-Fragment, welches bei den verschiedenen Arten unterschiedlich ausgeprägt ist, vervielfältigt (DNA-Barcode) und somit bestimmt, ob die jeweilige Probe eDNA der Zielgruppen enthält. Für jede der vier Gruppen wurden dafür speziell optimierte molekulare Nachweissysteme (PCR basierend auf gruppenspezifischen Primerpaaren) eingesetzt. Fische wurden mit für mitteleuropäische Fischarten (inkl. Neunaugen) optimierten MiFish-Primern detektiert, welche auf den Genabschnitt 12S abzielen (Miya et al. 2015). Das Nachweissystem für Flusskrebse beruht auf einem eigens inhouse-validiertem Assay (Genabschnitt 16S). Auch der Nachweis der Muscheln erfolgte mit eigenen Primern für Unionidae, Dreissenidae, Sphaeridae & Corbicula (Genabschnitt 16S) und jener der Wasserpflanzen mit Primern, welche auf den Abschnitt ITS2 abzielen.

Die verwendete PCR-Chemie war der Qiagen Multiplex PCR Kit (Qiagen) für die PCR-Assays der Tiergruppen sowie für die Pflanzen-PCR der Type-it Mutation Detect PCR Kit (Qiagen). Die amplifizierten DNA-Fragmente aller vier Ansätze wurden im Anschluss für das NGS vorbereitet (Library Preparation) und auf der Illumina Plattform NextSeq2000 (P1, PE300) sequenziert. Die generierten DNA-Sequenzen wurden bioinformatisch verarbeitet, d.h. durch Algorithmen sortiert und mit den öffentlich zugänglichen Sequenzdatenbanken Genbank® NCBI und BOLD Systems den verschiedenen Artgruppen Fische und Neunaugen, Muscheln, Krebse und Pflanzen zugeordnet. Als sicherer Nachweis für die DNA einer Art gelten Detektionen von DNA-Sequenzen, welche zu 99% mit jenen dieser Art in den Datenbanken übereinstimmen und darüber hinaus mindestens 1% der generierten DNA-Sequenzen in der jeweiligen Probe ausmachen. DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro Probenstelle und Zielgruppe) gelten als "nicht gesicherte" Nachweise und werden gesondert ausgewiesen.

Grundsätzlich ist die Zuordnung auf Artenebene mittels Metabarcoding immer auch hinsichtlich der Plausibilität kritisch zu hinterfragen. Für einzelne heimische Arten kann es vorkommen, dass zum Zeitpunkt des Abgleichs noch keine DNA-Sequenzen für den untersuchten Genabschnitt in den öffentlich zugänglichen Datenbanken verfügbar sind. Beim Einsatz des Algorithmus, welcher die Übereinstimmung der DNA-Sequenzen in den Proben mit jenen in der Sequenzdatenbank vergleicht, werden in solchen Fällen die nächst verwandten Arten aus derselben Gattung angezeigt, allerdings mit einer vergleichsweise geringeren Übereinstimmung (%ID ≤98%). Dies gilt es bei der Interpretation der Daten zu beachten. Diese vermeintlichen "Nachweise" nicht heimischer Arten sind in der Praxis dahingehend zu interpretieren, dass es sich hierbei mit hoher Wahrscheinlichkeit um Nachweise der verwandten heimischen Arten handelt.

Während ein eDNA-Nachweis eindeutig für das Vorkommen einer bestimmten Art spricht, bedeutet ein Nichtnachweis nicht zwingend, dass das Vorkommen dieser Art völlig auszuschließen ist. Es ist durchaus möglich, dass es sich um eine Falsch-Negative Probe handelt. Das heißt für Vertreter der hier gewählten Zielgruppen Fische und Neunaugen, Muscheln, Krebse, invasive Wasserpflanzen könnte es sein, dass an einer Probenstelle keine Nachweise detektiert werden, weil z.B. nur sehr wenige Individuen im Gewässer sind oder diese sich über einen längeren Zeitraum nur in tieferen Lagen aufgehalten haben. Wenn sich dann im See aufgrund der hohen Sommertemperaturen eine Schichtung ausgebildet hat und in der Folge kaum Durchmischung stattfindet, gelangen DNA-Spuren von Arten, welche sich in den tieferen Schichten aufhalten, kaum oder nur in sehr geringen Mengen in die Uferbereiche, an denen beprobt worden ist. Ebenso können solche Falsch-Negative darin begründet sein, dass die Dominanz einzelner Arten dazu führt, dass Arten mit vergleichsweise geringeren Dichten "übersehen" werden. Beim Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle, welche einen Platz auf der Platte erhalten, werden vervielfältigt und auch gelesen. Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann

kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden.

Für optimale Ergebnisse empfehlen sich wiederholte Probennahmen übers Jahr verteilt und ggf. eine gezielte Nachsuche mittels diagnostischer Nachweise nach bestimmten Arten, von denen man weiß, dass sie sich eher in tiefen Schichten aufhalten bzw. nur wenige Individuen vertreten sind. Zu bedenken ist auch, dass eine solche Fischbestandsanalyse anhand von eDNA immer nur eine Momentaufnahme ist und wir hiermit einen rein qualitativen Nachweis erhalten (nachgewiesen/nicht nachgewiesen). Auch wenn die Anzahl an Sequenzen innerhalb einer Probe einen möglichen Aufschluss über die Menge an eDNA liefern kann, so ist zu berücksichtigen, dass diese Menge nur unter sehr bestimmten Voraussetzungen auch mit der Individuenzahl korrelieren kann (Thalinger et al. 2019). Die Menge an eDNA im Freiwasser wird neben der Zahl an Individuen von zahlreichen Faktoren beeinflusst, sowohl bei der Abgabe (z.B. durch die Biologie, die Größe, das Alter aber auch die Aktivität und die Fitness der Tiere) als auch durch physikalische Parameter wie die Entfernung zur "DNA-Quelle", die Fließgeschwindigkeit, Turbulenzen oder Trübstoffführung sowie natürliche Abbauprozesse im Gewässer.

In den nachfolgend im Bericht enthaltenen Tabellen sind alle Nachweise der tierischen Organismen aus den gewählten Zielgruppen für jeden See dargestellt – einmal aufgeschlüsselt nach Probenstellen und einmal zusammenfassend für den gesamten See. In den Tabellen sind sowohl gesicherte als auch ungesicherte Nachweise von eDNA enthalten. Dies ist beim Lesen der Tabellen zu berücksichtigen und für die Interpretation dieser Tabellen sollte daher die Plausibilisierung der Ergebnisse für jeden See herangezogen werden. Im Rahmen dieses Auftrags wurde auch nach invasiven Pflanzen gesucht, da jedoch in keiner der Proben solche detektiert werden konnten, gibt es auch keine Tabellen zu den Pflanzen.

Vereinzelt wurden Amphibien-Sequenzen mit dem Nachweissystem für Fische detektiert. Dies kann manchmal auftreten, wenn wenig Ziel-DNA in der Probe ist, sodass die Primer auch auf die DNA von verwandten Tiergruppen ausweichen können (sowohl Fische als auch Lurche sind Wirbeltiere). Amphibien waren nicht als Zielgruppe in dieser Studie enthalten, u.a. auch weil der Zeitraum der Beprobung für diese Tiergruppe nicht geeignet ist. Für eine Erhebung der Amphibien empfehlen wir gegebenenfalls eine gezielte Nachsuche mittels eines für Amphibien spezifischen Metabarcoding-Ansatzes im Frühling, da sich in der Laichzeit die meisten Individuen in den Gewässern aufhalten und damit ausreichend eDNA in den Gewässern zu erwarten ist.

3. Ergebnisse für ausgewählte Tiroler Seen

Insgesamt wurden im August 2023 167 Filterproben aus 40 stehenden Gewässern entnommen, wobei es sich um mindestens drei Wasserproben pro See handelte. Der überwiegende Teil wurde vom Ufer aus entnommen, am Achensee kam jedoch auch ein Boot zum Einsatz.

Tabelle A: Liste der 40 ausgewählten Seen mit der jeweiligen Uferlänge und der daraus resultierenden Anzahl von genommenen Filterproben

Bezirk	Gemeinde	Gewässer-ID*	Gewässername	KURZ	Uferlänge [m]	Proben
IM	Mieming	T1783R1	Badesee Mieming	BSM	872	3
IM	Nassereith	T5040R1	Fernsteinsee	FER	3544	4
IM	Oetz	T5401R1	Piburger See	PIB	1986	3
IL	Natters	T1993R1	Natterer See	NAT	936	3
IL	Gries	T2121R1	Brennersee	BRE	1043	3
IL	Lans	T2261R1	Lanser See	LAN	622	3
IL	Telfs	T1830R1	Möserer See	MOE	970	3
IL	Obernberg	T2291R1	Obernberger See	OBE	1919	3
IL	Seefeld	T1537R1	Wildsee	WIL	1654	3
I	Innsbruck	T2312R1	Baggersee Roßau	BGR	763	3
KB	Going	T4228R1	Badesee Going	BSG	296	3
KB	Brixen	T3570R1	Badeteich Brixen	BTB	409	3
KB	Kirchberg	T4159R1	Badesee Kirchberg	BSK	486	3
KB	Reith	T4090R1	Gieringer Weiher	GIE	1.393	3
KB	Fieberbrunn	T4300R1	Lauchsee Fieberbr.	LAU	811	3
KB	St. Ulrich	T4483R1	Piller See	PIL	4558	5
KB	Kitzbühel	T4183R1	Schwarzsee	SCW	2466	3
KU	Breitenbach	T3181R1	Berglsteiner See	BER	621	3
KU	Kramsach	T3184R1	Buchsee	BUC	867	3
KU	Kufstein	T3784R1	Hechtsee	HEC	2631	3
KU	Scheffau	T3663R1	Hintersteiner See	HIN	3575	4
KU	Kramsach	T3185R1	Krummsee	KRU	1746	3
KU	Kirchbichl	T3577R1	Moorst.b. Kirchbichl	MOO	438	3
KU	Kramsach	T3182R1	Reintaler See	REN	3533	4
KU	Reith	T3009R1	Reither See	REI	473	3
KU	Langkampfen	T3643R1	Stimmersee	STI	865	3
KU	Thiersee	T3774R1	Thiersee	THI	2008	3
KU	Walchsee	T3935R1	Walchsee	WAL	5207	6
LA	Ried	T4545R1	Badesee Ried	BSR	637	3
LA	Ladis	T4553R1	Badeteich Ladis	BTL	325	3
LZ	Amlach	T883R1	Tristacher See	TRI	1193	3
RE	Biberwier	T1721R1	Blindsee	BLI	3784	4
RE	Grän	T968R1	Haldensee	HAL	3896	4
RE	Heiterwang	T1479R1	Heiterwanger See	HEI	6133	7
RE	Breitenwang	T1462R1	Plansee	PLA	16118	17
RE	Reutte	T1468R1	Urisee	URI	1288	3
RE	Tannheim	T1023R1	Vilsalpsee	VIL	3733	4
SZ	Achenkirch	T1643R1	Achensee	ACH	20565	21
SZ	Terfens	T2419R1	Weisslahn	WEI	623	3
SZ	Schlitters	T2533R1	Schlitterer See	SCL	412	3
Gesamt	zahl an Proben					167

^{*}Angaben gemäß TIRIS

3.1 Badesee Mieming

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IM	Mieming	872	BSM-01, -02, -03	31.08.2023

Lage der Probenstellen

Abbildung 1: Badesee Mieming

Artenliste je Probestelle

Tabelle 1.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSM-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq. pro PS und ZG), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq. pro PS und ZG). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt)

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	BSM-01	Alburnus chalcoides	Mairenke	94,74	227258	51,27	443248
	BSM-01	Esox lucius	Hecht	99,31	126136	28,46	443248
	BSM-01	Gobio gobio	Gründling	99,4	53814	12,14	443248
e	BSM-01	Tinca tinca	Schleie	99,39	29418	6,64	443248
Fische	BSM-01	Alburnus alburnus	Laube	95,82	5168	1,17	443248
-	BSM-01	Leuciscus sp.	Hasel/Nerfling	95,86	808	0,18	443248
	BSM-01	Esox sp.	Hecht	99,86	413	0,09	443248
	BSM-01	Alburnus sp.	Laube	95,43	139	0,03	443248
	BSM-01	Leuciscidae	Weißfische	94,92	94	0,02	443248
Muscheln	BSM-01	Musculium lacustre	Häubchenmuschel	99,07	71281	100	71281

Gesamte Artenliste Badesee Mieming

Tabelle 1.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badesee Mieming Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Esox lucius	Hecht
<u>e</u>	Gobio gobio	Gründling
Fische	Tinca tinca	Schleie
ш	Alburnus alburnus	Laube
	Leuciscus sp.	Hasel/Nerfling
Muscheln	Musculium lacustre	Häubchenmuschel

Plausibilisierung

Im Badesee Mieming wurde eDNA von Fischen und einer Muschelart identifiziert, wobei alle Nachweise aus einer Probe stammen (BSM-01).

Bei den Nachweisen von eDNA des Hechts fanden sich sehr viele DNA-Sequenzen, welche eindeutig *E. lucius* zugeordnet wurden, darüber hinaus gab es aber auch ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr der Gattung zugeordnet werden konnten.

Bei dem vermeintlichen Nachweis der Seelaube *Alburnus chalcoides* (Tab. 1.1) könnte es sich um DNA-Sequenzen handeln, welche der Laube (*A. alburnus*) zuzuordnen sind. Dafür spricht auch der geringe Grad an Übereinstimmung mit den DNA-Sequenzen von *A. chalcoides* aus den Referenzdatenbanken von 94,7% (%ID). Dies gilt auch für jene Sequenzen, welche nur mehr der Gattung *Alburnus* zugeordnet werden konnten. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen findet man auch immer Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben. Darüber hinaus besteht die Möglichkeit, dass es sich bei den detektierten Sequenzen um DNA des Moderlieschens (*Leucaspius delineatus*) handelt. Moderlieschen und junge Seelauben können leicht verwechselt werden, sodass ein Fehler bei der Artbestimmung und folglich für den Eintrag in der Sequenzdatenbank nicht ausgeschlossen werden kann.

Bei der Interpretation des Nachweises von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 95,9% für die Gattung und 94,9% für die Familie (Tab. 1.1) gibt es zwei mögliche Rückschlüsse: in Anbetracht der übrigen Analyse-

ergebnisse handelt es sich hierbei am Wahrscheinlichsten um DNA-Sequenzen der Laube (*A. alburnus*), welche ebenfalls zur Familie der Leuciscidae gehört und die aufgrund ihres Qualitätsmangels (bedingt durch natürliche Abbauprozesse der freien DNA in der Wassersäule) fälschlicherweise der Gattung *Leuciscus* statt *Alburnus* zugeordnet worden sind. Es ist jedoch auch nicht völlig auszuschließen, dass diese eDNA-Spuren auf ein Vorkommen der Hasel (*L. leuciscus*) oder des Nerflings (*L. idus*) deuten, welche ebenfalls der Familie der Leuciscidae angehören.

Vom Badesee Mieming liegen Informationen zum Fischbestand vor, die im Zuge von Bestandsbergungen bei Seeabsenkungen erhoben wurden (mündliche Mitteilung Wolfgang Mark). Dabei wurden im Jahr 2016 die Fischarten Hecht, Schleie, Gründling, Moderlieschen und Karpfen sowie die Gemeine Teichmuschel festgestellt. Aktuelle Bestandszahlen liegen keine vor, es ist jedoch nach wie vor von einem vitalen Moderlieschenbestand im Badesee auszugehen (mündliche Mittelung Wolfgang Mark und Martin Schletterer).

3.2 Fernsteinsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IM	Nassereith	3544	FER-01, -02, -03, -04	29.08.2023

Lage der Probenstellen

Abbildung 2: Fernsteinsee

Artenliste je Probestelle

Tabelle 2.1: Auflistung der nachgewiesenen Taxa an den Probenstellen FER-01 − 04 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	FER-01	Trichoniscus pusillus	Zwergassel	98,48	456	100	456
<u>a</u>	FER-01	Phoxinus sp.	Elritze	99,41	55300	66,24	83489
Fische	FER-01	Cottus gobio	Корре	99,31	28178	33,75	83489
	FER-01	Cottus rhenanus	Rheingroppe	100	11	0,01	83489
Muscheln	FER-01	Sphaeriidae	Kugelmuscheln	98,82	65097	65,57	99281
Mus	FER-01	Pisidium nitidum	Glänzende Erbsenmuschel	100	34184	34,43	99281
	FER-02	Cottus gobio	Корре	99,7	131967	48,91	269812
Fische	FER-02	Salmo trutta	Bachforelle	99,38	84075	31,16	269812
Fis	FER-02	Salmo sp.	Lachs/Bachforelle	99,36	35219	13,05	269812
		Phoxinus sp.	Elritze	99,42	18551	6,88	269812
Fische	FER-03	Salmo sp.	Lachs/Bachforelle	99,89	143939	55,65	258636
Fis	FER-03	Salmo trutta	Bachforelle	99,32	114697	44,35	258636
	FER-04	Cottus gobio	Корре	99,92	77093	47,58	162016
	FER-04	Salmo trutta	Bachforelle	99,42	35499	21,91	162016
	FER-04	Salmo sp.	Lachs/Bachforelle	99,41	20744	12,8	162016
Fische	FER-04	Salvelinus sp.	Saibling	99,41	19414	11,98	162016
Fis	FER-04	Phoxinus sp.	Elritze	99,43	9220	5,69	162016
	FER-04	Cottus rhenanus	Rheingroppe	100	20	0,01	162016
	FER-04	Salmonidae	Lachsartige	100	16	0,01	162016
	FER-04	Salvelinus namaycush	Amerikanischer Seesaibling	100	10	0,01	162016
Muscheln	FER-04	Euglesa personata		99,15	101433	71,66	141540
Mus	FER-04	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,56	40107	28,34	141540

Gesamte Artenliste Fernsteinsee

Tabelle 2.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Fernsteinsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Cottus gobio	Корре
Fische	Salmo trutta	Bachforelle
Fis	Phoxinus sp.	Elritze
	Salvelinus sp.	Saibling
eln	Euglesa personata	Quell-Erbsenmuschel
Muscheln	Pisidium subtruncatum	Schiefe Erbsenmuschel
Ž	Pisidium nitidum	Glänzende Erbsenmuschel

Plausibilisierung

Im Fernsteinsee wurde eDNA von Fischen und Muscheln identifiziert. Bei den Krebsen wurde nur eine Landasselart (*Trichoniscus pusillus*) detektiert, jedoch keine aquatischen Krebstiere.

Bei dem vermeintlichen Nachweis der Rheinkoppe *Cottus rhenanus* (Tab. 2.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, welche von der heimischen Koppe (*Cottus gobio*) stammen, für welche bislang jedoch noch keine Einträge für den 12S-Genabschnitt in der Referenzdatenbank vertreten sind. Dies gilt auch für jene Sequenzen, welche nur der Gattung *Cottus* zugeordnet werden konnten. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben. Dasselbe trifft auch für die Nachweise, welche der Gattung *Salmo* zugewiesen worden sind, zu: diese stammen von der Bachforelle. Es finden sich hier zahlreiche Sequenzen, welche eindeutig als *S. trutta* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können.

Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: Neben den DNA-Sequenzen, welche eindeutig den beiden Arten *Pisidium subtruncatum* und *P. nitidum* zuzuordnen waren, fanden sich auch welche, die nur mehr auf Vertreter aus deren Familie (Sphaeriidae) schließen ließen.

Die Detektion für eDNA aus der Gattung Salvelinus lässt sich als Nachweis für das Vorkommen von Saiblingen interpretieren. Zwar kann man die beiden Arten S. umbla und S. fontinalis

molekular auf dem gewählten Genabschnitt 12S nicht voneinander unterscheiden, jedoch ist nur *S. umbla* in Österreich heimisch. Der vermeintliche Nachweis des Amerikanischen Salblings *S. namaycush* ist entweder auf Besatz oder auf einen Fehler/eine Fehlbestimmung im Eintrag in der Referenzdatenbank zurückzuführen und wird daher als Nachweis von *Salvelinus sp.* gewertet.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex rund um *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten dieser Gattung in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

3.3 Piburger See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IM	Oetz	1986	PIB-01, -02, -03	23.08.2023

Lage der Probenstellen

Abbildung 3: Piburger See

Artenliste je Probestelle

Tabelle 3.1: Auflistung der nachgewiesenen Taxa an den Probenstellen PIB-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt)

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	PIB-01	Squalius cephalus	Aitel	99,29	91615	33,64	272346
ē	PIB-01	Tinca tinca	Schleie	99,38	63530	23,33	272346
Fische	PIB-01	Scardinius erythrophthalmus	Rotfeder	99,32	60691	22,28	272346
ш	PIB-01	Perca fluviatilis	Flussbarsch	99,3	56500	20,75	272346
	PIB-01	Leuciscus leuciscus	Hasel	98,3	10	0	272346
ē	PIB-02	Squalius cephalus	Aitel	99,89	242126	99,3	243830
Fische	PIB-02	Leuciscus leuciscus	Hasel	99,43	874	0,36	243830
ш	PIB-02	Leuciscus sp.	Hasel/Nerfling	100	830	0,34	243830
	PIB-03	Perca fluviatilis	Flussbarsch	99,77	80016	32,49	246292
	PIB-03	Tinca tinca	Schleie	99,36	62884	25,53	246292
	PIB-03	Scardinius erythrophthalmus	Rotfeder	99,37	37374	15,17	246292
	PIB-03	Oncorhynchus mykiss	Regenbogenforelle	99,07	32067	13,02	246292
Fische	PIB-03	Squalius cephalus	Aitel	99,3	16514	6,71	246292
Fis	PIB-03	Rhodeus amarus	Bitterling	99,31	10843	4,4	246292
	PIB-03	Sander lucioperca	Zander	99,94	6229	2,53	246292
	PIB-03	Rhodeus sp.	Bitterling	100	274	0,11	246292
	PIB-03	Oncorhynchus sp.		98,71	81	0,03	246292
	PIB-03	Rutilus rutilus	Rotauge	100	10	0	246292
Muscheln	PIB-03	Anodonta cygnea	Große Teichmuschel	99,59	92715	100	92715

Gesamte Artenliste Piburger See

Tabelle 3.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Piburger See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau))

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Squalius cephalus	Aitel
	Perca fluviatilis	Flussbarsch
	Tinca tinca	Schleie
<u>e</u>	Scardinius erythrophthalmus	Rotfeder
Fische	Oncorhynchus mykiss	Regenbogenforelle
ш	Sander lucioperca	Zander
	Leuciscus sp.	Hasel/Nerfling
	Rhodeus amarus	Bitterling
	Rutilus rutilus	Rotauge
Muscheln	Anodonta cygnea	Große Teichmuschel

Plausibilisierung

In den drei Proben vom Piburger See wurde eDNA von Fischen und Muscheln identifiziert.

Bei den DNA-Sequenzen, welche der Gattung Sander zugeordnet werden konnten (in PIB-03), ist davon auszugehen, dass es sich um einen Nachweis für den Zander (S. lucioperca) handelt. Jene Nachweise, welche der Gattung Leuciscus und auch der Art L. leuciscus zugewiesen worden sind (in PIB-02), lassen auf ein Vorkommen der Hasel (L. leuciscus) deuten. Allerdings ist diese Art nahe verwandt mit dem Nerfling (L. idus). Die beiden Spezies der Gattung Leuciscus unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

In PIB-03 finden sich zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle *Oncorhynchus mykiss* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige

Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist beim Bitterling zu beobachten: neben den DNA-Sequenzen, welche eindeutig der Art *Rhodeus amarus* zuzuordnen war, fanden sich auch welche, die nur mehr auf die Gattung *Rhodeus* schließen ließen. Aufgrund ihrer speziellen Fortpflanzungsbiologie ist diese Fischart auf das Vorkommen bestimmter Muschelarten angewiesen, wie z.B. der ebenfalls detektieren Großen Teichmuschel (*Anodonta cygnea*).

3.4 Natterer See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IL	Natters	936	NAT-01, -02, -03	07.08.2023

Lage der Probenstellen

Abbildung 4: Natterer See

Artenliste je Probestelle

Tabelle 4.1: Auflistung der nachgewiesenen Taxa an den Probenstellen NAT-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt)

			-				
Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	NAT-01	Cyprinus carpio	Karpfen	99,38	206916	72,38	285855
	NAT-01	Oncorhynchus mykiss	Regenbogenforelle	98,9	31758	11,11	285855
he	NAT-01	Ctenopharyngodon idella	Graskarpfen	98,84	20438	7,15	285855
	NAT-01	Hypophthalmichthys sp.	Karpfen	99,22	10808	3,78	285855
	NAT-01	Salmo trutta	Bachforelle	99,38	4916	1,72	285855
Fische		Hypophthalmichthys nobilis	Marmorkarpfen	99,88	4530	1,58	285855
"	NAT-01	Salmo sp.	Lachs/Bachforelle	98,94	3283	1,15	285855
	NAT-01	Hypophthalmichthys molitrix	Silberkarpfen	98,27	1780	0,62	285855
	NAT-01	Cyprinidae	Karpfenfische	96,43	1184	0,41	285855
	NAT-01	Oncorhynchus		98,41	210	0,07	285855
	NAT-01	Carassius sp.	Goldfisch/Giebel	94,44	32	0,01	285855
		Musculium lacustre	Häubchenmuschel		121629	86,42	140737
므	NAT-01	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,31	11708	8,32	140737
Muscheln		Euglesa casertana	Gemeine Erbsenmuschel	96,94	6785	4,82	140737
Jus	NAT-01	Musculium sp.	Häubchenmuschel	96,96	303	0,22	140737
_	NAT-01	Pisidium obtusale	Aufgeblasene Erbsenmuschel	95,65	236	0,17	140737
	NAT-01	Sphaerium solidum	Dickschalige Kugelmuschel	93,94	76	0,05	140737
	NAT-02	Cyprinus carpio	Karpfen	99,33	146591		326420
		Hypophthalmichthys sp.	Karpfen	99,22	77729		326420
		Ctenopharyngodon idella	Graskarpfen	99,02	48674		326420
4)		Oncorhynchus mykiss	Regenbogenforelle	98,95	34388		326420
Fische		Salmo sp.	Lachs/Bachforelle	99,29	12270		326420
표		Hypophthalmichthys molitrix	Silberkarpfen	98,88	4102	•	326420
		Cyprinidae	Karpfenfische	96,3	1299		326420
		Hypophthalmichthys nobilis	Marmorkarpfen	97,74	1157	,	326420
		Oncorhynchus sp.		98,2	94		326420
		Carassius sp.	Goldfisch/Giebel	95,49	20		326420
- L		Musculium lacustre	Häubchenmuschel	99,1	99847		121414
scho		Sphaeriidae	Kugelmuscheln	98,67	18682		121414
Muschel		Euglesa casertana	Gemeine Erbsenmuschel	97,74	2605		121414
	NAT-02	Pisidium obtusale	Aufgeblasene Erbsenmuschel	96,6	280	0,23	121414
Krebse	NAT-03	Asellus aquaticus	Wasserassel	99,29	156	100	156
	NAT-03	Oncorhynchus mykiss	Regenbogenforelle		229169	47,35	483947
	NAT-03	Barbatula barbatula	Bachschmerle	99,28	148901	30,77	483947
	NAT-03	Salmo trutta	Bachforelle	99,41	57101	11,8	483947
	NAT-03	Salmo sp.	Lachs/Bachforelle	98,16	20350	4,21	483947
	NAT-03	Ctenopharyngodon idella	Graskarpfen	99,1	17109	3,54	483947
Fische	NAT-03	Oncorhynchus sp.		98,44	4509	0,93	483947
Fis		Salvelinus fontinalis	Bachsaibling	99,39	3130	0,65	483947
		Hypophthalmichthys molitrix	Silberkarpfen	99,21	2893		483947
	NAT-03	Salmonidae	Lachsartige	97,86	471	0,1	483947
		Salvelinus sp.	Saibling	98,35	240	0,05	483947
		Hypophthalmichthys nobilis	Marmorkarpfen	98,32	45	0,01	483947
	NAT-03	Hypophthalmichthys sp.	Karpfen	93,82	18	0	483947
Muscheln	NAT-03	Musculium lacustre	Häubchenmuschel	98,93	157213	100	157213
_			Seite 21 von 156				

Gesamte Artenliste Natterer See

Tabelle 4.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Natterer See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau))

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Cyprinus carpio	Karpfen		
	Oncorhynchus mykiss	Regenbogenforelle		
	Barbatula barbatula	Bachschmerle		
<u>e</u>	Ctenopharyngodon idella	Graskarpfen		
Fische	Salmo trutta	Bachforelle		
ш	Hypophthalmichthys molitrix	Silberkarpfen		
	Hypophthalmichthys nobilis	Marmorkarpfen		
	Salvelinus sp.	Saibling		
	Carassius sp.	Goldfisch/Giebel		
	Musculium lacustre	Häubchenmuschel		
eln	Pisidium subtruncatum	Schiefe Erbsenmuschel		
Muscheln	Euglesa casertana	Gemeine Erbsenmuschel		
Σ	Pisidium obtusale	Aufgeblasene Erbsenmuschel		
	Sphaerium solidum	Dickschalige Kugelmuschel		

Plausibilisierung

Im Natterer See wurde eDNA von Fischen, Krebsen und Muscheln identifiziert. Unter den Krebstieren fand sich eDNA der Wasserassel jedoch von keinem der Zehnfußkrebse (Decapoda).

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* zugeordnet werden konnten (in NAT-02), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*C. gibelio*). Unter den Cypriniden fand sich darüber hinaus neben eDNA des Karpfens *Cyprinus carpio* auch welche von Silber-, Marmor- und Graskarpfen.

Die Detektion für eDNA aus der Gattung *Salvelinus* und von *S. fontinalis* lässt sich als Nachweis für das Vorkommen von Saiblingen interpretieren. Leider kann man die beiden Arten *S. umbla* und *S. fontinalis* molekular auf dem gewählten Genabschnitt 12S nicht voneinander unterscheiden. Höchstwahrscheinlich handelt es sich hierbei um den Bachsaibling *S. fontinalis*, der häufig zusammen mit der Regenbogenforelle besetzt wird.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle Oncorhynchus mykiss identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche

aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei der Bachforelle und dem Saibling zu beobachten: neben den DNA-Sequenzen, welche eindeutig den Arten Salmo trutta und Salvelinus fontinalis zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattungen Salmo oder Salvelinus bzw. überhaupt nur mehr auf die Familie der Salmonidae schließen ließen. Dieses Muster finden wir auch beim Nachweis von eDNA des Silber- und Marmorkarpfen aus der Gattung der Hypophthalmichtys.

Auch bei den Muscheln gab es neben den DNA-Sequenzen, welche eindeutig den Arten *Pisidium subtruncatum* und *P. obtusale* zuzuordnen waren, auch welche, die nur mehr auf Vertreter aus deren Familie (Sphaeriidae) schließen ließen.

Neben den Zielorganismen wurde auch eDNA des Bergmolchs (*Ichthyosaura alpestris*) nachgewiesen, was darauf schließen lässt, dass diese Art im Natterer See ebenfalls vorkommt. Gelegentlich können die Primer auch auf eDNA verwandter Tiergruppen ausweichen (sowohl Fische als auch Lurche sind Wirbeltiere). Amphibien waren aber nicht als Zielgruppe in dieser Studie enthalten. Für eine repräsentative Erhebung der Amphibien empfehlen wir eine gezielte Nachsuche mittels eines für Amphibien spezifischen Metabarcoding-Ansatzes während der Laichzeit, zu der sich die meisten Individuen in den Gewässern aufhalten.

3.5 Brennersee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IL	Gries	1043	BRE-01, -02, -03	07.08.2023

Lage der Probenstellen

Abbildung 5: Brennersee

Artenliste je Probestelle

Tabelle 5.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BRE-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt)

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
he		Salmo trutta	Bachforelle		219260		353684
Fische		Phoxinus sp.	Elritze		132595		353684
_		Salmo sp.	Lachs/Bachforelle	98,53	1829		353684
		Phoxinus sp.	Elritze	99,36	65590		226331
	BRE-02	Salmo sp.	Lachs/Bachforelle	99,37	61622	27,23	226331
	BRE-02	Cottus gobio	Koppe	99,37	54847	24,23	226331
	BRE-02	Salmo trutta	Bachforelle	99,42	33310	14,72	226331
	BRE-02	Phoxinus phoxinus	Elritze	98,86	4174	1,84	226331
Fische	BRE-02	Coregonus sp.	Renke	99,07	3892	1,72	226331
Fis	BRE-02	Oncorhynchus mykiss	Regenbogenforelle	99,29	2687	1,19	226331
	BRE-02	Salmo salar	Atlantischer Lachs	96,14	121	0,05	226331
	BRE-02	Salmonidae	Lachsartige	98,82	35	0,02	226331
	BRE-02	Oncorhynchus sp.		98,79	24	0,01	226331
	BRE-02	Cottus rhenanus	Rheingroppe	100	18	0,01	226331
	BRE-02	Squalius cephalus	Aitel	92,09	11	0	226331
드	BRE-02	Euglesa personata		98,75	35663	47,5	75078
Muscheln	BRE-02	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,57	29646	39,49	75078
Σ	BRE-02	Euglesa casertana	Gemeine Erbsenmuschel	99,18	9769	13,01	75078
Krebse	BRE-03	Trichoniscus pusillus	Zwergassel	98,48	174	100	174
	BRE-03	Cottus gobio	Корре	99,36	114437	43,4	263698
	BRE-03	Salmo sp.	Lachs/Bachforelle	99,37	77004	29,2	263698
	BRE-03	Salmo trutta	Bachforelle	99,41	42704	16,19	263698
ق	BRE-03	Phoxinus sp.	Elritze	99,38	26663	10,11	263698
Fische	BRE-03	Coregonus sp.	Renke	99,3	2134	0,81	263698
ш.	BRE-03	Phoxinus phoxinus	Elritze	98,85	526	0,2	263698
	BRE-03	Salmo salar	Atlantischer Lachs	95,73	108	0,04	263698
	BRE-03	Oncorhynchus mykiss	Regenbogenforelle	99,53	80	0,03	263698
	BRE-03	Cottus rhenanus	Rheingroppe	100	42	0,02	263698
eln	BRE-03	Euglesa personata		98,82	55985	62,09	90169
Muscheln	BRE-03	Euglesa casertana	Gemeine Erbsenmuschel	99,08	27377	30,36	90169
Σ	BRE-03	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,04	6807	7,55	90169

Gesamte Artenliste Brennersee

Tabelle 5.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Brennersee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau))

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Salmo trutta	Bachforelle		
	Cottus gobio	Корре		
Fische	Coregonus sp.	Renke		
Fis	Phoxinus phoxinus	Elritze		
	Oncorhynchus mykiss	Regenbogenforelle		
	Squalius cephalus	Aitel		
eln	Euglesa personata	Quell-Erbsenmuschel		
Muscheln	Euglesa casertana	Gemeine Erbsenmuschel		
Σ	Pisidium subtruncatum	Schiefe Erbsenmuschel		

Plausbilisierung

Im Brennersee wurde eDNA von Fischen und Muscheln identifiziert. Unter den Krebstieren wurde nur eine Landasselart (*Trichoniscus pusillus*) detektiert, jedoch keine aquatischen Krebse.

Bei dem vermeintlichen Nachweis der Rheingroppe *Cottus rhenanus* (Tab. 5.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, welche eigentlich von der heimischen Koppe (*Cottus gobio*) stammen, für welche bislang noch keine Einträge für den Genabschnitt 12S in der Referenzdatenbank vertreten sind. Dies gilt auch für jene DNA-Sequenzen, welche nur der Gattung *Cottus* zugeordnet werden konnten.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. und *P. phoxinus* ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle *Oncorhynchus mykiss* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch

Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei der Bachforelle zu beobachten: neben den DNA-Sequenzen, welche eindeutig der Art *Salmo trutta* zuzuordnen war, fanden sich auch welche, die nur mehr auf die Gattungen *Salmo* bzw. überhaupt nur mehr auf Salmonidae schließen ließen. Für die vermeintlichen Nachweise von Lachs (*S. salar*) gibt es zwei mögliche Erklärungen: theoretisch könnten die DNA-Spuren von Lachs über einen Fremdeintrag in das Gewässer gelangt sein. Aller Wahrscheinlichkeit nach handelt es sich jedoch hierbei um eine fehlerhafte Zuordnung von beeinträchtigten DNA-Molekülen von *S. trutta*. Darauf ist insbesondere aufgrund der verhältnismäßig geringen Übereinstimmung von 96,1% (BRE-02) bzw. 95,7% (BRE-03) mit den DNA-Sequenzen von *S. salar* in der Referenzdatenbank zu schließen (Tab. 5.1).

3.6 Lanser See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IL	Lans	622	LAN-01, -02, -03	07.08.2023

Lage der Probenstellen

Abbildung 6: Lanser See

Plausibilisierung

Im Lanser See fanden sich zum Zeitpunkt dieser Erhebung in keiner der drei analysierten Filterproben DNA-Spuren von Fischen, Krebsen oder Muscheln und auch keine von invasiven Wasserpflanzen. Dies widerspricht der Tatsache, dass in diesem Gewässer regelmäßig Karpfen

beobachtet werden. Es wäre zu erwarten, dass sich die eDNA dieser Fische auch in den Filterproben wiederfindet. Das vorliegende Ergebnis für den Lanser See ist daher nicht plausibel.

Intensiver Badebetrieb, wie er im Lanser See stattfindet, führt erfahrungsgemäß dazu, dass sich die Tiere überwiegend in tieferen Schichten aufhalten. Es ist anzunehmen, dass der See aufgrund der hohen Sommertemperaturen eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand, sodass nur sehr geringe Mengen an DNA-Spuren in die Uferbereiche gelangten, an denen beprobt wurde. Darüber hinaus ist bekannt, dass in diesem See immer wieder Algenblüten von Cyanobakterien auftreten. Diese können auch eine raschere Verstopfung der Filter zur Folge haben, weshalb weniger Volumen filtriert werden kann, was wiederrum die Wahrscheinlichkeit für positive Nachweise reduziert. Der deutliche Nachweis von Pappeln und Weiden weist darauf hin, dass zahlreiche Flugfrüchte dieser Baumarten im Wasser getrieben sind, welche ebenfalls einen rascheren Schluss der Filterporen begünstigen würden.

Überdies ist die Wasseroberfläche in den Sommermonaten oft mit Schlieren versehen, was auf Rückstände von Sonnencremes und ähnlichem schließen lässt. Mitunter können sich diese Substanzen z.T. hemmend auf die PCR ausgewirkt haben. Dasselbe mag auch für einen hohen Gehalt an Tanninen gelten, welche für einen Moorsee charakteristisch sind.

3.7 Möserer See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IL	Telfs	970	MOE-01, -02, -03	29.08.2023

Lage der Probenstellen

Abbildung 7: Möserer See

Artenliste je Probestelle

Tabelle 7.1: Auflistung der nachgewiesenen Taxa an den Probenstellen MOE-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	de utscher Name	MID%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
Krebse	MOE-01	Astacus astacus	Edelkrebs	99,34	80865	100	80865
	MOE-01	Tinca tinca	Schleie	99,91	126350	50,52	250087
	MOE-01	Perca fluviatilis	Flussbarsch	99,4	56097	22,43	250087
		Cyprinus carpio	Karpfen	99,28	39609	15,84	250087
	MOE-01	Scardinius erythrophthalmus	Rotfeder	99,36	16479	6,59	250087
þe		Esox lucius	Hecht	99,41	10522		250087
Fische		Leuciscus sp.	Hasel/Nerfling	98,39			250087
_		Cyprinidae	Karpfenfische	96,02			250087
		Leuciscidae	Weißfische	96,15			250087
		Leuciscus leuciscus	Hasel	98,29			250087
		Rutilus rutilus	Rotauge	100			250087
_	MOE-01	Esox sp.	Hecht	100	35	0,01	250087
Muscheln		Anodonta cygnea	Große Teichmuschel		171756		194028
	MOE-01	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,42	22272	11,48	194028
Krebse	MOE-02	Astacus astacus	Edelkrebs	98,39	549457	100	549457
	MOE-02	Perca fluviatilis	Flussbarsch	99,38	174822	64,14	272555
	MOE-02	Scardinius erythrophthalmus	Rotfeder	99,37	54315	19,93	272555
		Cyprinus carpio	Karpfen	98,33	30824	11,31	272555
	MOE-02	Esox lucius	Hecht	99,4	10363	3,8	272555
Fische		Tinca tinca	Schleie	99,42			272555
ιĔ		Leuciscus sp.	Hasel/Nerfling	97,86			272555
		Rutilus rutilus	Rotauge	99,87			272555
		Esox sp.	Hecht	100	28		272555
		Leuciscus leuciscus	Hasel	98,29	17		272555
		Leuciscidae	Weißfische	95,43	16		272555
_		Anodonta cygnea	Große Teichmuschel		187887		225385
Muscheln		Pisidium nitidum	Glänzende Erbsenmuschel	99,01	26101		225385
Jusc		Pisidium subtruncatum	Schiefe Erbsenmuschel	98,46	7740		225385
2		Euglesa casertana	Gemeine Erbsenmuschel Erbsenmuschel	99,51 96,21	3652		225385
Ð		Pisidium sp. Astacus astacus	Edelkrebs	99,93	8044		225385 8052
Krebse		Sida crystallina	Edelkiebs	94,12	8	99,9	8052
	MOE-03	Scardinius erythrophthalmus	Rotfeder	99,35	113796	43,76	260051
	MOE-03	Perca fluviatilis	Flussbarsch	99,29	103481	39,79	260051
	MOE-03	Cyprinus carpio	Karpfen	99,39	21573	8,3	260051
	MOE-03	Esox lucius	Hecht	99,41	16684	6,42	260051
Fische		Tinca tinca	Schleie	99,75	4243	1,63	260051
Fis		Rutilus rutilus	Rotauge	100	79		260051
		Leuciscus leuciscus	Hasel	98,29	54		260051
		Esox sp.	Hecht	100	50		260051
		Leuciscidae	Weißfische	96,17	46		260051
ے		Leuciscus sp.	Hasel/Nerfling	97,46	45		260051
Muscheln		Anodonta cygnea	Große Teichmuschel	·	146150	,	162597
ž	MOE-03	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,05	16447	10,12	162597

Gesamte Artenliste Möserer See

Tabelle 7.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Möserer See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau))

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
Krebse	Astacus astacus	Edelkrebs	
	Perca fluviatilis	Flussbarsch	
	Scardinius erythrophthalmus	Rotfeder	
<u>e</u>	Tinca tinca	Schleie	
Fische	Cyprinus carpio	Karpfen	
ш.	Esox lucius	Hecht	
	Leuciscus sp.	Hasel/Nerfling	
	Rutilus rutilus	Rotauge	
<u></u>	Anodonta cygnea	Große Teichmuschel	
che	Pisidium subtruncatum	Schiefe Erbsenmuschel	
Muscheln	Pisidium nitidum	Glänzende Erbsenmuschel	
	Euglesa casertana	Gemeine Erbsenmuschel	

Plausibilisierung

Im Möserer See wurde eDNA von Fischen, Krebsen und Muscheln identifiziert. Unter den Krebstieren fand sich eDNA eines Ruderfußkrebses und des Edelkrebses. Da es sich bei den Ruderfußkrebsen um keine Zehnfußkrebse (Decapoda) handelt, wurden diese aus der Gesamtartenliste (Tab. 7.2) gestrichen.

Jene Nachweise, welche der Gattung *Leuciscus* und auch der Art *L. leuciscus* zugewiesen worden sind, lassen auf ein Vorkommen der Hasel (*L. leuciscus*) deuten. Allerdings ist diese Art nahe verwandt mit dem Nerfling (*L. idus*). Die beiden Spezies der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche

Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: neben den DNA-Sequenzen, welche eindeutig den Arten *Pisidium subtruncatum* und *P. nitidum* zuzuordnen waren, gab es auch welche, die nur auf die Gattung schließen ließen (Tab. 7.1).

Gemäß dem Bericht zu den fischereilichen Untersuchungen am Möserer See von 2011 wurde dort ebenfalls bereits der Edelkrebs nachgewiesen. Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden.

3.8 Obernberger See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IL	Obernberg	1919	OBE-01, -02, -03	07.08.2023

Lage der Probenstellen

Abbildung 8: Obernberger See

Artenliste je Probestelle

Tabelle 8.1: Auflistung der nachgewiesenen Taxa an den Probenstellen OBE-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	OBE-01	Phoxinus sp.	Elritze	99,83	135657	76,21	178000
	OBE-01	Salmo sp.	Lachs/Bachforelle	99,3	17596	9,89	178000
e	OBE-01	Phoxinus phoxinus	Elritze	98,7	15093	8,48	178000
Fische	OBE-01	Oncorhynchus mykiss	Regenbogenforelle	99,24	5077	2,85	178000
ш.	OBE-01	Salmo trutta	Bachforelle	99,43	3344	1,88	178000
	OBE-01	Salvelinus sp.	Saibling	99,34	1217	0,68	178000
	OBE-01	Oncorhynchus sp.		99,4	16	0,01	178000
	OBE-02	Phoxinus sp.	Elritze	99,79	237913	72,46	328339
	OBE-02	Salmo sp.	Lachs/Bachforelle	99,27	53230	16,21	328339
Fische	OBE-02	Phoxinus phoxinus	Elritze	98,66	27896	8,5	328339
Fis	OBE-02	Salmo trutta	Bachforelle	99,43	6966	2,12	328339
	OBE-02	Oncorhynchus mykiss	Regenbogenforelle	99,21	2316	0,71	328339
	OBE-02	Oncorhynchus sp.		99,4	18	0,01	328339

Gesamte Artenliste Obernberger See

Tabelle 8.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Obernberger See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
Fische	Phoxinus phoxinus	Elritze		
	Salmo trutta	Bachforelle		
	Oncorhynchus mykiss	Regenbogenforelle		
	Salvelinus sp.	Saibling		

Plausibilisierung

Im Obernberger See wurde in zwei von drei Proben eDNA von Fischen nachgewiesen aber nicht von Muschel- oder Krebsarten.

In den Proben finden sich zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle Oncorhynchus mykiss identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr der Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei der Bachforelle zu beobachten: Neben den DNA-Sequenzen, welche eindeutig der Art Salmo trutta zuzuordnen war, fanden sich auch welche, die nur mehr auf die Gattung Salmo schließen ließen.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

Die Detektion von eDNA aus der Gattung Salvelinus lässt sich als Nachweise für das Vorkommen von Saiblingen interpretieren (S. umbla).

3.9 Wildsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
IL	Seefeld	1654	WIL-01, -02, -03	29.08.2023

Lage der Probenstellen

Abbildung 9: Wildsee

Artenliste je Probestelle

Tabelle 9.1: Auflistung der nachgewiesenen Taxa an den Probenstellen WIL-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
Krebse	WIL-01	Trichoniscus pusillus	Zwergassel	97,73	27	100	27
	WIL-01	Esox lucius	Hecht	99,92	77019	58,58	131467
	WIL-01	Perca fluviatilis	Flussbarsch	99,27	51529	39,2	131467
Fische	WIL-01	Tinca tinca	Schleie	98,97	2216	1,69	131467
Fisc	WIL-01	Rutilus rutilus	Rotauge	99,96	424	0,32	131467
	WIL-01	Cyprinus carpio	Karpfen	99,31	244	0,19	131467
	WIL-01	Esox sp.	Hecht	96,09	35	0,03	131467
	WIL-01	Sphaerium corneum	Gemeine Kugelmuschel	98,55	74863	58,79	127350
	WIL-01	Euglesa milium	Viereckige Erbsenmuschel	99,51	27523	21,61	127350
	WIL-01	Euglesa globularis	Sumpf-Erbsenmuschel	99,09	13521	10,62	127350
eln	WIL-01	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,35	8849	6,95	127350
Muscheln	WIL-01	Euglesa casertana	Gemeine Erbsenmuschel	96,16	2438	1,91	127350
Σ	WIL-01	Sphaerium solidum	Dickschalige Kugelmuschel	97,42	93	0,07	127350
	WIL-01	Sphaeriidae	Kugelmuscheln	94,18	52	0,04	127350
	WIL-01	Pisidium sp.	Erbsenmuschel	95,28	6	0	127350
	WIL-01	Sphaerium sp.	Kugelmuschel	93,46	5	0	127350
	WIL-02	Perca fluviatilis	Flussbarsch	98,45	167576	78,7	212939
	WIL-02	Tinca tinca	Schleie	99,27	25781	12,11	212939
Fische	WIL-02	Esox lucius	Hecht	99,24	16912	7,94	212939
Fis	WIL-02	Cyprinus carpio	Karpfen	99,69	2541	1,19	212939
	WIL-02	Rutilus rutilus	Rotauge	99,85	84	0,04	212939
	WIL-02	Esox sp.	Hecht	99,85	45	0,02	212939
드	WIL-02	Sphaerium corneum	Gemeine Kugelmuschel	98,8	108829	79,46	136968
Muscheln	WIL-02	Euglesa casertana	Gemeine Erbsenmuschel	96,54	27623	20,17	136968
	WIL-02	Sphaerium solidum	Dickschalige Kugelmuschel	96,87	516	0,38	136968
	WIL-03	Perca fluviatilis	Flussbarsch	99,35	147685	44,15	334483
	WIL-03	Rutilus rutilus	Rotauge	100	121458	36,31	334483
	WIL-03	Esox lucius	Hecht	99,67	51684	15,45	334483
	WIL-03	Tinca tinca	Schleie	99,06	9870	2,95	334483
Fische	WIL-03	Salmo sp.	Lachs/Bachforelle	99,38	1764	0,53	334483
Fis	WIL-03	Oncorhynchus mykiss	Regenbogenforelle	98,76	1453	0,43	334483
	WIL-03	Cyprinus carpio	Karpfen	99,36	416	0,12	334483
	WIL-03	Esox sp.	Hecht	97,9	119	0,04	334483
	WIL-03	Oncorhynchus		97,59	12	0	334483
	WIL-03	Salmonidae	Lachsartige	98,25	10	0	334483
4	WIL-03	Sphaerium corneum	Gemeine Kugelmuschel	98,64	109329	80,45	135894
	WIL-03	Euglesa globularis	Sumpf-Erbsenmuschel	98,97	12469	9,18	135894
	WIL-03	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,1	11074	8,15	135894
	WIL-03	Pisidium obtusale	Aufgeblasene Erbsenmuschel	99,06	3022	2,22	135894

Gesamte Artenliste Wildsee

Tabelle 9.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Wildsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Perca fluviatilis	Flussbarsch	
	Esox lucius	Hecht	
e e	Rutilus rutilus	Rotauge	
Fische	Tinca tinca	Schleie	
ш	Cyprinus carpio	Karpfen	
	Salmo trutta	Bachforelle	
	Oncorhynchus mykiss	Regenbogenforelle	
	Sphaerium corneum	Gemeine Kugelmuschel	
_	Euglesa casertana	Gemeine Erbsenmuschel	
le lu	Euglesa milium	Viereckige Erbsenmuschel	
Muscheln	Euglesa globularis	Sumpf-Erbsenmuschel	
ž	Pisidium subtruncatum	Schiefe Erbsenmuschel	
	Pisidium obtusale	Aufgeblasene Erbsenmuschel	
	Sphaerium solidum	Dickschalige Kugelmuschel	

Plausibilisierung

Im Wildsee wurde eDNA von Fischen und Muscheln identifiziert. Bei den Krebsen wurde nur eine Landasselart (*Trichoniscus pusillus*) detektiert, jedoch keine aquatischen Krebstiere.

In den Proben finden sich zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle Oncorhynchus mykiss identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf eine Art nicht erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist beim Hecht (Esox lucius) zu beobachten: Neben den DNA-Sequenzen, welche eindeutig der Art E. lucius zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattung Esox schließen ließen.

Auch bei den Muscheln gab es neben den DNA-Sequenzen, welche eindeutig den Arten *Pisidium subtruncatum* und *P. obtusale* bzw. *Sphaerium solidum* zuzuordnen waren, auch welche, die nur auf die jeweilige Gattung schließen ließen (Tab. 9.1).

Neben den Zielorganismen wurde auch eDNA des Bergmolchs (*Ichthyosaura alpestris*) nachgewiesen, was darauf schließen lässt, dass diese Art im Wildsee ebenfalls vorkommt. Gelegentlich können die Primer auch auf verwandte Tiergruppen ausweichen (sowohl Fische als auch Lurche sind Wirbeltiere). Amphibien waren aber nicht als Zielgruppe in dieser Studie enthalten. Für eine repräsentative Erhebung der Amphibien empfehlen wir eine gezielte Nachsuche mittels eines für Amphibien spezifischen Metabarcoding-Ansatzes in der Laichzeit, zu der sich die meisten Individuen in den Gewässern aufhalten.

3.10 Baggersee Roßau

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme	
I	Innsbruck	763	BGR-01, -02, -03	07.08.2023	

Abbildung 10: Baggersee Roßau

Tabelle 10.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BGR-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	BGR-02	Astacus leptodactylus	Galizischer Sumpfkrebs	99,23	14396	100	14396
Fische	BGR-02	Lepomis gibbosus	Sonnenbarsch	98,51	263347	61,36	429167
Fise	BGR-02	Alburnus alburnus	Laube	99,92	165820	38,64	429167

Gesamte Artenliste Baggersee Roßau

Tabelle 10.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Baggersee Roßau Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
Krebse	Astacus leptodactylus	Galizischer Sumpfkrebs	
Fische	Lepomis gibbosus	Sonnenbarsch	
Fise	Alburnus alburnus	Laube	

Plausibilisierung

Im Baggersee Roßau wurde nur in einer Probe eDNA nachgewiesen (BGR-02). Diese stammte von Fischen und Krebsen. Jene von Krebsen wurde als Galizischer Sumpfkrebs *Astacus leptodactylus* identifiziert.

In den Proben finden sich eDNA-Nachweise für die Laube und den nicht heimischen Sonnenbarsch. Diese invasive Spezies stellt eine Konkurrenz um Nahrung und Lebensraum für heimische Arten in den Gewässern dar und stört damit das Gleichgewicht des Ökosystems.

Gemäß dem Bericht zu den fischereilichen Untersuchungen am Baggersee Rossau wurden dort 2023 acht Fischarten und eine Krebsart festgestellt (Mark 2023). Das waren neben der Laube, dem Sonnenbarsch und dem Galizischen Sumpfkrebs noch weitere: der Hecht, der Zander, der Aitel, die Schleie, das Rotauge und der Flussbarsch. Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle in der Wassersäule von niedersteten Spezies nicht erfasst und damit auch nicht detektiert werden. Dies kann man beim Massenauftreten einzelner Fischarten wie im gegenständlichen Fall der Laube und dem Sonnenbarsch beobachten.

Überdies handelt es sich beim Baggersee Roßau um ein Gewässer mit Badebetrieb. Intensiver Badebetrieb führt erfahrungsgemäß dazu, dass sich Fische vorwiegend in tieferen Schichten aufhalten. Es ist anzunehmen, dass der See aufgrund der hohen Sommertemperaturen eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand. Damit gelangt nur wenig eDNA aus tieferen Schichten nach oben und in die Uferbereiche, wo die Proben genommen wurden. Darüber hinaus ist bekannt, dass der Baggersee immer wieder mit Algenblüten zu kämpfen hat. Diese können auch eine raschere Verstopfung der Filter zur Folge haben, weshalb weniger Volumen filtriert werden kann, was wiederrum die Wahrscheinlichkeit für positive Nachweise von eDNA reduziert. Die Wasseroberfläche des Baggersees ist in den Sommermonaten oft mit Schlieren versehen, was auf Rückstände von Sonnencremes und ähnlichen Kosmetikprodukten schließen lässt. Mitunter können sich diese Substanzen z.T. hemmend auf die PCR ausgewirkt haben. Für den Baggersee Roßau empfiehlt sich daher eine Wiederholung der Probennahme zu einem anderen Zeitpunkt.

3.11 Badesee Going

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
КВ	Going	296	BSG-01, -02, -03	10.08.2023

Abbildung 11: Badesee Going

Tabelle 11.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSG-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt)

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Fische	BSG-01	Ctenopharyngodon idella	Graskarpfen	98,54	171872	100	171872
Fische	BSG-02	Ctenopharyngodon idella	Graskarpfen	99,44	1241	100	1241

Plausibilisierung

Im Badesee Going wurde eDNA von nur einer Fischart in zwei der drei Filterproben detektiert (Tab. 11.1). Die detektierten Graskarpfen dürften durch Besatzmaßnahmen in den See gelangt sein, um das Aufkommen von Wasserpflanzen und Algen zu reduzieren.

Aufgrund des Nachweises von nur dieser einen Art wurde auf die Darstellung in einer weiteren Tabelle (gesamte Artenliste) verzichtet.

3.12 Badeteich Brixen

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
КВ	Brixen	409	BTB-01, -02, -03	10.08.2023

Abbildung 12: Badeteich Brixen

Tabelle 12.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BTB-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	BTB-01	Cyprinus carpio	Karpfen	99,94	155174	93,29	166335
Fische	BTB-01	Oncorhynchus mykiss	Regenbogenforelle	99,32	5754	3,46	166335
Fis	BTB-01	Ctenopharyngodon idella	Graskarpfen	99,4	5120	3,08	166335
	BTB-01	Cyprinidae	Karpfenfische	96,93	287	0,17	166335
Krebse	BTB-02	Polyphemus pediculus	Raub-Wasserfloh	98,73	18626	100	18626
	BTB-02	Cyprinus carpio	Karpfen	99,93	154043	70,79	217616
ā	BTB-02	Ctenopharyngodon idella	Graskarpfen	99,25	34303	15,76	217616
Fische	BTB-02	Oncorhynchus mykiss	Regenbogenforelle	99,36	28331	13,02	217616
ш	BTB-02	Cyprinidae	Karpfenfische	96,59	833	0,38	217616
	BTB-02	Oncorhynchus sp.		96,67	106	0,05	217616
	BTB-03	Cyprinus carpio	Karpfen	99,39	110438	81,63	135286
Fische	BTB-03	Ctenopharyngodon idella	Graskarpfen	98,97	22624	16,72	135286
Fis	BTB-03	Cyprinidae	Karpfenfische	96,5	1270	0,94	135286
	BTB-03	Oncorhynchus mykiss	Regenbogenforelle	99,9	954	0,71	135286

Gesamte Artenliste Badeteich Brixen

Tabelle 12.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badeteich Brixen Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
ē	Cyprinus carpio	Karpfen
Fische	Ctenopharyngodon idella	Graskarpfen
ĬĪ.	Oncorhynchus mykiss	Regenbogenforelle

Plausibilisierung

Im Badeteich Brixen wurde eDNA von Fischen gefunden. In BTB-02 wurde darüber hinaus eDNA von Krebsen detektiert (Tab. 12.1). Da es sich beim Raub-Wasserfloh um keinen Zehnfußkrebs (Decapoda) handelt, wurde dieser aus der Gesamtartenliste gestrichen (Tab. 12.2).

In den Proben finden sich zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle Oncorhynchus mykiss identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf eine Art nicht erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Karpfenartigen zu beobachten: neben den DNA-Sequenzen, welche eindeutig den Arten Cyprinus carpio und Ctenopharyngodon idella zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Familie der Cypriniden schließen ließen.

3.13 Badesee Kirchberg

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
КВ	Kirchberg	486	BSK-01, -02, -03	10.08.2023

Abbildung 13: Badesee Kirchberg

Tabelle 13.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSK-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt)

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Fische	BSK-01	Salmo trutta	Bachforelle	99,35	244715	65,48	373730
Fis	BSK-01	Salmo sp.	Lachs/Bachforelle	99,35	129015	34,52	373730
ē	BSK-02	Salmo labrax	Schwarzmeerforelle	100	259402	66,1	392450
Fische	BSK-02	Salmo trutta	Bachforelle	99,37	99459	25,34	392450
ш	BSK-02	Salmo sp.	Lachs/Bachforelle	98,88	33589	8,56	392450
Fische	BSK-03	Salmo trutta	Bachforelle	99,4	89114	75,8	117563
Fis	BSK-03	Salmo sp.	Lachs/Bachforelle	99,42	28449	24,2	117563

Gesamte Artenliste Badeteich Brixen

Tabelle 13.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badesee Kirchberg Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
Fische	Salmo trutta	Bachforelle

Plausibilisierung

Im Badesee Kirchberg wurde in allen drei Proben eDNA von der Bachforelle detektiert.

In den Proben finden sich zahlreiche Sequenzen, welche eindeutig als Bachforelle *Salmo trutta* identifiziert wurden. Bei dem vermeintlichen Nachweis der Schwarzmeerforelle *S. labrax* (Tab. 13.1) dürfte es sich um DNA-Sequenzen handeln, welche eigentlich ebenfalls *S. trutta* zuzuordnen sind. Bei der Schwarzmeerforelle handelt es sich um eine nahe verwandte Art der Bachforelle, jedoch kommen diese Populationen nicht in Mitteleuropa sondern im Einzugsgebiet des nördlichen Schwarzen Meeres und in Flüssen in der Türkei vor. Da der Grad an Übereinstimmung mit den DNA-Sequenzen von *S. labrax* aus den Referenzdatenbanken bei 100% liegt (Tab. 13.1; %ID) ist davon auszugehen, dass es sich hierbei um eine Fehlbestimmung in der Referenzdatenbank handelt. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen findet man immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben, sondern in diesem Fall nur mehr der Gattung *Salmo* zugeordnet werden konnten.

3.14 Gieringer Weiher

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
КВ	Reith	1.393	GIE-01, -02, -03	10.08.2023

Abbildung 14: Gieringer Weiher

Tabelle 14.1: Auflistung der nachgewiesenen Taxa an den Probenstellen GIE-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	GIE-01	Asellus aquaticus	Wasserassel	100	239	100	239
	GIE-01	Scardinius erythrophthalmus	Rotfeder	99,09	166529	62,73	265453
	GIE-01	Perca fluviatilis	Flussbarsch	99,89	73651	27,75	265453
	GIE-01	Esox lucius	Hecht	99,36	19459	7,33	265453
e e	GIE-01	Cyprinus carpio	Karpfen	99,72	4030	1,52	265453
Fische	GIE-01	Leuciscus sp.	Hasel/Nerfling	98,06	718	0,27	265453
L.	GIE-01	Alburnus alburnus	Laube	98,88	713	0,27	265453
	GIE-01	Leuciscidae	Weißfische	97,22	217	0,08	265453
	GIE-01	Leuciscus leuciscus	Hasel	97,73	116	0,04	265453
	GIE-01	Esox sp.	Hecht	100	20	0,01	265453
	GIE-01	Anodonta anatina	Gemeine Teichmuschel	99,98	134024	85,75	156299
_		Anodonta sp.	Teichmuschel	99,97			156299
Muscheln		Musculium lacustre	Häubchenmuschel	99,42	7306		156299
nscl		Anodonta cygnea	Große Teichmuschel	99,27		•	156299
Σ		Euglesa casertana	Gemeine Erbsenmuschel	,		•	156299
		Pisidium subtruncatum	Schiefe Erbsenmuschel	99,49	929	•	156299
	GIE-01	Musculium sp.	Häubchenmuschel	96,68	37	0,02	156299
Muscheln	GIE-03	Musculium lacustre	Häubchenmuschel	98,94	55	100	55

Gesamte Artenliste Gieringer Weiher

Tabelle 14.2: Auflistung aller nachgewiesenen, plausiblen Arten im Gieringer Weiher Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Scardinius erythrophthalmus	Rotfeder
	Perca fluviatilis	Flussbarsch
Fische	Esox lucius	Hecht
Fis	Cyprinus carpio	Karpfen
	Leuciscus sp.	Hasel/Nerfling
	Alburnus alburnus	Laube
	Anodonta anatina	Gemeine Teichmuschel
Muscheln	Musculium lacustre	Häubchenmuschel
ısch	Anodonta cygnea	Große Teichmuschel
ž	Euglesa casertana	Gemeine Erbsenmuschel
	Pisidium subtruncatum	Schiefe Erbsenmuschel

Plausibilisierung

Im Gieringer Weiher wurde eDNA von Fischen, Krebsen und Muscheln identifiziert. Da es sich bei der Wasserassel um keinen Vertreter der Zehnfußkrebse (Decapoda) handelt, wurde diese aus der Gesamtartenliste gestrichen (Tab. 14.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr der Gattung *Esox* zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: Neben den DNA-Sequenzen, welche eindeutig den Arten *Anodonta anatina* bzw. *Musculium lacustre* zuzuordnen waren, gab es auch welche, die nur auf die jeweilige Gattung schließen ließen (Tab. 14.1).

Bei der Interpretation des Nachweises von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 98,06% für die Gattung und 97,2% für die Familie (Tab. 14.1) gibt es folgende mögliche Rückschlüsse: in Anbetracht der Analyseergebnisse deuten diese Nachweise auf ein Vorkommen der Hasel (*L. leuciscus*) hin. Diese Fischart ist jedoch sehr nahe verwandt mit dem Nerfling (*L. idus*), sodass sich die beiden Arten der Gattung

Leuciscus nur durch ein einziges Basenpaar auf dem Genabschnitt 12S unterscheiden. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

3.15 Lauchsee Fieberbrunn

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KB	Fieberbrunn	811	LAU-01, -02, -03	30.08.2023

Lage der Probenstellen

Abbildung 15: Lauchsee Fieberbrunn

Artenliste je Probestelle

Tabelle 15.1: Auflistung der nachgewiesenen Taxa an den Probenstellen LAU-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	LAU-01	Perca fluviatilis	Flussbarsch	99,95	71312	29,78	239432
	LAU-01	Cyprinus carpio	Karpfen	98,5	54984	22,96	239432
	LAU-01	Hypophthalmichthys	Karpfen	99,36	29487	12,32	239432
	LAU-01	Gymnocephalus cernua	Kaulbarsch	98,82	22852	9,54	239432
	LAU-01	Rutilus rutilus	Rotauge	99,33	21514	8,99	239432
	LAU-01	Abramis brama	Brachse	99,37	19588	8,18	239432
	LAU-01	Sander lucioperca	Zander	99,39	6839	2,86	239432
	LAU-01	Esox sp.	Hecht	100	4081	1,7	239432
Fische	LAU-01	Scardinius erythrophthalmus	Rotfeder	99,18	3889	1,62	239432
Fis	LAU-01	Hypophthalmichthys molitrix	Silberkarpfen	99,16	2085	0,87	239432
	LAU-01	Ctenopharyngodon idella	Graskarpfen	98,95	1266	0,53	239432
	LAU-01	Esox lucius	Hecht	99,39	930	0,39	239432
	LAU-01	Tinca tinca	Schleie	99,95	231	0,1	239432
	LAU-01	Hypophthalmichthys nobilis	Marmorkarpfen	98,97	143	0,06	239432
	LAU-01	Leuciscus sp.	Hasel/Nerfling	98,16	113	0,05	239432
		Cyprinidae	Karpfenfische	96,77	61	-	239432
	LAU-01	Leuciscidae	Weißfische	97,34	39	0,02	239432
		Chondrostoma nasus	Nase	97,17	18		239432
드		Anodonta anatina	Gemeine Teichmuschel		139895		144668
sche		Pisidium subtruncatum	Schiefe Erbsenmuschel	98,71	3566		144668
Muscheln		Euglesa personata		99,01		-	144668
	LAU-01	Anodonta	Teichmuschel	99,12	146	0,1	144668
Muschelr	LAU-02	Anodonta anatina	Gemeine Teichmuschel	99,59	160555	100	160555
	LAU-03	Cyprinus carpio	Karpfen	99,42	18225	49,54	36791
	LAU-03	Perca fluviatilis	Flussbarsch	99,4	11999	32,61	36791
	LAU-03	Gymnocephalus cernua	Kaulbarsch	98,97	2278	6,19	36791
e	LAU-03	Hypophthalmichthys	Karpfen	99,37	1927	5,24	36791
Fische	LAU-03	Abramis brama	Brachse	99,36	1126	3,06	36791
ш.	LAU-03	Rutilus rutilus	Rotauge	99,99	597	1,62	36791
	LAU-03	Ctenopharyngodon idella	Graskarpfen	99,1	572	1,55	36791
	LAU-03	Esox lucius	Hecht	100	51	0,14	36791
	LAU-03	Cyprinidae	Karpfenfische	96,8	16	0,04	36791
Muscheln	LAU-03	Anodonta anatina	Gemeine Teichmuschel	99,56	153041	98,76	154967
Mus	LAU-03	Anodonta	Teichmuschel	99,38	1926	1,24	154967

Gesamte Artenliste Lauchsee Fieberbrunn

Tabelle 15.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Lauchsee Fieberbrunn Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Perca fluviatilis	Flussbarsch	
	Cyprinus carpio	Karpfen	
	Gymnocephalus cernua	Kaulbarsch	
	Rutilus rutilus	Rotauge	
	Abramis brama	Brachse	
	Sander lucioperca	Zander	
Fische	Esox lucius	Hecht	
Fis	Scardinius erythrophthalmus	Rotfeder	
	Hypophthalmichthys molitrix	Silberkarpfen	
	Ctenopharyngodon idella	Graskarpfen	
	Tinca tinca	Schleie	
	Hypophthalmichthys nobilis	Marmorkarpfen	
	Leuciscus sp.	Hasel/Nerfling	
	Chondrostoma nasus	Nase	
eln	Anodonta anatina	Gemeine Teichmuschel	
Muscheln	Pisidium subtruncatum	Schiefe Erbsenmuschel	
Ē	Euglesa personata	Quell-Erbsenmuschel	

Plausibilisierung

Im Lauchsee wurde eDNA von Fischen und Muscheln identifiziert, wobei in Probe LAU-02 nur eDNA der Gemeinen Teichmuschel nachgewiesen wurde.

Bei den DNA-Sequenzen, welche der Gattung *Sander* zugeordnet werden konnten (in LAU-01), ist davon auszugehen, dass es sich um einen Nachweis für den Zander (*S. lucioperca*) handelt. In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch

gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Karpfenartigen zu beobachten: neben den DNA-Sequenzen, welche eindeutig den Arten *Cyprinus carpio* und *Hypophthalmichthys molitrix* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattung *Hypophthalmichthys* oder nur die Familie der Cypriniden schließen ließen. Ebenso bei den Muscheln gab es neben den DNA-Sequenzen, welche eindeutig den Arten *Anodonta anatina* zuzuordnen waren, auch welche, die nur mehr der Gattung zuzuordnen waren (Tab. 15.1).

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 98,2% für die Gattung und 97,3% für die Familie (Tab. 15.1) deuten wahrscheinlich auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Die Nase ist ein typischer Flussfisch und kann auf natürlichen Weg kaum in dieses Gewässer gelangen. Dasselbe gilt für den Kaulbarsch, welcher typischerweise eine Art von großen Flüssen ist. Das Vorkommen dieser Arten im Lauchsee durch Besatz kann nicht ausgeschlossen werden. Allerdings ist aufgrund der geringen Übereinstimmung mit der DNA-Sequenz in der Referenz-Datenbank von 97,7% der Nachweis nicht als gesichert zu werten (Tab. 15.1). Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch für *Chondrostoma nasus* oder *Gymnocephalus cernua* ist, empfehlen.

3.16 Piller See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
КВ	St. Ulrich	4558	PIL-01, -02, -03, -04, -05	30.08.2023

Lage der Probenstellen

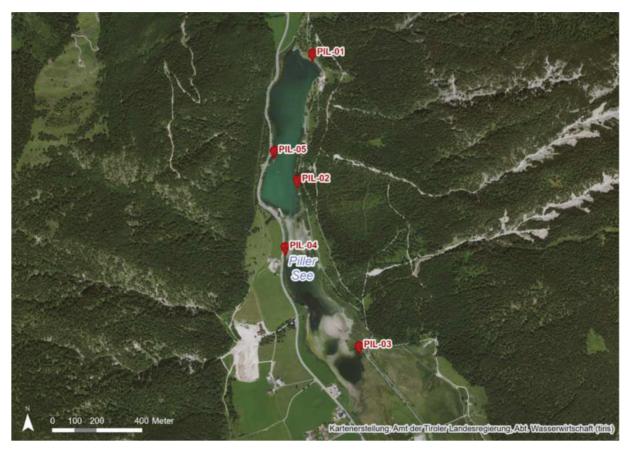


Abbildung 16: Piller See

Artenliste je Probestelle

Tabelle 16.1: Auflistung der nachgewiesenen Taxa an den Probenstellen PIL-01 – 05 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	PIL-01	Phoxinus csikii		98,52	129043	35,2	366564
	PIL-01	Salmo sp.	Lachs/Bachforelle	99,29	63278	17,26	366564
	PIL-01	Cottus sp.	Корре	99,37	59582	16,25	366564
	PIL-01	Barbatula barbatula	Bachschmerle	98,66	51512	14,05	366564
	PIL-01	Squalius cephalus	Aitel	99,03	25714	7,01	366564
e	PIL-01	Phoxinus sp.	Elritze	98,34	18673		366564
Fische		Salmo trutta	Bachforelle	99,38	16608		366564
		Oncorhynchus mykiss	Regenbogenforelle	99,33	1795	0,49	366564
	PIL-01	Oncorhynchus sp.		99	236	0,06	366564
	PIL-01	Salmo salar	Atlantischer Lachs	91,76			366564
		Cottus rhenanus	Rheingroppe	100	30		366564
	PIL-01	Salmonidae	Lachsartige	98,24	23	0,01	366564
	PIL-01	Squalius sp.	Weißfisch	97,14	20	0,01	366564
Muscheln	PIL-01	Pisidium nitidum	Glänzende Erbsenmuschel	98,82	95543	76,72	124534
ž	PIL-01	Euglesa casertana	Gemeine Erbsenmuschel	97,85	28991	23,28	124534
		Phoxinus sp.	Elritze	,	143778		293965
	PIL-02	Barbatula barbatula	Bachschmerle	98,62	56791		293965
		Salmo trutta	Bachforelle	99,37			293965
		Salmo sp.	Lachs/Bachforelle	99,12	27170		293965
		Squalius cephalus	Aitel	98,76	17063		293965
he		Cottus sp.	Корре	99,36			293965
Fische		Oncorhynchus mykiss	Regenbogenforelle	98,91	1518		293965
-		Salvelinus namaycush	Amerikanischer Seesaibling	99,37			293965
		Scardinius erythrophthalmus	Rotfeder	98,93			293965
		Squalius sp.	Weißfisch	97,14	32		293965
		Salvelinus sp.	Saibling	99,41	32		293965
		Phoxinus phoxinus	Elritze	94,19	26		293965
		Oncorhynchus sp.		99,39	14		293965
드		Pisidium nitidum	Glänzende Erbsenmuschel	99,15			103227
Muscheln		Sphaeriidae	Kugelmuscheln	98,72			103227
Σ		Pisidium subtruncatum	Schiefe Erbsenmuschel	98,14	11169		103227
4)	PIL-02	Euglesa casertana	Gemeine Erbsenmuschel	98,88	7774	7,53	103227
Krebse	PIL-04	Trichoniscus pusillus	Zwergassel	98,48	21469	100	21469
ā	PIL-04	Phoxinus csikii		99,48	144165	63,31	227715
Fische	PIL-04	Squalius cephalus	Aitel	99,36	66045	29	227715
证		Phoxinus sp.	Elritze	98,2	17505	7,69	227715
	PIL-05	Salmo sp.	Lachs/Bachforelle	99,35	143540	49	292950
	PIL-05	Phoxinus sp.	Elritze	99,28	88321	30,15	292950
Fische	PIL-05	Barbatula barbatula	Bachschmerle	98,85	33845	11,55	292950
Fis	PIL-05	Squalius cephalus	Aitel	99,25	12370	4,22	292950
	PIL-05	Salmo trutta	Bachforelle	99,46	8759	2,99	292950
	PIL-05	Cyprinus carpio	Karpfen	99,34	6115	2,09	292950
트		Pisidium nitidum	Glänzende Erbsenmuschel	99,05	44384	42,84	103610
Muscheln	PIL-05	Sphaeriidae	Kugelmuscheln	98,63	37850	36,53	103610
Mü		Pisidium subtruncatum	Schiefe Erbsenmuschel	98,96	21376		103610
$\overline{}$							

Gesamte Artenliste Piller See

Tabelle 16.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Piller See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Phoxinus phoxinus	Elritze		
	Barbatula barbatula	Bachschmerle		
	Squalius cephalus	Aitel		
<u>e</u>	Salmo trutta	Bachforelle		
-ische	Cyprinus carpio	Karpfen		
ш	Oncorhynchus mykiss	Regenbogenforelle		
	Scardinius erythrophthalmus	Rotfeder		
	Salvelinus sp.	Saibling		
	Cottus gobio	Корре		
elu	Pisidium nitidum	Glänzende Erbsenmuschel		
Muscheln	Euglesa casertana	Gemeine Erbsenmuschel		
Ž	Pisidium subtruncatum	Schiefe Erbsenmuschel		

Plausibilisierung

Im Pillersee wurde eDNA von Fischen, Krebsen und Muscheln identifiziert. Da es sich bei der Zwergassel um keinen Zehnfußkrebs (Decapoda) sondern um eine landlebende Assel handelt, wurde diese aus der Gesamtartenliste gestrichen (Tab. 16.2).

Bei dem vermeintlichen Nachweis der Rheingroppe *Cottus rhenanus* (Tab. 16.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, welche von der heimischen Koppe (*Cottus gobio*) stammen, für welche bislang jedoch noch keine Einträge für den 12S-Genabschnitt in der Referenzdatenbank vertreten sind. Dies gilt auch für jene Sequenzen, welche nur der Gattung *Cottus* zugeordnet werden konnten. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben. Das Phänomen ist auch bei anderen Arten zu sehen: so sind in den Proben zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle *Oncorhynchus mykiss* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Gleiches gilt für den Aitel und die Bachforelle: Neben den DNA-Sequenzen, welche eindeutig den Arten *Squalius cephalus* und *Salmo trutta*

zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattungen *Squalius* bzw. *Salmo* schließen ließen. Auch bei den Muscheln gab es neben den DNA-Sequenzen, welche eindeutig den Arten *Pisidium nitidum* und *Pisidium subtruncatum* zuzuordnen waren, auch welche, die nur auf die Familie der Kugelmuschen (Sphaeridae) schließen ließen (Tab. 16.1).

Für den vermeintlichen Nachweis von Lachs (*S. salar*) in Probe PIL-01 gibt es zwei mögliche Erklärungen. Theoretisch könnten die DNA-Spuren von Lachs über einen Fremdeintrag in das Gewässer gelangt sein. Aller Wahrscheinlichkeit nach handelt es sich jedoch hierbei um eine fehlerhafte Zuordnung von beeinträchtigten DNA-Molekülen von *S. trutta*. Darauf ist insbesondere aufgrund der verhältnismäßig geringen Übereinstimmung von 91,8% mit den DNA-Sequenzen von *S. salar* in der Referenzdatenbank zu schließen (Tab. 16.1).

Die Detektion für eDNA aus der Gattung Salvelinus lässt sich als Nachweis für das Vorkommen von Saiblingen interpretieren (S. umbla und/oder S. fontinalis). Ein Vorkommen des Amerikanischen Seesaiblings S. namaycush durch Besatz ist dabei nicht auszuschließen. Da aber auch ein Fehler/eine Fehlbestimmung im Eintrag der Referenzdatenbank nicht ausgeschlossen werden kann, wird diese Detektion nur als Nachweis einer Saiblingsart und somit als Salvelinus sp. gewertet.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex rund um *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als gültige Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus noch mindestens* drei weitere Arten dieser Gattung in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

3.17 Schwarzsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KB	Kitzbühel	2466	SCW-01, -02, -03	10.08.2023

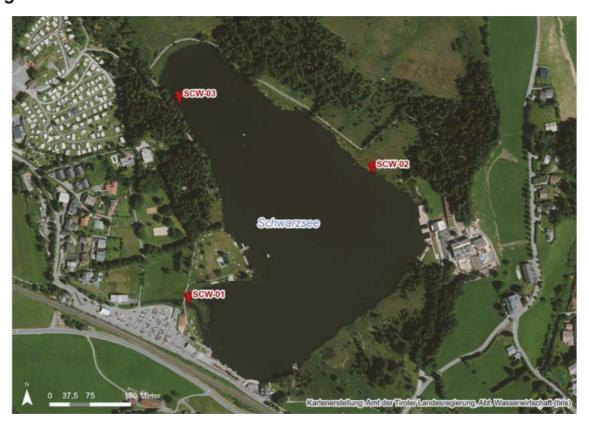


Abbildung 17: Schwarzsee

Tabelle 17.1: Auflistung der nachgewiesenen Taxa an den Probenstellen SCW-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	SCW-02	Blicca bjoerkna	Güster	99,49	109422	38,3	285721
	SCW-02	Abramis brama	Brachse	99,39	72006	25,2	285721
	SCW-02	Perca fluviatilis	Flussbarsch	99,46	40988	14,35	285721
	SCW-02	Hypophthalmichthys nobilis	Marmorkarpfen	98,84	35258	12,34	285721
	SCW-02	Cyprinus carpio	Karpfen	99,41	14947	5,23	285721
	SCW-02	Sander lucioperca	Zander	99,4	6674	2,34	285721
Fische	SCW-02	Tinca tinca	Schleie	99,95	5449	1,91	285721
Fis	SCW-02	Scardinius erythrophthalmus	Rotfeder	99,22	730	0,26	285721
	SCW-02	Rutilus rutilus	Rotauge	100	65	0,02	285721
	SCW-02	Leuciscus sp.	Hasel/Nerfling	98,32	53	0,02	285721
	SCW-02	Carassius sp.	Goldfisch/Giebel	96,34	49	0,02	285721
	SCW-02	Alburnus alburnus	Laube	99,93	43	0,02	285721
	SCW-02	Leuciscus leuciscus	Hasel	98,29	21	0,01	285721
	SCW-02	Esox lucius	Hecht	100	16	0,01	285721
Muscheln	SCW-02	Anodonta cygnea	Große Teichmuschel	99,59	87609	100	87609
Muscheln Muscheln	SCW-03	Anodonta cygnea	Große Teichmuschel	100	19	100	19

Gesamte Artenliste Schwarzsee

Tabelle 17.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Schwarzsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Blicca bjoerkna	Güster	
	Abramis brama	Brachse	
	Perca fluviatilis	Flussbarsch	
	Hypophthalmichthys nobilis	Marmorkarpfen	
	Cyprinus carpio	Karpfen	
9	Sander lucioperca	Zander	
Fische	Tinca tinca	Schleie	
"	Scardinius erythrophthalmus	Rotfeder	
	Rutilus rutilus	Rotauge	
	Leuciscus sp.	Hasel/Nerfling	
	Carassius sp.	Goldfisch/Giebel	
	Alburnus alburnus	Laube	
	Esox lucius	Hecht	
Muscheln	Anodonta cygnea	Große Teichmuschel	

Plausibilisierung

Im Schwarzsee wurde eDNA von Fischen und Muscheln identifiziert. In Probe SCW-01 fanden sich keine Spuren von eDNA der ausgewählten Organismengruppen.

Bei den DNA-Sequenzen, welche der Gattung *Sander* zugeordnet werden konnten (in SCW-02), ist davon auszugehen, dass es sich um einen Nachweis für den Zander (*S. lucioperca*) handelt. Die Nachweise von eDNA von *Leuciscus* sp. sowie *L. leuciscus* mit einer verhältnismäßig geringen Übereinstimmung von 98,2% deuten auf ein Vorkommen der Hasel oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* zugeordnet werden konnten (in SCW-02), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*).

3.18 Berglsteiner See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Breitenbach	621	BER-01, -02, -03	16.08.2023

Abbildung 18: Berglsteiner See

Tabelle 18.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BER-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	BER-01	Perca fluviatilis	Flussbarsch	99,38	31783	34,83	91248
Fische	BER-01	Scardinius erythrophthalmus	Rotfeder	99,29	30588	33,52	91248
Fis	BER-01	Cyprinus carpio	Karpfen	99,27	28254	30,96	91248
	BER-01	Rutilus rutilus	Rotauge	99,43	623	0,68	91248
Krebse	BER-02	Polyphemus pediculus	Raub-Wasserfloh	98,73	1770	100	1770
	BER-02	Rutilus rutilus	Rotauge	100	128250	43,91	292090
	BER-02	Perca fluviatilis	Flussbarsch	99,35	83854	28,71	292090
	BER-02	Cyprinus carpio	Karpfen	99,29	42674	14,61	292090
	BER-02	Esox lucius	Hecht	99,38	32156	11,01	292090
ē	BER-02	Hypophthalmichthys sp.	Karpfen	99,26	3213	1,1	292090
Fische	BER-02	Tinca tinca	Schleie	99,59	1069	0,37	292090
"	BER-02	Leuciscus sp.	Hasel/Nerfling	98,25	602	0,21	292090
	BER-02	Esox sp.	Hecht	99,68	134	0,05	292090
	BER-02	Leuciscidae	Weißfische	96,67	72	0,02	292090
	BER-02	Hypophthalmichthys nobilis	Marmorkarpfen	96,9	48	0,02	292090
	BER-02	Cyprinidae	Karpfenfische	96,02	18	0,01	292090
	BER-03	Hypophthalmichthys sp.	Karpfen	99,36	35271	27,7	127351
	BER-03	Cyprinus carpio	Karpfen	99,37	34583	27,16	127351
	BER-03	Esox lucius	Hecht	99,98	24939	19,58	127351
		Perca fluviatilis	Flussbarsch	99,94	18243	14,32	127351
e.	BER-03	Scardinius erythrophthalmus	Rotfeder	99,36	13315	10,46	127351
Fische	BER-03	Leuciscus sp.	Hasel/Nerfling	98,61	493	0,39	127351
_	BER-03	Rutilus rutilus	Rotauge	99,43	380	0,3	127351
		Hypophthalmichthys nobilis	Marmorkarpfen	99,89	78	0,06	127351
	BER-03	Leuciscidae	Weißfische	96,83	22	0,02	127351
		Leuciscus leuciscus	Hasel	98,29	17	0,01	127351
	BER-03	Esox sp.	Hecht	99,4	10	0,01	127351

Gesamte Artenliste Berglsteiner See

Tabelle 18.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Berglsteiner See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Perca fluviatilis	Flussbarsch	
	Rutilus rutilus	Rotauge	
	Cyprinus carpio	Karpfen	
Fische	Esox lucius	Hecht	
Fis	Scardinius erythrophthalmus	Rotfeder	
	Tinca tinca	Schleie	
	Hypophthalmichthys nobilis	Marmorkarpfen	
	Leuciscus sp.	Hasel/Nerfling	

Plausibilisierung

Im Berglsteiner See wurde eDNA von Fischen und Krebsen identifiziert. Da es sich beim Raubwasserfloh um keinen Vertreter der Zehnfußkrebse (Decapoda) handelt, wurde dieser aus der Gesamtartenliste gestrichen (Tab. 18.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Karpfenartigen zu beobachten: neben den DNA-Sequenzen, welche eindeutig den Arten *Cyprinus carpio* und *Hypophthalmichthys nobilis* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattung *Hypophthalmichthys* oder die Familie der Karpfenartigen (Cyprinidae) schließen ließen.

Die Nachweise von eDNA von *Leuciscus leuciscus*, *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 98,3% für die Art und 96,7% (BER-02) bzw. 98,6% und 96% (BER-03) für die Familie (Tab. 18.1) deuten wahrscheinlich auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* zugeordnet werden konnten (in SCW-02), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*).

3.19 Buchsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Kramsach	867	BUC-01, -02, -03	16.08.2023

Lage der Probenstellen

Abbildung 19: Buchsee

Artenliste je Probestelle

Tabelle 19.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BUC-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	BUC-01	Perca fluviatilis	Flussbarsch	99,34	40620	34,61	117349
		Cyprinus carpio	Karpfen	-	28431		117349
	BUC-01	Abramis brama	Brachse		21453		117349
		Scardinius erythrophthalmus	Rotfeder		19857	16,92	117349
		Esox lucius	Hecht	99,4	2795	2,38	117349
		Anguilla anguilla	Aal	99,39		1,5	117349
e e		Leuciscidae	Weißfische	96,27	694	0,59	117349
Fische	BUC-01	Alburnus alburnus	Laube	99,04	520	0,44	117349
	BUC-01	Leuciscus sp.	Hasel/Nerfling	98,05	472	-	117349
	BUC-01	Ctenopharyngodon idella	Graskarpfen	99,08	435	0,37	117349
	BUC-01	Carassius sp.	Goldfisch/Giebel	96,07	118	0,1	117349
	BUC-01	Leuciscus leuciscus	Hasel	98,29	93	0,08	117349
	BUC-01	Silurus glanis	Europäischer Wels	100	48	0,04	117349
	BUC-01	Rutilus rutilus	Rotauge	99,89	35	0,03	117349
	BUC-01	Chondrostoma nasus	Nase	97,17	14	0,01	117349
Muscheln	BUC-01	Dreissena polymorpha	Wandermuschel	98,93	97522	67,63	144192
Σn	BUC-01	Anodonta cygnea	Große Teichmuschel	100	46670	32,37	144192
		Perca fluviatilis	Flussbarsch	99,38	36308	40,88	88814
	BUC-03	Scardinius erythrophthalmus	Rotfeder	99,11	19221	21,64	88814
	BUC-03	Abramis brama	Brachse	99,26	12514	14,09	88814
	BUC-03	Esox lucius	Hecht	99,39	10651	11,99	88814
	BUC-03	Cyprinus carpio	Karpfen	99,32	7829	8,82	88814
		Anguilla anguilla	Aal	99,43	1312	1,48	88814
Fische	BUC-03	Alburnus alburnus	Laube	99,66	229	0,26	88814
Fis	BUC-03	Leuciscus sp.	Hasel/Nerfling	98,01	217	0,24	88814
	BUC-03	Leuciscidae	Weißfische	96,22	215	0,24	88814
	BUC-03	Ctenopharyngodon idella	Graskarpfen	99,35	153	0,17	88814
	BUC-03	Leuciscus leuciscus	Hasel	98,29	85	0,1	88814
	BUC-03	Silurus glanis	Europäischer Wels	100	46	0,05	88814
	BUC-03	Carassius sp.	Goldfisch/Giebel	96	20	0,02	88814
	BUC-03	Esox sp.	Hecht	100	14	0,02	88814
Muscheln	BUC-03	Anodonta cygnea	Große Teichmuschel	99,59	87915	86,21	101975
Mus	BUC-03	Dreissena polymorpha	Wandermuschel	98,92	14060	13,79	101975

Gesamte Artenliste Buchsee

Tabelle 19.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Buchsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Perca fluviatilis	Flussbarsch		
	Scardinius erythrophthalmus	Rotfeder		
	Cyprinus carpio	Karpfen		
	Abramis brama	Brachse		
	Esox lucius	Hecht		
<u>a</u>	Anguilla anguilla	Aal		
ische	Alburnus alburnus	Laube		
ш.	Leuciscus sp.	Hasel/Nerfling		
	Ctenopharyngodon idella	Graskarpfen		
	Carassius sp.	Giebel/Goldfisch		
	Silurus glanis	Europäischer Wels		
	Rutilus rutilus	Rotauge		
	Chondrostoma nasus	Nase		
heln	Anodonta cygnea	Große Teichmuschel		
Muscheln	Dreissena polymorpha	Wandermuschel		

Plausibilisierung

Im Buchsee wurde eDNA von Fischen und Muscheln identifiziert, wobei in Probe BUC-02 keine eDNA der gewählten Organismengruppen nachgewiesen wurde.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf eine Art nicht mehr erlauben.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 98% für die Gattung und 96,2% für die Familie (Tab. 19.1) deuten auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Die Nase ist ein typischer Flussfisch und kann auf natürlichen Weg kaum in dieses Gewässer gelangen. Ein Vorkommen im Buchsee durch Besatz kann jedoch nicht ausgeschlossen werden. Allerdings ist aufgrund der geringen Übereinstimmung mit der DNA-Sequenz in der Referenz-Datenbank von 97,2% der Nachweis nicht als gesichert zu werten (Tab. 19.1). Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch ist für *Chondrostoma nasus* empfehlen.

Im Buchsee war zudem eDNA der invasiven Wandermuschel *Dreissena polymorpha* zu finden. Es handelt sich dabei um eine sehr konkurrenzstarke Art, die in Massen vorkommen und heimische Arten verdrängen kann.

3.20 Hechtsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Kufstein	2631	HEC-01, -02, -03	22.08.2023

Lage der Probenstellen

Abbildung 20: Hechtsee

Tabelle 20.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HEC-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	HEC-01	Scardinius erythrophthalmus	Rotfeder	99,07	90211	34,7	259991
	HEC-01	Squalius cephalus	Aitel	99,36	65786	25,3	259991
	HEC-01	Perca fluviatilis	Flussbarsch	99,31	65008	25	259991
	HEC-01	Cyprinus carpio	Karpfen	99,27	17030	6,55	259991
e	HEC-01	Esox lucius	Hecht	99,38	14966	5,76	259991
Fische	HEC-01	Leuciscus sp.	Hasel/Nerfling	98,36	3093	1,19	259991
ш.	HEC-01	Alburnus alburnus	Laube	99,12	3034	1,17	259991
	HEC-01	Leuciscidae	Weißfische	96,56	396	0,15	259991
	HEC-01	Leuciscus leuciscus	Hasel	99,14	304	0,12	259991
	HEC-01	Squalius sp.	Weißfisch	97,71	92	0,04	259991
	HEC-01	Esox sp.	Hecht	100	71	0,03	259991
Muscheln	HEC-01	Dreissena polymorpha	Wandermuschel	99,98	32133	100	32133
Krebse	HEC-02	Asellus aquaticus	Wasserassel	98,57	168	100	168
	HEC-02	Scardinius erythrophthalmus	Rotfeder	99,71	165597	53,45	309813
	HEC-02	Perca fluviatilis	Flussbarsch	99,34	79482	25,65	309813
		Squalius cephalus	Aitel	99,79	28523	9,21	309813
Fische	HEC-02	Alburnus alburnus	Laube	99,17	20469	6,61	309813
Fis		Cyprinus carpio	Karpfen	99,31	13568	4,38	
		Leuciscus sp.	Hasel/Nerfling	98,5	1769		309813
		Leuciscus leuciscus	Hasel	98,66	203	-	309813
_	HEC-02	Leuciscidae	Weißfische	96,54	202	0,07	309813
Muscheln	HEC-02	Dreissena polymorpha	Wandermuschel	99,62	48094	100	48094
	HEC-03	Scardinius erythrophthalmus	Rotfeder	99,82	219151	54,21	404276
	HEC-03	Leuciscus idus	Nerfling	98,45	131411	32,51	404276
	HEC-03	Squalius cephalus	Aitel	99,37	22908	5,67	404276
	HEC-03	Perca fluviatilis	Flussbarsch	99,36	15684	3,88	404276
Fische	HEC-03	Alburnus alburnus	Laube	99,17	8628	2,13	404276
Fis	HEC-03	Cyprinus carpio	Karpfen	99,29	3853	0,95	404276
		Leuciscus sp.	Hasel/Nerfling	98,07	2289	0,57	404276
		Leuciscus leuciscus	Hasel	98,85	244		404276
		Leuciscidae	Weißfische	97,3	95		404276
_	HEC-03	Rutilus rutilus	Rotauge	100	13	0	404276
Muscheln	HEC-03	Dreissena polymorpha	Wandermuschel	99,36	52384	100	52384

Gesamte Artenliste Hechtsee

Tabelle 20.2: Auflistung aller nachgewiesenen, plausiblen Arten im Hechtsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Scardinius erythrophthalmus	Rotfeder	
	Perca fluviatilis	Flussbarsch	
	Squalius cephalus	Aitel	
Fische	Cyprinus carpio	Karpfen	
Fis	Alburnus alburnus	Laube	
	Esox lucius	Hecht	
	Leuciscus sp.	Hasel/Nerfling	
	Rutilus rutilus	Rotauge	
Muscheln	Dreissena polymorpha	Wandermuschel	

Plausibilisierung

Im Hechtsee wurde eDNA von Fischen, Krebsen und Muscheln identifiziert. Da es sich bei der Wasserassel um keinen Zehnfußkrebs (Decapoda) handelt, wurde dieser aus der Gesamtartenliste gestrichen (Tab. 20.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* bzw. Aitel *Squalius cephalus* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf das jeweilige Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 98% für die Gattung und 97% für die Familie (Tab. 20.1) deuten auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Angaben und Fotos verschiedener Fischereiforen zufolge kommen im Hechtsee neben den detektierten Arten auch die Renke, der Zander und der Wels vor (z.B. https://hechtseefischen.jimdofree.com/ und https://www.fischereiverein-tyrol.at/unsere-gewässer/hechtsee/).

Mögliche Ursachen für den fehlenden Nachweis von Zander und Wels dürften darin begründet liegen, dass es sich hierbei um Arten handelt, welche sich überwiegend in den tieferen Zonen von Gewässern aufhalten. Auch die Renken ziehen in den heißen Sommermonaten tiefere, kühle Wasserschichten vor. Der Hechtsee ist mit 57 m der tiefste der sechs Seen westlich von Kufstein. Es ist anzunehmen, dass der See aufgrund der hohen Temperaturen im August eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand. Dadurch kann auch kaum oder nur sehr wenig eDNA dieser Fischarten an die Oberfläche und in die Bereiche der Ufer gelangen, an denen beprobt wurde.

Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden.

Zu erwähnen ist überdies, dass im Hechtsee eDNA der invasiven Wandermuschel *Dreissena polymorpha* zu finden war. Es handelt sich dabei um eine sehr konkurrenzstarke Art, die in Massen vorkommen und heimische Arten verdrängen kann.

3.21 Hintersteiner See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Scheffau	3575	HIN-01, -02, -03, -04	30.08.2023

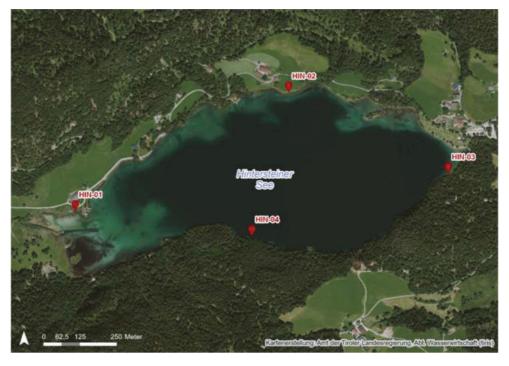


Abbildung 21: Hintersteiner See

Artenliste je Probestelle

Tabelle 21.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HIN-01 − 04 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
		Scardinius erythrophthalmus	Rotfeder	98,82		90,27	68156
		Perca fluviatilis	Flussbarsch	99,2		6,48	
Pe		Phoxinus sp.	Elritze	98,78		1,14	
Fische	HIN-01	Leuciscus leuciscus	Hasel	97,71			
	HIN-01	Leuciscus sp.	Hasel/Nerfling	97,98		0,85	
		Leuciscidae	Weißfische	98,29	73	0,11	
	HIN-01	Alburnus alburnus	Laube	97,84	21	0,03	68156
Muscheln	HIN-01	Sphaeriidae	Kugelmuscheln	98,98	81352	60,46	134547
Σ	HIN-01	HIN-01 Pisidium nitidum Glänzende Erbsenmuse		99,05	53195	39,54	134547
	HIN-02	Barbatula barbatula	Bachschmerle	99,27	151107	75,37	200493
	HIN-02	Perca fluviatilis	Flussbarsch	99,37	27731	13,83	200493
e	HIN-02	Tinca tinca	Schleie	99,22	10441	5,21	200493
Fische	HIN-02	Scardinius erythrophthalmus	Rotfeder	99,17	8226	4,1	200493
-	HIN-02	Leuciscus sp.	Hasel/Nerfling	95,54	1969	0,98	200493
	HIN-02	Leuciscidae	Weißfische	94,53	667	0,33	200493
	HIN-02	Leuciscus leuciscus	Hasel	97,48	352	0,18	200493
2	HIN-02	Euglesa casertana	Gemeine Erbsenmuschel	97,52	74095	44,1	168032
Muscheln	HIN-02	Anodonta sp.	Teichmuschel	99,66	57378	34,15	168032
Jus	HIN-02	Pisidium nitidum	Glänzende Erbsenmuschel	99	22451	13,36	168032
2	HIN-02	Anodonta anatina	Gemeine Teichmuschel	99,94	14108	8,4	168032
Krebse	HIN-03	Astacus astacus	Edelkrebs	99,23	33029	100	33029
	HIN-04	Salvelinus sp.	Saibling	99,35	183395	76,92	238429
	HIN-04	Perca fluviatilis	Flussbarsch	99,36	35781	15,01	238429
	HIN-04	Scardinius erythrophthalmus	Rotfeder	99,26	16941	7,11	238429
a	HIN-04	Leuciscus sp.	Hasel/Nerfling	97,48	934	0,39	238429
Fische	HIN-04	Salvelinus namaycush	Amerikanischer Seesaibling	99,41	698	0,29	238429
ΙŒ	HIN-04	Salmonidae	Lachsartige	99,1	596	0,25	238429
	HIN-04	Oncorhynchus sp.		95,4	34	0,01	238429
		Leuciscus leuciscus	Hasel	97,71	31	0,01	238429
	HIN-04	Perca sp.	Flussbarsch	90,12	19	0,01	238429

Gesamte Artenliste Hintersteiner See

Tabelle 21.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Hintersteiner See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
Krebse	Astacus astacus	Edelkrebs	
	Salvelinus sp.	Saiblinge	
	Barbatula barbatula	Bachschmerle	
	Scardinius erythrophthalmus	Rotfeder	
ē	Perca fluviatilis	Flussbarsch	
Fische	Tinca tinca	Schleie	
ш	Leuciscus sp.	Hasel/Nerfling	
	Phoxinus phoxinus	Elritze	
	Oncorhynchus mykiss	Regenbogenforelle	
	Alburnus alburnus	Laube	
eln	Pisidium nitidum	Glänzende Erbsenmuschel	
Muscheln	Euglesa casertana	Gemeine Erbsenmuschel	
Ž	Anodonta anatina	Gemeine Teichmuschel	

Plausibilisierung

Im Hintersteiner See wurde eDNA von Fischen, Muscheln und vom Edelkrebs identifiziert. Letzterer war der einzige tierische Nachweis in der Probe HEC-03.

Die Detektion für eDNA aus der Gattung *Salvelinus* lässt sich als Nachweis für das Vorkommen von Saiblingen interpretieren (*S. umbla* und/oder *S.fontinalis*). Ein Vorkommen des Amerikanischen Seesabilings *S. namaycush* kann nicht ausgeschlossen werden, könnte aber auch auf eine Fehlbestimmung in der Referenzdatenbank zurückzuführen sein. Dieser Nachweis wird daher ebenfalls nur als Nachweis einer Saiblingsart und somit als *Salvelinus sp.* gewertet.

In HIN-04 finden sich zahlreiche Sequenzen, welche eindeutig als Flussbarsch *Perca fluviatilis* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und

damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: neben den DNA-Sequenzen, welche eindeutig der Art *Anodonta anatina* bzw. *Pisidium nitidum* zuzuordnen waren, gab es auch welche, die nur auf die Gattung *Anodonta* bzw. die Familie der Sphaeridae schließen ließen (Tab. 20.1).

Bei den DNA-Sequenzen, welche der Gattung *Oncorhynchus* zugeordnet werden konnten (in HIN-04), ist davon auszugehen, dass es sich um einen Nachweis für die Regenbogenforelle (*O. mykiss*) handelt.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex rund um *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus noch mindestens* drei weitere Arten dieser Gattung in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii*(https://www.abol.ac.at/project/phoxinus).

Entsprechend dem Fischbestandsbericht vom Hintersteiner See von Gassner *et al.* (2003) wurde im vorliegenden Projekt eDNA der Bachschmerle *Barbatula barbartula* nachgewiesen, welche bei einer späteren Erhebung von 2011 fehlte (BAW 2011). Bei den früheren Fischbestandserhebungen wurde neben den detektierten Arten auch die Rotfeder gefangen.

Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden.

3.22 Krummsee

Bez	zirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU		Kramsach	1746	KRU-01, -02, -03	16.08.2023

Lage der Probenstellen

Abbildung 22: Krummsee

Artenliste je Probestelle

Tabelle 22.1: Auflistung der nachgewiesenen Taxa an den Probenstellen KRU-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (∑Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	KRU-01	Esox lucius	Hecht	99,38	112011	61,2	183023
	KRU-01	Perca fluviatilis	Flussbarsch	99,38	34101	18,63	183023
	KRU-01	Scardinius erythrophthalmus	Rotfeder	99,68	14195	7,76	183023
9	KRU-01	Abramis brama	Brachse	99,33	13600	7,43	183023
Fische	KRU-01	Cyprinus carpio	Karpfen	99,39	7602	4,15	183023
"	KRU-01	Leuciscus sp.	Hasel/Nerfling	97,61	793	0,43	183023
	KRU-01	Esox sp.	Hecht	99,41	453	0,25	183023
	KRU-01	Leuciscus leuciscus	Hasel	98,29	148	0,08	183023
	KRU-01	Leuciscidae	Weißfische	95,72	120	0,07	183023
Mscheln	KRU-01	Dreissena polymorpha	Wandermuschel	99,61	109607	99,25	110434
Š	KRU-01	Anodonta cygnea	Große Teichmuschel 1		827	0,75	110434
	KRU-02	Abramis brama	Brachse	99,32	81289	32,71	248477
		Perca fluviatilis	Flussbarsch	99,32	55971	22,53	248477
	KRU-02	Esox lucius	Hecht	99,37	46343	18,65	248477
		Cyprinus carpio	Karpfen	99,38	30142		248477
		Scardinius erythrophthalmus	Rotfeder	99,3	19278		248477
		Tinca tinca	Schleie	99,05	8260		248477
4)		Ctenopharyngodon idella	Graskarpfen	99,23			248477
Fische		Esox sp.	Hecht	99,4	950		248477
Ë		Leuciscus sp.	Hasel/Nerfling	97,78			248477
		Leuciscidae	Weißfische	96,04			248477
		Carassius sp.	Goldfisch/Giebel	96	160		248477
		Leuciscus leuciscus	Hasel	98,29	107	0,04	248477
		Silurus glanis	Europäischer Wels	100	95		248477
		Chondrostoma nasus	Nase	97,17	93		248477
		Cyprinidae	Karpfenfische	96,35	31	•	248477
_		Rutilus rutilus	Rotauge	100	19		248477
helr		Dreissena polymorpha	Wandermuschel		115179		125303
Mscheln		Anodonta cygnea	Große Teichmuschel	100	6469		125303
		Pisidium subtruncatum Cuprinus carpio	Schiefe Erbsenmuschel	99,1	3655		102000
		Cyprinus carpio Leuciscus idus	Karpfen Nerfling	99,31 98,43	83558		198009 198009
		Abramis brama	Brachse	99,33	46842 39221		198009
		Esox lucius	Hecht	99,33	18613	-	198009
Fische		Scardinius erythrophthalmus	Rotfeder	99,35	8536		198009
Fis		Leuciscidae	Weißfische	96,58	946		198009
		Carassius sp.	Goldfisch/Giebel	95,45	167		198009
		Leuciscus sp.	Hasel/Nerfling	97,43	76		198009
		Esox sp.	Hecht	100	50		198009
드	KINO-03	250A 3p.	Treatte	100	30	0,03	150005
Muscheln	KRU-03	Dreissena polymorpha	Wandermuschel	99,6	83570	100	83570
_		_	eite 77 von 156				

Gesamte Artenliste Krummsee

Tabelle 22.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Krummsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Esox lucius	Hecht	
	Abramis brama	Brachse	
	Cyprinus carpio	Karpfen	
	Perca fluviatilis	Flussbarsch	
	Scardinius erythrophthalmus	Rotfeder	
Fische	Tinca tinca	Schleie	
Fis	Ctenopharyngodon idella	Graskarpfen	
	Leuciscus sp.	Hasel/Nerfling	
	Carassius sp.	Goldfisch/Giebel	
	Silurus glanis	Europäischer Wels	
	Chondrostoma nasus	Nase	
	Rutilus rutilus	Rotauge	
eln	Dreissena polymorpha	Wandermuschel	
Muscheln	Anodonta cygnea	Große Teichmuschel	
Ž	Pisidium subtruncatum	Schiefe Erbsenmuschel	

Plausibilisierung

Im Krummsee wurde in den drei Filterproben eDNA von Fischen und Muscheln identifiziert.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Dasselbe Phänomen ist auch bei den Karpfenartigen zu beobachten: neben den DNA-Sequenzen, welche eindeutig den Arten *Cyprinus carpio* und *Ctenopharyngodon idella* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Familie der Cypriniden schließen ließen.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 98% für die Gattung und 96,6% für die Familie (Tab. 22.1) deuten auf ein Vorkommen des Nerflings (*L. idus*, 98,4%) oder der sehr nahe verwandten Hasel (*L. leuciscus*, 98,2%) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Die Nase ist ein typischer Flussfisch und kann auf natürlichen Weg kaum in dieses Gewässer gelangen. Ein Vorkommen im Krummsee durch Besatz kann nicht ausgeschlossen werden. Allerdings ist aufgrund der geringen Übereinstimmung mit der DNA-Sequenz in der Referenz-Datenbank von 97,2% der Nachweis nicht als gesichert zu werten (Tab. 22.1). Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch für *Chondrostoma nasus* ist, empfehlen.

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* zugeordnet werden konnten (in KRU-02), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*).

Zu erwähnen ist überdies, dass im Krummsee eDNA der invasiven Wandermuschel *Dreissena polymorpha* zu finden war. Es handelt sich dabei um eine sehr konkurrenzstarke Art, die in Massen vorkommen und heimische Arten verdrängen kann.

3.23 Moorstrandbad Kirchbichl

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Kirchbichl	438	MOO-01, -02, -03	10.08.2023

Lage der Probenstellen

Abbildung 23: Moorstrandbad Kirchbichl

Artenliste je Probestelle

Tabelle 23.1: Auflistung der nachgewiesenen Taxa an den Probenstellen MOO-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (∑Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	ΣSeq. pro PS und ZG
	MOO-01	Perca fluviatilis	Flussbarsch	99,91	133188	71,52	186215
	M00-01	Tinca tinca	Schleie	99,09	25129	13,49	186215
	M00-01	Esox lucius	Hecht	99,37	24292	13,05	186215
Fische	M00-01	Scardinius erythrophthalmus	Rotfeder	99,17	2054	1,1	186215
Fis	MOO-01	Leuciscus sp.	Hasel/Nerfling	96,77	1183	0,64	186215
		Leuciscus leuciscus	Hasel	98,25		-	186215
	MOO-01	·	Hecht	98,41			186215
_	M00-01	Leuciscidae	Weißfische	96,01	37	0,02	186215
Muscheln	M00-01	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,87	55962	100	55962
Krebse	MOO-02	Porcellio scaber	Kellerassel	94,02	608	100	608
	MOO-02	Perca fluviatilis	Flussbarsch	99,41	183918	73,02	251886
	MOO-02	Esox lucius	Hecht	99,35	32722	12,99	251886
	MOO-02	Tinca tinca	Schleie	99,05	30944	12,28	251886
Fische	MOO-02	Leuciscus sp.	Hasel/Nerfling	96,74	2273	0,9	251886
Fis	MOO-02	Leuciscidae	Weißfische	96,51	917	0,36	251886
		Scardinius erythrophthalmus	Rotfeder	99,52		-	251886
		Leuciscus leuciscus	Hasel	97,71			251886
_	MOO-02	Esox sp.	Hecht	99,02	112	0,04	251886
Muscheln	MOO-02	Anodonta cygnea	Große Teichmuschel	100	68744	53,31	128960
Mus	MOO-02	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,24	60216	46,69	128960
		Perca fluviatilis	Flussbarsch	99,42			211711
		Tinca tinca	Schleie	99,31	66052		211711
0		Esox lucius	Hecht	99,35	22344		211711
Fische		Leuciscus sp.	Hasel/Nerfling	96,79	1087	•	211711
Ë		Leuciscidae	Weißfische	95,82	730		211711
		Leuciscus leuciscus	Hasel	97,68			211711
		Scardinius erythrophthalmus	Rotfeder	98,29	84		211711
_		Esox sp.	Hecht	100	79		211711
helr	MOO-03	Anodonta anatina	Gemeine Teichmuschel	99,95	62432	44,84	139231
Muscheln	MOO-03	Anodonta cygnea	Große Teichmuschel	99,99	46087	33,1	139231
Σ	M00-03	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,1	30712	22,06	139231

Gesamte Artenliste Moorstrandbad Kirchbichl

Tabelle 23.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Moorstrandbad Kirchbichl Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Perca fluviatilis	Flussbarsch
ē	Tinca tinca	Schleie
Fische	Esox lucius	Hecht
ш.	Leuciscus sp.	Hasel/Nerfling
	Scardinius erythrophthalmus	Rotfeder
eln	Pisidium subtruncatum	Schiefe Erbsenmuschel
Muscheln	Anodonta cygnea	Große Teichmuschel
Ž	Anodonta anatina	Gemeine Teichmuschel

Plausibilisierung

Im Moorstrandbad Kirchbichl wurde eDNA von Fischen, Krebstieren und Muscheln identifiziert. Da es sich bei der landlebenden Kellerassel um keinen Zehnfußkrebs (Decapoda) handelt, wurde diese aus der Gesamtartenliste gestrichen (Tab. 23.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von ca. 97% für die Gattung und ca. 96% für die Familie (Tab. 23.1) deuten wahrscheinlich auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

3.24 Reintaler See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Kramsach	3533	REN-01, -02, -03, -04	16.08.2023

Lage der Probenstellen

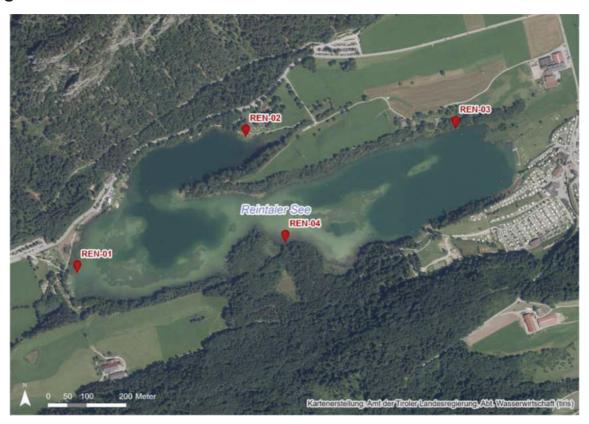


Abbildung 24: Reintaler See

Artenliste je Probestelle

Tabelle 24.1: Auflistung der nachgewiesenen Taxa an den Probenstellen REN-01 − 04 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	REN-01	Cyprinus carpio	Karpfen	99,43	231918	76,15	304544
	REN-01	Abramis brama	Brachse	99,38	70143	23,03	304544
و	REN-01	Leuciscus sp.	Hasel/Nerfling	97,83	829	0,27	304544
Fische	REN-01	Leuciscus leuciscus	Hasel	97,75	673	0,22	304544
"	REN-01	Leuciscidae	Weißfische	96,42	444	0,15	304544
	REN-01	Scardinius erythrophthalmus	Rotfeder	98,28	425	0,14	304544
	REN-01	Carassius sp.	Goldfisch/Giebel	95,64	112	0,04	304544
Muscheln	REN-01	Dreissena polymorpha	Wandermuschel	99,61	15794	100	15794
	REN-03	Leuciscus idus	Nerfling	97,03	260389	81,67	318840
	REN-03	Scardinius erythrophthalmus	Rotfeder	99,28	56564	17,74	318840
) e	REN-03	Leuciscus sp.	Hasel/Nerfling	97,16	890	0,28	318840
Fische	REN-03	Leuciscidae	Weißfische	98,29	818	0,26	318840
ш.	REN-03	Leuciscus leuciscus	Hasel	97,73	136	0,04	318840
	REN-03	Alburnus alburnus	Laube	98,01	22	0,01	318840
	REN-03	Alburnus chalcoides	Mairenke	97,71	21	0,01	318840
	REN-04	Cyprinus carpio	Karpfen		167189	88,57	188768
Je		Scardinius erythrophthalmus	Rotfeder	99,4	21183	11,22	
Fische	REN-04	Leuciscidae	Weißfische	96,97	225	•	188768
		Leuciscus sp.	Hasel/Nerfling	97,89	131	,	188768
	REN-04	Leuciscus leuciscus	Hasel	98,29	40	0,02	188768

Gesamte Artenliste Reintaler See

Tabelle 24.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Reintaler See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Cyprinus carpio	Karpfen	
	Scardinius erythrophthalmus	Rotfeder	
Fische	Abramis brama	Brachse	
Fis	Leuciscus sp.	Hasel/Nerfling	
	Carassius sp.	Goldfisch/Giebel	
	Alburnus alburnus	Laube	
Muscheln	Dreissena polymorpha	Wandermuschel	

Plausibilisierung

Im Reintaler See wurde in den drei Filterproben eDNA von Fischen und Muscheln identifiziert.

Bei dem vermeintlichen Nachweis der Seelaube *Alburnus chalcoides* (Tab. 24.1) dürfte es sich um DNA-Sequenzen handeln, welche eigentlich der Laube (*A. alburnus*) zuzuordnen sind. Dafür spricht auch der geringe Grad an Übereinstimmung mit den DNA-Sequenzen von *A. chalcoides* aus den Referenzdatenbanken von 97,7% (%ID). Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen findet man auch immer Bruchstücke oder durch natürliche Abbauprozesse durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben bzw. fälschlicherweise einer nahe verwandten Art zugeordnet werden.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung von 97% für die Gattung und 98% für die Familie (Tab. 24.1) deuten wahrscheinlich auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* zugeordnet werden konnten (in REN-01), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*), welche vermutlich ausgesetzt worden sind. Unter den Cypriniden fand sich darüber hinaus auch eDNA des Karpfens *Cyprinus carpio*.

Im Reintaler See wurde eDNA der invasiven Wandermuschel *Dreissena polymorpha* nachgewiesen. Es handelt sich dabei um eine sehr konkurrenzstarke Art, die in Massen vorkommen und heimische Arten verdrängen kann.

3.25 Reither See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Reith	473	REI-01, -02, -03	16.08.2023

Lage der Probenstellen

Abbildung 25: Reither See

Artenliste je Probestelle

Tabelle 25.1: Auflistung der nachgewiesenen Taxa an den Probenstellen REI-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Je	REI-01	Rutilus rutilus	Rotauge	99,49	80827	67,91	119027
Fische	REI-01	Alburnus alburnus	Laube	99,37	37962	31,89	119027
	REI-01	Leuciscus sp.	Hasel/Nerfling	99,46	238	0,2	119027
	REI-02	Leuciscus leuciscus	Hasel	100	139820	55,78	250661
Fische	REI-02	Alburnus alburnus	Laube	99,44	110073	43,91	250661
Fis	REI-02	Rutilus rutilus	Rotauge	99,93	516	0,21	250661
	REI-02	Leuciscus sp.	Hasel/Nerfling	99,13	252	0,1	250661
	REI-03	Rutilus rutilus	Rotauge	100	162841	63,93	254725
Fische	REI-03	Squalius cephalus	Aitel	99,39	91835	36,05	254725
Fis	REI-03	Leuciscus leuciscus	Hasel	99,21	29	0,01	254725
	REI-03	Leuciscus sp.	Hasel/Nerfling	100	20	0,01	254725
Muscheln	REI-03	Anodonta anatina	Gemeine Teichmuschel	100	48917	100	48917

Gesamte Artenliste Reither See

Tabelle 25.2: Auflistung aller nachgewiesenen Arten im Reither See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
a	Rutilus rutilus	Rotauge
Fische	Alburnus alburnus	Laube
Ë	Squalius cephalus	Aitel
	Leuciscus sp.	Hasel/Nerfling
Muscheln	Anodonta anatina	Gemeine Teichmuschel

Plausibilisierung

Im Reither See wurde in den drei Filterproben eDNA von Fischen und der Gemeinen Teichmuschel identifiziert.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae (Tab. 25.1) deuten wahrscheinlich auf ein Vorkommen des Nerflings (*L. idus*) oder der sehr nahe verwandten Hasel (*L. leuciscus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

3.26 Stimmersee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Langkampfen	86	STI-01, -02, -03	22.08.2023

Lage der Probenstellen

Abbildung 26: Stimmersee

Artenliste je Probestelle

Tabelle 26.1: Auflistung der nachgewiesenen Taxa an den Probenstellen STI-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	STI-01	Polyphemus pediculus	Raub-Wasserfloh	98,73	330	100	330
	STI-01	Squalius cephalus	Aitel	99,41	104261	37,33	279330
	STI-01	Cyprinus carpio	Karpfen	99,41	55488	19,86	279330
	STI-01	Lepomis gibbosus	Sonnenbarsch	99,37	54542	19,53	279330
	STI-01	Scardinius erythrophthalmus	Rotfeder	99,4	27215	9,74	279330
	STI-01	Hypophthalmichthys sp.	Karpfen	99,43	14130	5,06	279330
Fische	STI-01	Sander lucioperca	Zander	99,4	13668	4,89	279330
Fisc	STI-01	Ctenopharyngodon idella	Graskarpfen	99,42	3012	1,08	279330
	STI-01	Perca fluviatilis	Flussbarsch	99,41	2969	1,06	279330
	STI-01	Hypophthalmichthys nobilis	Marmorkarpfen	99,29	2906	1,04	279330
	STI-01	Hypophthalmichthys molitrix	Silberkarpfen	99,38	1100	0,39	279330
	STI-01	Chondrostoma nasus	Nase	97,73	24	0,01	279330
	STI-01	Leuciscus sp.	Hasel/Nerfling	98,86	15	0,01	279330
	STI-02	Lepomis gibbosus	Sonnenbarsch	99,35	101862	44,9	226852
	STI-02	Scardinius erythrophthalmus	Rotfeder	99,29	38939	17,16	226852
	STI-02	Squalius cephalus	Aitel	99,39	38530	16,98	226852
	STI-02	Cyprinus carpio	Karpfen	99,35	20228	8,92	226852
e	STI-02	Hypophthalmichthys sp.	Karpfen	99,3	9840	4,34	226852
Fische	STI-02	Perca fluviatilis	Flussbarsch	99,36	6176	2,72	226852
ш.	STI-02	Sander lucioperca	Zander	99,33	5533	2,44	226852
	STI-02	Hypophthalmichthys nobilis	Marmorkarpfen	98,81	3485	1,54	226852
	STI-02	Hypophthalmichthys molitrix	Silberkarpfen	99,78	2095	0,92	226852
	STI-02	Leuciscus sp.	Hasel/Nerfling	99,88	138	0,06	226852
	STI-02	Leuciscus leuciscus	Hasel	98,47	26	0,01	226852
bse	STI-03	Astacus astacus	Edelkrebs	99,96	37222	95,65	38914
Krebse	STI-03	Polyphemus pediculus	Raub-Wasserfloh	98,73	1692	4,35	38914
	STI-03	Squalius cephalus	Aitel	99,37	83987	47,41	177157
	STI-03	Lepomis gibbosus	Gemeiner Sonnenbarsch	99,7	38738	21,87	177157
	STI-03	Scardinius erythrophthalmus	Rotfeder	99,13	28409	16,04	177157
9	STI-03	Cyprinus carpio	Karpfen	99,22	18963	10,7	177157
Fische	STI-03	Sander lucioperca	Zander	99,08	6799	3,84	177157
-	STI-03	Hypophthalmichthys nobilis	Marmorkarpfen	98,7	124	0,07	177157
	STI-03	Hypophthalmichthys molitrix	Silberkarpfen	99,67	59	0,03	177157
	STI-03	Leuciscus leuciscus	Hasel	98,53	46	0,03	177157
	STI-03	Leuciscidae	Weißfische	96,46	32	0,02	177157

Gesamte Artenliste Stimmersee

Tabelle 26.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Stimmersee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
Krebse	Astacus astacus	Edelkrebs
	Squalius cephalus	Aitel
	Lepomis gibbosus	Sonnenbarsch
	Cyprinus carpio	Karpfen
	Scardinius erythrophthalmus	Rotfeder
<u>e</u>	Sander lucioperca	Zander
ische	Perca fluviatilis	Flussbarsch
ш	Hypophthalmichthys nobilis	Marmorkarpfen
	Hypophthalmichthys molitrix	Silberkarpfen
	Ctenopharyngodon idella	Graskarpfen
	Leuciscus sp.	Hasel/Nerfling
	Chondrostoma nasus	Nase

Plausibilisierung

Im Stimmersee wurde in den drei Filterproben eDNA von Fischen, Muscheln und dem Edelkrebs identifiziert. Da es sich beim Raub-Wasserfloh um keinen Zehnfußkrebs (Decapoda) handelt, wurde dieser aus der Gesamtartenliste gestrichen (Tab. 26.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als ostasiatische Karpfenarten *Hypophthalmichthys molitrix* und *H. nobilis* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr der Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung für die Gattung und die Familie (Tab. 26.1) deuten wahrscheinlich auf

ein Vorkommen des Nerflings (*L. idus*, 98,4%) oder der sehr nahe verwandten Hasel (*L. leuciscus*, 98,2%) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Die Nase (*Chondrostroma nasus*) ist ein typischer Flussfisch und kann auf natürlichen Weg kaum in dieses Gewässer gelangen. Ein Vorkommen im Stimmer durch Besatz kann nicht ausgeschlossen werden. Allerdings ist aufgrund der geringen Übereinstimmung mit der DNA-Sequenz in der Referenz-Datenbank von 97,2% der Nachweis nicht als gesichert zu werten (Tab. 26.1). Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch für *Chondrostoma nasus* ist, empfehlen.

3.27 Thiersee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Thiersee	2008	THI-01, -02, -03	22.08.2023

Lage der Probenstellen

Abbildung 27: Thiersee

Artenliste je Probestelle

Tabelle 27.1: Auflistung der nachgewiesenen Taxa an den Probenstellen THI-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	THI-01	Perca fluviatilis	Flussbarsch	99,34	89416	43,13	207322
	THI-01	Scardinius erythrophthalmus	Rotfeder	99,67	70768	34,13	207322
	THI-01	Abramis brama	Brachse	99,24	34802	16,79	207322
	THI-01	Esox lucius	Hecht	99,34	8859	4,27	207322
e e	THI-01	Cyprinus carpio	Karpfen	99,3	1589	0,77	207322
Fische	THI-01	Alburnus alburnus	Laube	99,22	1359	0,66	207322
	THI-01	Leuciscus sp.	Hasel/Nerfling	98,66	326		207322
	THI-01	Silurus glanis	Europäischer Wels	99,41	114	0,05	207322
	THI-01	Esox sp.	Hecht	100	48	0,02	207322
	THI-01	Vimba sp.	Rußnase	98,43	21		207322
	THI-01	Leuciscus leuciscus	Hasel	98,29	20	0,01	207322
Muscheln	THI-01	Dreissena polymorpha	Wandermuschel	99,39	101670	100	101670
	THI-02	Scardinius erythrophthalmus	Rotfeder	98,53	495470	61,6	804367
	THI-02	Perca fluviatilis	Flussbarsch	99,25	153896	19,13	804367
	THI-02	Esox lucius	Hecht	98,73	71362	8,87	804367
	THI-02	Abramis brama	Brachse	99,06	35547	4,42	804367
	THI-02	Alburnus alburnus	Laube	98,96	29874	3,71	804367
	THI-02	Cyprinus carpio	Karpfen	99,25	11152	1,39	804367
	THI-02	Sander lucioperca	Zander	99,28	4673	0,58	804367
Fische	THI-02	Leuciscus sp.	Hasel/Nerfling	98,34	715	0,09	804367
Fis	THI-02	Esox sp.	Hecht	98,64	474	0,06	804367
	THI-02	Silurus glanis	Europäischer Wels	99,18	367	0,05	804367
	THI-02	Leuciscidae	Weißfische	96,66	346	0,04	804367
	THI-02	Leuciscus leuciscus	Hasel	98,27	258	0,03	804367
	THI-02	Carassius sp.	Goldfisch/Giebel	97,03	100	0,01	804367
		Vimba sp.	Rußnase	98,46	69	0,01	804367
	THI-02	Rutilus rutilus	Rotauge	99,43	44	0,01	804367
	THI-02	Carassius auratus	Goldfisch	97,14	20	0	804367
Muscheln	THI-02	Dreissena polymorpha	Wandermuschel	99,61	95857	100	95857
	THI-03	Scardinius erythrophthalmus	Rotfeder	99,83	384888	78,8	488433
Fische		Abramis brama	Brachse	99,36			488433
Fisc	THI-03	Perca fluviatilis	Flussbarsch	99,35	37705	7,72	488433
		Vimba sp.	Rußnase	98,63	26		488433
Muscheln	THI-03	Dreissena polymorpha	Wandermuschel	99,99	124277	100	124277

Gesamte Artenliste Thiersee

Tabelle 27.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Thiersee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Scardinius erythrophthalmus	Rotfeder		
	Perca fluviatilis	Flussbarsch		
	Abramis brama	Brachse		
	Esox lucius	Hecht		
	Alburnus alburnus	Laube		
Fische	Cyprinus carpio	Karpfen		
Fis	Sander lucioperca	Zander		
	Leuciscus sp.	Hasel/Nerfling		
	Silurus glanis	Europäischer Wels		
	Carassius sp.	Goldfisch/Giebel		
	Vimba vimba	Rußnase		
	Rutilus rutilus	Rotauge		
Muscheln	Dreissena polymorpha	Wandermuschel		

Plausibilisierung

Im Thiersee wurde in den drei Filterproben eDNA von Fischen und Muscheln identifiziert, jedoch keine eDNA von Krebstieren.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf eine Art nicht mehr erlauben.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung für die Gattung die Familie (Tab. 27.1) deuten wahrscheinlich auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die

beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Bei den DNA-Sequenzen, welche nur *Carassius auratus* oder der Gattung *Carassius* zugeordnet werden konnten (in THI-02), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*). Unter den Cypriniden fand sich darüber hinaus auch eDNA der Arten Karpfen, Rotfeder, Brachse, Laube, Hasel, Nerfling und Rotauge.

Die Rußnase kommt vorwiegend in großen Flüssen wie der Donau und den großen Seen im Alpenvorland vor. Ein Vorkommen im Thiersee durch Besatz kann nicht vollkommen ausgeschlossen werden. Allerdings ist aufgrund der geringen Übereinstimmung mit der DNA-Sequenz in der Referenz-Datenbank von 98% der Nachweis nicht als gesichert zu werten (Tab. 27.1). Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch für *Vimba vimba* ist, empfehlen.

Im Thiersee wurde eDNA der invasiven Wandermuschel *Dreissena polymorpha* nachgewiesen. Es handelt sich dabei um eine sehr konkurrenzstarke Art, die in Massen vorkommen und heimische Arten verdrängen kann.

Vom Thiersee ist ein Vorkommen des Edelkrebses *Astacus astacus* bekannt; diese Art wurde in den Proben des gegenständlichen Projektes jedoch nicht nachgewiesen.

3.28 Walchsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
KU	Walchsee	5207	WAL-01, -02, -03, -04, -05, -06	22.08.2023

Lage der Probenstellen

Abbildung 28: Walchsee

Artenliste je Probestelle

Tabelle 28.1: Auflistung der nachgewiesenen Taxa an den Probenstellen WAL-01 − 06 (2-teilig) Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
Krebse	WAL-01	Astacus astacus	Edelkrebs	99,36	13097	100	13097
	WAL-01	Perca fluviatilis	Flussbarsch	98,31	187108	85,46	218954
	WAL-01	Abramis brama	Brachse	99,34	26295	12,01	218954
و ا	WAL-01	Esox lucius	Hecht	99,82	1975	0,9	218954
Fische	WAL-01	Scardinius erythrophthalmus	Rotfeder	99,4	1853	0,85	218954
ш.	WAL-01	Tinca tinca	Schleie	99,27	1598	0,73	218954
	WAL-01	Rutilus rutilus	Rotauge	99,97	91	0,04	218954
	WAL-01	Leuciscus sp.	Hasel/Nerfling	98,86	34	0,02	218954
Muschein	WAL-01	Pisidium subtruncatum	Schiefe Erbsenmuschel	99,41	49415	100	49415
Krebse	WAL-02	Polyphemus pediculus	Raub-Wasserfloh	100	295	100	295
	WAL-02	Perca fluviatilis	Flussbarsch	99,34	149081	61,58	242103
	WAL-02	Abramis brama	Brachse	98,54	63630	26,28	242103
	WAL-02	Esox lucius	Hecht	99,39	16522	6,82	242103
a	WAL-02	Tinca tinca	Schleie	99,42	8126	3,36	242103
Fische	WAL-02	Scardinius erythrophthalmus	Rotfeder	99,35	4166	1,72	242103
ш.	WAL-02	Rutilus rutilus	Rotauge	99,41	509	0,21	242103
	WAL-02	Esox sp.	Hecht	99,4	41	0,02	242103
	WAL-02	Leuciscus leuciscus	Hasel	98,29	14	0,01	242103
	WAL-02	Leuciscus sp.	Hasel/Nerfling	98,37	14	0,01	242103
	WAL-02	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,21	14787	37,89	39031
	WAL-02	Anodonta cygnea	Große Teichmuschel	100	10755	27,56	39031
<u>_</u>	WAL-02	Sphaerium nucleus	Sumpf-Kugelmuschel	99,06	8001	20,5	39031
Muscheln	WAL-02	Dreissena polymorpha	Wandermuschel	99,2	3054	7,82	39031
Jus	WAL-02	Pisidium obtusale	Aufgeblasene Erbsenmuschel	99,4	1420	3,64	39031
_	WAL-02	Sphaeriidae	Kugelmuscheln	98,76	965	2,47	39031
	WAL-02	Sphaerium solidum	Dickschalige Kugelmuschel	93,96	38	0,1	39031
	WAL-02	Euglesa supina	Buckel-Erbsenmuschel	98,28	11	0,03	39031
	WAL-03	Perca fluviatilis	Flussbarsch	99,42	26103	68,54	38087
<u>e</u>	WAL-03	Abramis brama	Brachse	99,38	5842	15,34	38087
Fische	WAL-03	Scardinius erythrophthalmus	Rotfeder	99,43	5170	13,57	38087
ш.	WAL-03	Esox lucius	Hecht	99,4	935	2,45	38087
	WAL-03	Rutilus rutilus	Rotauge	100	37	0,1	38087
Muscheln	WAL-03	Pisidium nitidum	Glänzende Erbsenmuschel	98,79	113042	91,42	123645
Mus	WAL-03	Dreissena polymorpha	Wandermuschel	99,4	10603	8,58	123645

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	WAL-05	Astacus astacus	Edelkrebs	99,25	40786	100	40786
Fische	WAL-05 WAL-05 WAL-05	Scardinius erythrophthalmus Leuciscus sp. Leuciscus leuciscus Alburnus alburnus Rutilus rutilus	Rotfeder Hasel/Nerfling Hasel Laube Rotauge	99,38 97,18 97,71 97,8 99,97	127566 4958 231 220 109	3,73 0,17 0,17	133084 133084 133084 133084 133084
Krebse		Astacus astacus	Edelkrebs	99,38	2248	100	2248
Fische	WAL-06	Perca fluviatilis Esox lucius Scardinius erythrophthalmus Anguilla sp. Tinca tinca Cyprinus carpio Abramis brama Squalius cephalus Alburnus alburnus Sander sp. Esox sp. Leuciscus sp. Rutilus rutilus Anguilla anguilla Leuciscidae Leuciscus leuciscus	Flussbarsch Hecht Rotfeder Aal Schleie Karpfen Brachse Aitel Laube Zander Hecht Hasel/Nerfling Rotauge Europäischer Aal Weißfische Hasel	99,36 99,38 99,29 99,37 99,21 99,32 99,42 99,7 99,32 98,6 97,4 100 100 96,35 98,29	144711 40482 11054 7464 7117 3989 1992 1687 653 422 118 95 92 64 17	18,4 5,03 3,39 3,24 1,81 0,91 0,77 0,3 0,19 0,05 0,04 0,04 0,03 0,01	219968 219968 219968 219968 219968 219968 219968 219968 219968 219968 219968 219968 219968 219968 219968
Muscheln	WAL-06 WAL-06 WAL-06 WAL-06 WAL-06 WAL-06	Pisidium subtruncatum Musculium lacustre Pisidium nitidum Dreissena polymorpha Anodonta cygnea Euglesa casertana Musculium Pisidium obtusale	Schiefe Erbsenmuschel Häubchenmuschel Glänzende Erbsenmuschel Wandermuschel Große Teichmuschel Gemeine Erbsenmuschel Häubchenmuschel Aufgeblasene Erbsenmuschel	98,29 98,35 99,05 98,93 99,46 99,59 99,13 97,29 95,74		37,33 19,88 16,31 11,46 8,93 5,46 0,49	135267 135267 135267 135267 135267 135267 135267 135267

Gesamte Artenliste Walchsee

Tabelle 28.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Walchsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
Krebse	Astacus astacus	Edelkrebs
	Perca fluviatilis	Flussbarsch
	Scardinius erythrophthalmus	Rotfeder
	Abramis brama	Brachse
	Esox lucius	Hecht
4)	Tinca tinca	Schleie
Fische	Leuciscus sp.	Hasel/Nerfling
Fis	Cyprinus carpio	Karpfen
	Squalius cephalus	Aitel
	Alburnus alburnus	Laube
	Rutilus rutilus	Rotauge
	Sander lucioperca	Zander
	Anguilla anguilla	Europäischer Aal
	Pisidium nitidum	Glänzende Erbsenmuschel
	Pisidium subtruncatum	Schiefe Erbsenmuschel
	Dreissena polymorpha	Wandermuschel
<u>u</u>	Musculium lacustre	Häubchenmuschel
Muscheln	Anodonta cygnea	Große Teichmuschel
Μ̈́	Sphaerium nucleus	Sumpf-Kugelmuschel
	Euglesa casertana	Gemeine Erbsenmuschel
	Pisidium obtusale	Aufgeblasene Erbsenmuschel
	Sphaerium solidum	Dickschalige Kugelmuschel
	Euglesa supina	Buckel-Erbsenmuschel

Plausibilisierung

Im Walchsee wurde in den sechs Filterproben eDNA von Fischen, dem Edelkrebs *Astacus* astacus und Muscheln identifiziert. Da es sich beim Raub-Wasserfloh um keinen Zehnfußkrebs (Decapoda) handelt, wurden dieser aus der Gesamtartenliste gestrichen (Tab. 28.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: Neben den DNA-Sequenzen, welche eindeutig den beiden Arten *Pisidium subtruncatum* und *P. obtusale* bzw. *Musculium lacustre* zuzuordnen waren, fanden sich auch welche, die nur mehr auf Vertreter aus deren Familie (Sphaeriidae) bzw. Gattung *Musculium* schließen ließen.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung für die Gattung und die Familie (Tab. 28.1) deuten auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Im Walchsee konnte eDNA des Europäischen Aals und des Karpfens detektiert werden – diese beiden Fischarten wurden bei Elektrobefischungen 2003 ebenfalls gefangen (Gassner et al. 2003), fehlten aber bei der späteren Fischbestandserhebung 2011. Bei dieser wurde überdies noch die Renke nachgewiesen (BAW 2011). Mögliche Ursache für den fehlenden Nachweis dieser Fischart könnte sein, dass diese in den heißen Sommermonaten tiefere, kühle Wasserschichten vorziehen. Es ist anzunehmen, dass der See aufgrund der hohen Temperaturen im August eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand. Dadurch kann auch kaum eDNA dieser Fischart an die Oberfläche und in die Bereiche der Ufer gelangen, an denen beprobt wurde.

Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden.

Im Walchsee war zudem eDNA der invasiven Wandermuschel *Dreissena polymorpha* zu finden. Es handelt sich dabei um eine sehr konkurrenzstarke Art, die in Massen vorkommen und heimische Arten verdrängen kann.

3.29 Badesee Ried

Bezirk		Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
LA	Ried	Walchsee	637	BSR-01, -02, -03	23.08.2023

Lage der Probenstellen

Abbildung 29: Badesee Ried

Artenliste je Probestelle

Tabelle 29.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSR-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	BSR-01	Phoxinus sp.	Elritze	99,33	351246	64,44	545037
	BSR-01	Oncorhynchus mykiss	Regenbogenforelle	99,41	76157	13,97	545037
	BSR-01	Barbatula barbatula	Bachschmerle	99,09	62717	11,51	545037
	BSR-01	Rhodeus amarus	Bitterling	99,19	27556		545037
	BSR-01	Cyprinus carpio	Karpfen	99,11	14489	2,66	545037
		Carassius auratus	Goldfisch	99,05	11043		545037
Je J		Carassius sp.	Goldfisch/Giebel	97,71	551	0,1	545037
Fische		Phoxinus phoxinus	Elritze	97,8	532		545037
	BSR-01	Oncorhynchus sp.		97,2	325	,	545037
	BSR-01	Rhodeus sp.	Bitterling	100	224	0,04	545037
		Squalius cephalus	Aitel	93,37		•	545037
		Leuciscidae	Weißfische	94,6	51		545037
	BSR-01	Squalius sp.	Aitel	93,14	27	0	545037
	BSR-01	Barbatula sp.	Bachschmerle	94,67	14	0	545037
	BSR-01	Cyprinus sp.	Karpfen	97,83	11		545037
		Phoxinus sp.	Elritze		181883		323324
		Barbatula barbatula	Bachschmerle	99,18	65997		323324
		Cyprinus carpio	Karpfen	99,19	30971		323324
		Oncorhynchus mykiss	Regenbogenforelle	99,27	23635		323324
		Rhodeus amarus	Bitterling	99,25	15952		323324
he		Carassius auratus	Goldfisch	98,99	3528	•	323324
Fische		Carassius sp.	Goldfisch/Giebel	97,7	634		323324
		Phoxinus phoxinus	Elritze	97,87	234	•	323324
		Leuciscidae	Weißfische	94,4	169		323324
		Rhodeus sp.	Bitterling	100	143	,	323324
		Oncorhynchus sp.	Attal	96,46	112		323324
		Squalius cephalus	Aitel	93,14	39		323324
_	BSR-02	Squalius sp.	Aitel	93,14	27	0,01	323324
Muscheln	BSR-02	Anodonta sp.	Teichmuschel	99,59	105178	100	105178
	BSR-03	Phoxinus csikii		100	105333	40,97	257109
	BSR-03	Phoxinus sp.	Elritze	98,44	65781	25,58	257109
	BSR-03	Barbatula barbatula	Bachschmerle	99,07	34302	13,34	257109
	BSR-03	Oncorhynchus mykiss	Regenbogenforelle	99,26	29812	11,6	257109
	BSR-03	Rhodeus amarus	Bitterling	99,17	11879	4,62	257109
	BSR-03	Cyprinus carpio	Karpfen	99,11	6919	2,69	257109
Fische	BSR-03	Carassius auratus	Goldfisch	98,95	2025	0,79	257109
Fis	BSR-03	Rhodeus sp.	Bitterling	100	421	0,16	257109
	BSR-03	Carassius sp.	Goldfisch/Giebel	98,49	200	0,08	257109
	BSR-03	Phoxinus phoxinus	Elritze	97,71	168	0,07	257109
		Oncorhynchus sp.		97,79			257109
		Leuciscidae	Weißfische	94,71	54		257109
		Squalius cephalus	Aitel	93,14	38	0,01	257109
	BSR-03	Squalius sp.	Aitel	92,97	29	0,01	257109
Muscheln	BSR-03	Anodonta sp.	Teichmuschel	100	54565	84,71	64413
Mus	BSR-03	Anodonta anatina	Gemeine Teichmuschel	99,53	9848	15,29	64413

Seite **103** von **156**

Gesamte Artenliste Badesee Ried

Tabelle 29.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badesee Ried Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Barbatula barbatula	Bachschmerle	
	Oncorhynchus mykiss	Regenbogenforelle	
e	Rhodeus amarus	Bitterling	
Fische	Cyprinus carpio	Karpfen	
ш.	Carassius auratus	Goldfisch	
	Phoxinus phoxinus	Elritze	
	Squalius cephalus	Aitel	
Muscheln	Anodonta anatina	Gemeine Teichmuschel	

Plausibilisierung

Im Badesee Ried wurde in den drei Filterproben eDNA von Fischen und Muscheln identifiziert.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Regenbogenforelle Onchorhynchnus mykiss identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Gleiches gilt für den Aitel und die die Bachschmerle: Neben den DNA-Sequenzen, welche eindeutig den Arten Squalius cephalus und Barbatula barbatula zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattungen Squalius bzw. Barbatula schließen ließen. (Tab. 29.1).

Ein ähnliches "Nachrauschen" des eDNA-Signals ist beim Bitterling zu beobachten: neben den DNA-Sequenzen, welche eindeutig der Art *Rhodeus amarus* zuzuordnen war, fanden sich auch welche, die nur mehr auf die Gattung *Rhodeus* schließen ließen. Aufgrund ihrer speziellen Fortpflanzungsbiologie ist diese Fischart auf das Vorkommen bestimmter Muschelarten angewiesen, wie z.B. der ebenfalls detektieren Großen Teichmuschel (*Anodonta cygnea*).

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Leuciscidae mit einer verhältnismäßig geringen Übereinstimmung für die Gattung und die Familie (Tab. 29.1) deuten wahrscheinlich auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* und *Carassius auratus* zugeordnet werden konnten (in BSR-02), handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*).

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten dieser Gattung in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

3.30 Badeteich Ladis

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
LA	Ladis	325	BTL-01, -02, -03	23.08.2023

Lage der Probenstellen

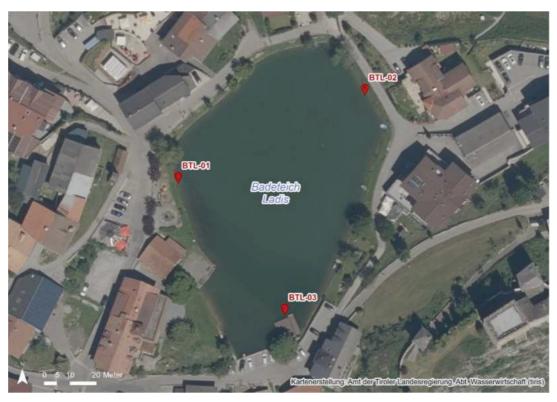


Abbildung 30: Badeteich Ladis

Artenliste je Probestelle

Tabelle 30.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BTL-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	BTL-01	Phoxinus phoxinus	Elritze	99,43	189859	42,06	451377
	BTL-01	Barbatula barbatula	Bachschmerle	98,88	139835	30,98	451377
	BTL-01	Phoxinus sp.	Elritze	99,07	75152	16,65	451377
	BTL-01	Carassius auratus	Goldfisch	99,28	31317	6,94	451377
Fische	BTL-01	Squalius cephalus	Aitel	99,19	11441	2,53	451377
Fis	BTL-01	Tinca tinca	Schleie	99,18	2631	0,58	451377
	BTL-01	Carassius sp.	Goldfisch/Giebel	98,53	871	0,19	451377
	BTL-01	Squalius sp.	Aitel	97,71	217	0,05	451377
	BTL-01	Leuciscidae	Weißfische	94,89	34	0,01	451377
	BTL-01	Barbatula	Bachschmerle	94,67	20	0	451377
	BTL-02	Phoxinus sp.	Elritze	99,29	240678	69,71	345234
	BTL-02	Carassius auratus	Goldfisch	99,18	50778	14,71	345234
	BTL-02	Barbatula barbatula	Bachschmerle	99,17	30807	8,92	345234
	BTL-02	Squalius cephalus	Aitel	99,17	15519	4,5	345234
Fische	BTL-02	Tinca tinca	Schleie	99,05	5968	1,73	345234
Fis	BTL-02	Carassius sp.	Goldfisch/Giebel	98,57	1237	0,36	345234
	BTL-02	Cyprinus carpio	Karpfen	97,54	132	0,04	345234
	BTL-02	Leuciscidae	Weißfische	94,51	92	0,03	345234
	BTL-02	Barbatula sp.	Bachschmerle	94,67	13	0	345234
	BTL-02	Squalius sp.	Aitel	97,14	10	0	345234
	BTL-03	Phoxinus csikii		98,52	137049	62,3	219987
	BTL-03	Barbatula barbatula	Bachschmerle	99,14	37219	16,92	219987
	BTL-03	Carassius auratus	Goldfisch	99,01	20451	9,3	219987
	BTL-03	Tinca tinca	Schleie	98,92	11888	5,4	219987
Fische	BTL-03	Phoxinus sp.	Elritze	97,56	8873	4,03	219987
Fis	BTL-03	Squalius cephalus	Aitel	98,85	2898	1,32	219987
	BTL-03	Carassius sp.	Goldfisch/Giebel	99,06	1181	0,54	219987
	BTL-03	Cyprinus carpio	Karpfen	97,19	293	0,13	219987
	BTL-03	Leuciscidae	Weißfische	94,43	95	0,04	219987
	BTL-03	Barbatula sp.	Bachschmerle	94,28	40	0,02	219987

Gesamte Artenliste Badeteich Ladis

Tabelle 30.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badeteich Ladis Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Barbatula barbatula	Bachschmerle		
	Phoxinus phoxinus	Elritze		
Fische	Carassius auratus	Goldfisch		
Fis	Squalius cephalus	Aitel		
	Tinca tinca	Schleie		
	Cyprinus carpio	Karpfen		

Plausibilisierung

Im Badeteich Ladis wurde in den drei Filterproben eDNA von Fischen identifiziert.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Aitel *Squalius cephalus* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung *Squalius* zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben. Gleiches gilt für die Bachschmerle: Neben den DNA-Sequenzen, welche eindeutig *Barbatula barbatula* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattungen *Barbatula* schließen ließen. (Tab. 30.1).

Bei den DNA-Sequenzen, welche nur der Gattung *Carassius* und *Carassius auratus* zugeordnet werden konnten, handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*).

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben neuerdings gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten dieser Gattung in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus). Auch wenn im Badeteich Ladis eDNA von *P. csikii* in BTL-03 identifiziert wurde, gilt der Nachweis mit 98% als nicht gesichert. Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch für *P. csikii* ist, empfehlen.

3.31 Tristacher See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme	
LZ	Amlach	1193	TRI-01, -02, -03	12.08.2023	

Lage der Probenstellen

Abbildung 31: Tristacher See

Artenliste je Probestelle

Tabelle 31.1: Auflistung der nachgewiesenen Taxa an den Probenstellen TRI-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	TRI-02	Astacus astacus	Edelkrebs	99,37	1337	100	1337
	TRI-02	Alburnus alburnus	Laube	98,74	146142	69,77	209473
	TRI-02	Scardinius erythrophthalmus	Rotfeder	99,32	38763	18,51	209473
e e	TRI-02	Perca fluviatilis	Flussbarsch	98,76	21917	10,46	209473
Fische	TRI-02	Cyprinus carpio	Karpfen	99,36	2423	1,16	209473
"	TRI-02	Leuciscus sp.	Hasel/Nerfling	98,65	135	0,06	209473
	TRI-02	Leuciscus leuciscus	Hasel	98,6	72	0,03	209473
	TRI-02	Carassius auratus	Goldfisch	96	21	0,01	209473
Krebse	TRI-03	Astacus astacus	Edelkrebs	98,39	102489	100	102489
	TRI-03	Scardinius erythrophthalmus	Rotfeder	99,26	150731	41,93	359455
	TRI-03	Sander lucioperca	Zander	99,35	94927	26,41	359455
ē	TRI-03	Alburnus alburnus	Laube	98,67	84899	23,62	359455
Fische	TRI-03	Perca fluviatilis	Flussbarsch	98,74	19643	5,46	359455
ш.	TRI-03	Cyprinus carpio	Karpfen	99,36	8944	2,49	359455
	TRI-03	Leuciscus sp.	Hasel/Nerfling	98,74	222	0,06	359455
	TRI-03	Leuciscus leuciscus	Hasel	98,37	89	0,02	359455

Gesamte Artenliste Tristacher See

Tabelle 31.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Tristacher See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
Krebse	Astacus astacus	Edelkrebs
	Alburnus alburnus	Laube
	Scardinius erythrophthalmus	Rotfeder
<u>e</u>	Sander lucioperca	Zander
Fische	Perca fluviatilis	Flussbarsch
ш	Cyprinus carpio	Karpfen
	Leuciscus sp.	Hasel/Nerfling
	Carassius auratus	Goldfisch

Plausibilisierung

Im Tristacher See wurde in zwei der drei Filterproben eDNA von Fischen und vom Edelkrebs identifiziert.

Die Nachweise von eDNA von *Leuciscus* sp. sowie der Spezies *Leuciscus leuciscus* mit einer verhältnismäßig geringen Übereinstimmung von 98,6% für die Gattung und 98,7 % für die Art (Tab. 31.1) deuten auf ein Vorkommen der Hasel (*L. leuciscus*) oder des sehr nahe verwandten Nerflings (*L. idus*) hin. Die beiden Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig differenziert werden.

Bei den DNA-Sequenzen, welche nur *Carassius auratus* zugeordnet werden konnten, handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch oder dessen Wildform, dem Giebel (*Carassius gibelio*).

3.32 Blindsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
RE	Biberwier	3784	BLI-01, -02, -03, -04	29.08.2023

Lage der Probenstellen

Abbildung 32: Blindsee

Artenliste je Probestelle

Tabelle 32.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BLI-01 − 04 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	BLI-01	Phoxinus csikii		99,48	176580	58,81	300259
9	BLI-01	Phoxinus sp.	Elritze	99,12	80612	26,85	300259
Fische	BLI-01	Perca fluviatilis	Flussbarsch	99,26	38270	12,75	300259
-		Tinca tinca	Schleie	99,13	4783	1,59	300259
	BLI-01	Leuciscidae	Weißfische	93,75	14	0	300259
Muscheln	BLI-01	Euglesa parvula		98,83	120541	100	120541
Krebse	BLI-02	Polyphemus pediculus	Raub-Wasserfloh	98,73	145	100	145
	BLI-02	Phoxinus csikii		100	231655	69,65	332579
Fische	BLI-02	Perca fluviatilis	Flussbarsch	99,33	63109	18,98	332579
Fisc	BLI-02	Phoxinus sp.	Elritze	98,79	36999	11,12	332579
	BLI-02	Tachysurus sp.	Bagridenwels	98,91	816	0,25	332579
드	BLI-02	Sphaeriidae	Kugelmuscheln	99,33	20726	93,89	22074
Muscheln	BLI-02	Pisidium nitidum	Glänzende Erbsenmuschel	99,58	1337	6,06	22074
Σ	BLI-02	Pisidium sp.	Erbsenmuschel	97,85	11	0,05	22074
	BLI-03	Perca fluviatilis	Flussbarsch	99,34	117875	46,29	254643
Fische	BLI-03	Phoxinus sp.	Elritze	99,34	93839	36,85	254643
Fis	BLI-03	Tinca tinca	Schleie	99,24	42919	16,85	254643
	BLI-03	Leuciscidae	Weißfische	91,57	10	0	254643
드	BLI-03	Euglesa parvula		99,21	109191	69,82	156390
che	BLI-03	Pisidium nitidum	Glänzende Erbsenmuschel	100	39862	25,49	156390
Muscheln	BLI-03	Sphaeriidae	Kugelmuscheln	98,77	6916	4,42	156390
_	BLI-03	Pisidium sp.	Erbsenmuschel	97,58	421	0,27	156390
	BLI-04	Phoxinus sp.	Elritze	99,32	171802	82,78	207549
Fische		Perca fluviatilis	Flussbarsch	99,28	32860	15,83	207549
Fis	BLI-04	Tinca tinca	Schleie	98,78	2874	1,38	207549
	BLI-04	Leuciscidae	Weißfische	94,32	13	0,01	207549
Muscheln	BLI-04	Euglesa parvula		98,97	102616	67,05	153044
Mus	BLI-04	Anodonta cygnea	Große Teichmuschel	100	50428	32,95	153044

Gesamte Artenliste Blindsee

Tabelle 32.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Blindsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Phoxinus sp.	Elritze		
Fische	Perca fluviatilis	Flussbarsch		
Fis	Tinca tinca	Schleie		
	Tachysurus sp.	Bagridenwels		
eln	Euglesa parvula			
Muscheln	Anodonta cygnea	nta cygnea Große Teichmuschel		
Ž	Pisidium nitidum	Glänzende Erbsenmuschel		

Plausibilisierung

Im Blindsee beim Fernpass wurde in den vier Filterproben eDNA von Fischen und Muscheln identifiziert.

Neben dem Nachweis von eDNA, welche eindeutig der Erbsenmuschel *Pisidium subtruncatum* zugeordnet werden kann, findet sich ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr der Gattung *Pisidium* oder der Familie der Sphaeridae zugeordnet werden können. (Tab. 32.1). Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf eine Art nicht erlauben.

Ähnliches gilt auch für die Nachweise, welche der Gattung *Phoxinus* zugewiesen worden sind: hier gibt es Sequenzen, welche mit 100% Übereinstimmung als *P. csikii* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mit geringerer Übereinstimmung auf Gattungsniveau zugeordnet werden können. Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben neuerdings gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten dieser Gattung in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

Bagridenwelse sind keine einheimischen Welse sondern stammen aus Ostasien. Vertreter aus der Gattung *Tachysurus* werden als Zierfische gehältert, weshalb nicht ausgeschlossen werden kann, dass sie in heimische Gewässer ausgesetzt werden. Dass sich Vertreter dieser Art in mitteleuropäischen Gewässern halten und vermehren können, zeigt sich am Beispiel des Gelben

Drachenwelses *Tachysurus fluvidraco*, der bereits in der bayerischen Donau nachgewiesen wurde (Härtl et al. 2018).

Der Blindsee ist ein beliebter Tauchplatz, von dem bekannt ist, dass neben den detektierten Fischarten dort auch noch die Fischarten Zander, Seeforelle und Bachschmerle vorkommen. Mögliche Ursachen für den fehlenden Nachweis von Zander dürften darin begründet sein, dass es sich hierbei um eine Art handelt, welche sich überwiegend in den tieferen Zonen von Gewässern aufhalten. Auch die Seeforellen ziehen in den heißen Sommermonaten tiefere, kühle Wasserschichten vor. Es ist anzunehmen, dass der See aufgrund der hohen Temperaturen im August eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand. Dadurch kann auch kaum oder nur sehr wenig eDNA dieser Fischarten an die Oberfläche und in die Bereiche der Ufer gelangen, an denen beprobt wurde.

Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht (z.B. die Elritze im Vorliegenden) und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden.

3.33 Haldensee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
RE	Grän	3896	HAL-01, -02, -03, -04	21.08.2023

Lage der Probenstellen

Abbildung 33: Haldensee

Artenliste je Probestelle

Tabelle 33.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HAL-01 − 04 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	HAL-01	Asellus aquaticus	Wasserassel	98,58	480	100	480
	HAL-01	Perca fluviatilis	Flussbarsch	99,73	126440	82,87	152568
	HAL-01	Esox lucius	Hecht	99,37	16269	10,66	152568
Fische	HAL-01	Rutilus rutilus	Rotauge	98,1	5327	3,49	152568
Fis	HAL-01	Tinca tinca	Schleie	99,13	3844	2,52	152568
	HAL-01	Coregonus sp.	Renke	99,27	644	0,42	152568
	HAL-01	Esox sp.	Hecht	100	44	0,03	152568
Krebse	HAL-04	Asellus aquaticus	Wasserassel	99,29	11	100	11
	HAL-04	Perca fluviatilis	Flussbarsch	99,33	120845	90,91	132923
Fische	HAL-04	Esox lucius	Hecht	99,32	10915	8,21	132923
Fis	HAL-04	Rutilus rutilus	Rotauge	99,05	1129	0,85	132923
	HAL-04	Esox sp.	Hecht	96,77	34	0,03	132923

Gesamte Artenliste Haldensee

Tabelle 33.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Haldensee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Perca fluviatilis	Flussbarsch
<u>e</u>	Esox lucius	Hecht
Fische	Rutilus rutilus	Rotauge
	Tinca tinca	Schleie
	Coregonus sp.	Renke

Plausibilisierung

Im Haldensee wurde in zwei der vier Filterproben eDNA von Fischen und der Wasserassel identifiziert. Da es sich bei *Asellus aquaticus* um keine Zehnfußkrebse (Decapoda) handelt, wurden diese aus der Gesamtartenliste (Tab. 33.2) gestrichen.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Hecht *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben.

Die morphologische Artunterscheidung von Renken ist schwierig und umstritten, entsprechend unzuverlässig ist auch die Datenlage rund um *Coregonus* sp. in den Referenzdatenbanken.

Im Zuge der Fischbestanderhebung wurde 2013 neben den hier detektierten Fischarten noch in sehr geringer Stückzahl die Laube nachgewiesen (BAW 2013). Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht (wie hier z.B. der Flussbarsch) und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden. Zur Klärung der Tatsache, ob die Laube im Haldenseeee vorkommt, würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz für die Laube empfehlen.

3.34 Heiterwanger See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
RE	Heiterwang	6133	HEI-01 - 07	31.08.2023

Lage der Probenstellen

Abbildung 34: Heiterwanger See

Artenliste je Probestelle

Tabelle 34.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HEI-01 − 07 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	HEI-01	Perca fluviatilis	Flussbarsch	99,32	158747	50,85	312199
	HEI-01	Phoxinus sp.	Elritze	99,38	66993	21,46	312199
	HEI-01	Cottus gobio	Корре	99,36	36440	11,67	312199
	HEI-01	Coregonus sp.	Renke	99,32	33575		312199
Je Je		Salmo trutta	Bachforelle	99,41	15187		312199
Fische		Salmo sp.	Lachs/Bachforelle	98,29	759		312199
_		Cottidae	Groppen	96,83	220		312199
		Salmo salar	Atlantischer Lachs	96,47	157		312199
		Salmonidae	Lachsartige	91,91	55		312199
		Cottus rhenanus	Rheingroppe	100	44		312199
	HEI-01	Coregonus lavaretus	Lavaret	100	22	0,01	312199
el	HEI-01	Pisidium subtruncatum	Schiefe Erbsenmuschel	98,64	40110	50,9	78805
Muscheln	HEI-01	Sphaeriidae	Kugelmuscheln	98,98	38690	49,1	78805
2	HEI-01	Pisidium nitidum	Glänzende Erbsenmuschel	96,71	5	0,01	78805
Fische	HEI-02	Perca fluviatilis	Flussbarsch	99,42	205970	70,2	293401
Fis	HEI-02	Phoxinus sp.	Elritze	99,36	87431	29,8	293401
	HEI-03	Phoxinus sp.	Elritze	99,36	189565	72,35	262011
Fische	HEI-03	Perca fluviatilis	Flussbarsch	99,34	48030	18,33	262011
Fis	HEI-03	Salmo trutta	Bachforelle	99,42	23622	9,02	262011
	HEI-03	Salmo sp.	Lachs/Bachforelle	97,61	794	0,3	262011
Se	HEI-04	Austropotamobius sp.	Stein-/Dohlenkrebs	99,36	55286	99,38	55633
Krebse	HEI-04	Austropotamobius pallipes	Dohlenkrebs	100	339	0,61	55633
×	HEI-04	Austropotamobius fulcisianus	Italienischer Dohlenkrebs	99,37	8	0,01	55633
		Perca fluviatilis	Flussbarsch		155926		301058
		Phoxinus sp.	Elritze		109892		301058
a)		Thymallus sp.	Äsche	99,39	29427		301058
Fische		Salmo sp.	Lachs/Bachforelle	99,29	5443		301058
Œ		Thymallus arcticus	Arktische Äsche	94,9	182		301058
		Salmo trutta	Bachforelle	97,02	126		301058
		Salmonidae Thumallus thumallus	Lachsartige	92,4	42		301058
a		Thymallus thymallus	Europäische Äsche	100	20		301058
Fische		Phoxinus sp.	Elritze		216507		309799
_		Perca fluviatilis	Flussbarsch	99,38	93292		309799
Krebse		Austropotamobius sp.	Stein-/Dohlenkrebs		169148		170015
호	HEI-06	Austropotamobius pallipes	Dohlenkrebs	99,32	867	0,51	170015
		Phoxinus csikii		100	182962		218410
Fische		Phoxinus sp.	Elritze	98,89	22117		218410
Ë		Salmo sp.	Lachs/Bachforelle	99,24	11846		218410
-		Barbatula barbatula	Bachschmerle	98,65	1485		218410
Krebse	HEI-07	Austropotamobius sp.	Stein-/Dohlenkrebs	99,82	3456	99,68	3467
Ž	-	Austropotamobius pallipes	Dohlenkrebs	100	11	0,32	3467
		Phoxinus csikii			206286		286748
		Perca fluviatilis	Flussbarsch	99,32	30375		286748
o o		Salmo trutta	Bachforelle	99,17	19053		286748
Fische		Coregonus sp.	Renke	98,74	15979		286748
Œ		Phoxinus sp.	Elritze	98,9	14062		286748
		Salmo sp.	Lachs/Bachforelle	98,1	967 16		286748
		Coregonus lavaretus Salmonidae	Lavaret Lachsartige	99,41 91,91	10		286748 286748
	HEI-U/		cito 119 von 156	31,31	10	U	200/48

Seite **118** von **156**

Gesamte Artenliste Heiterwanger See

Tabelle 34.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Heiterwanger See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
Krebse	Austropotamobius sp.	Stein-/Dohlenkrebs	
	Phoxinus phoxinus	Elritze	
	Perca fluviatilis	Flussbarsch	
٩	Salmo trutta	Bachforelle	
-ische	Coregonus sp.	Renke	
ш	Cottus gobio	Корре	
	Thymallus thymallus	Äsche	
	Barbatula barbatula	Bachschmerle	
Muscheln	Pisidium subtruncatum	Schiefe Erbsenmuschel	
Mus	Pisidium nitidum	Glänzende Erbsenmuschel	

Plausibilisierung

Im Heiterwanger See wurde in den sieben Filterproben eDNA von Fischen, Krebsen und Muscheln identifiziert.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Bachforelle *Salmo trutta* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung *Salmo* bzw. überhaupt nur mehr auf Salmonidae schließen ließen. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf Artniveau nicht erlauben. Für die vermeintlichen Nachweise von Lachs (*S. salar*) gibt es zwei mögliche Erklärungen: Theoretisch könnten die DNA-Spuren von Lachs über einen Fremdeintrag in das Gewässer gelangt sein. Aller Wahrscheinlichkeit nach handelt es sich jedoch hierbei um eine fehlerhafte Zuordnung von beeinträchtigten DNA-Molekülen von *S. trutta*. Darauf ist insbesondere aufgrund der verhältnismäßig geringen Übereinstimmung von 96,5% (HEI-02) mit den DNA-Sequenzen von *S. salar* in der Referenzdatenbank zu schließen (Tab. 34.1).

Ebenfalls ein "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: Neben den DNA-Sequenzen, welche eindeutig den beiden Arten *Pisidium subtruncatum* und *P. nitidum* zuzuordnen waren, fanden sich auch welche, die nur mehr auf Vertreter aus deren Familie (Sphaeriidae) schließen ließen.

Die morphologische Artunterscheidung von Renken ist schwierig und umstritten, entsprechend unzuverlässig ist auch die Datenlage in den Referenzdatenbanken. Deshalb wird die Artzuweisung auf *C. lavaretus* in Probe HEI-01 trotz einer 100%igen Übereinstimmung auf *Coregonus* sp. belassen (Tab. 34.2)

Bei dem vermeintlichen Nachweis der Rheingroppe *Cottus rhenanus* (Tab. 34.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, die eigentlich von der heimischen Koppe (*Cottus gobio*) stammen, für welche bislang noch sehr wenige Einträge für den Genabschnitt 12S in der Referenzdatenbank vertreten sind. Dies gilt auch für jene DNA-Sequenzen, welche nur der Familie der Cottidae zugeordnet werden konnten.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. und *P. phoxinus* ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 gentische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

Im Zuge einer Fischbestanderhebung im Jahr 2014 wurden am Heiterwanger See neben den detektieren Arten noch die Regenbogenforelle und der Seesaibling gefangen (BAW 2014). Mögliche Ursache für den fehlenden Nachweis dieser Spezies könnte sein, dass sich diese Fische in den heißen Sommermonaten in tiefere, kühle Wasserschichten zurückgezogen haben. Es ist anzunehmen, dass der See aufgrund der hohen Temperaturen im August eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand. Dadurch kann auch kaum oder nur sehr wenig eDNA dieser Fischarten an die Oberfläche und in den Bereich der Ufer gelangen, an denen beprobt wurde. Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (seguenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht (wie hier z.B. der Flussbarsch) und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden. Zur Klärung der Tatsache, ob sich die Arten noch im See aufhalten würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz für Regenbogenforelle und Seesaibling empfehlen oder eine Re-Analyse von Filterproben, welche zu einem anderen Zeitpunkt genommen werden.

Im Heiterwanger See wurde eDNA der Gattung *Austropotamobius* nachgewiesen, die mit bis zu 100% der DNA-Sequenzen des Dohlenkrebses *A. pallipes* in der Referenzdatenbank übereinstimmt. Die Verbreitung des Dohlenkrebses reicht von Süd- nach Westeuropa bis zu den Britischen Inseln (Albrecht 1982, Holdich 2002), für Österreich sind in der Literatur Vorkommen in Kärnten und in Tirol im Plansee genannt (Füreder & Machino 1995, Holdich 2002). Aufgrund der bestehenden Verbindung zwischen dem Plansee und dem Heiterwanger See ist ein Vorkommen des Dohlenkrebses im Heiterwanger See durchaus plausibel. Ein weiterer Vetreter aus der Gattung *Austropotamobius* ist der Steinkrebs *A. torrentium*, für den auch in Tirol im Haldensee und im Ausrinn des Plansees (Archbach) Vorkommen beschrieben wurden (Füreder & Machino 1996, Machino & Füreder 1998). Ein Vorkommen des Steinkrebses im Heiterwanger

See kann aufgrund der Verbindung zwischen diesem und Plansee nicht ausgeschlossen werden. Aus diesem Grund wurden die im Heiterwanger See erfasste eDNA-Sequenzen von Krebsen unter *Austropotamobius* sp. zusammengefasst und als Stein-/Dohlenkrebs gelistet.

3.35 Plansee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
RE	Breitenwang	16118	PLA-01 - 17	31.08.2023

Lage der Probenstellen

Abbildung 35: Plansee

Artenliste je Probestelle

Tabelle 35.1: Auflistung der nachgewiesenen Taxa an den Probenstellen PLA-01 − 17 (3-teilig) Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	PLA-01	Phoxinus csikii		98,52	142470	53,55	266063
e e		Perca fluviatilis	Flussbarsch	99,34	101174		266063
Fische		Phoxinus sp.	Elritze	98,88	12471		266063
"	PLA-01	Cottus sp.	Корре	99,31	6304	2,37	266063
	PLA-01	Barbatula barbatula	Bachschmerle	98,71	3644	1,37	266063
bse	PLA-02	Austropotamobius sp.	Stein-/Dohlenkrebs	99,88	171060	99,69	171595
Krebse	PLA-02	Austropotamobius pallipes	Dohlenkrebs	99,36	535	0,31	171595
	PLA-02	Perca fluviatilis	Flussbarsch	99,34	99894	44.29	225543
		Phoxinus sp.	Elritze	99,4	90641		225543
Fische		Salmo sp.	Lachs/Bachforelle	99,32			225543
Ë		Salmo trutta	Bachforelle	99,41			225543
		Salmo salar	Atlantischer Lachs	91,76			225543
Se		Austropotamobius sp.	Stein-/Dohlenkrebs	99,93	98771	99,99	98780
Krebse		Austropotamobius pallipes	Dohlenkrebs	99,36	9	0,01	98780
		Phoxinus sp.	Elritze		158276		274011
a		Perca fluviatilis	Flussbarsch	99,3	87891		274011
Fische		Cottus sp.	Корре	99,37			274011
ιÏ		Phoxinus phoxinus	Elritze	99,43			274011
		Cottidae	Groppen	96,95			274011
Krebse	PLA-04	Trachelipus rathkii	Rathke-Assel	95,33	139	100	139
	PLA-04	Phoxinus csikii		98,52	172520	71,95	239773
	PLA-04	Perca fluviatilis	Flussbarsch	99,22	30017	12,52	239773
e	PLA-04	Cottus sp.	Корре	99,32	20838	8,69	239773
Fische	PLA-04	Phoxinus sp.	Elritze	98,93	13159	5,49	239773
"	PLA-04	Salmo trutta	Bachforelle	99,34	2969	1,24	239773
	PLA-04	Salmo sp.	Lachs/Bachforelle	97,45	237	0,1	239773
	PLA-04	Cottidae	Groppen	96,34	33	0,01	239773
e.		Phoxinus csikii		100	224293		276565
Fische	PLA-05	Perca fluviatilis	Flussbarsch	99,26	29080	10,51	276565
	PLA-05	Phoxinus sp.	Elritze	98,88	23192	8,39	276565
Krebse	PLA-06	Austropotamobius sp.	Stein-/Dohlenkrebs	99,81	16966	99,81	16999
Kre	PLA-06	Austropotamobius pallipes	Dohlenkrebs	100	33	0,19	16999
	PLA-06	Phoxinus sp.	Elritze	99,84	278397	61,78	450658
	PLA-06	Perca fluviatilis	Flussbarsch	99,34	68544	15,21	450658
		Cottus sp.	Корре	99,35	52973	11,75	450658
Fische	PLA-06	Oncorhynchus mykiss	Regenbogenforelle	99,27	39912	8,86	450658
Fis		Barbatula barbatula	Bachschmerle	99,04			450658
	PLA-06	Oncorhynchus sp.		97,65	168		450658
		Cottus rhenanus	Rheingroppe	100			450658
		Cottidae	Groppen	95,98			450658
		Phoxinus sp.	Elritze		286529		363246
he		Perca fluviatilis	Flussbarsch	99,27	62198		363246
Fische		Cottus sp.	Koppe	99,72	7153		363246
		Salmo sp.	Lachs/Bachforelle	99,21			363246
	PLA-07	Salmo trutta	Bachforelle	99,43	3197	0,88	363246

Seite **122** von **156**

		<u>.</u> .	1			(0	
Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
Krebse	PLA-08	Austropotamobius sp.	Stein-/Dohlenkrebs	99,89	3622	98,37	3682
Kre	PLA-08	Austropotamobius pallipes	Dohlenkrebs	100	60	1,63	3682
	PLA-08	Phoxinus csikii		98,52	222687	58,61	379934
	PLA-08	Perca fluviatilis	Flussbarsch	99,36	104307	27,45	379934
e	PLA-08	Salmo trutta	Bachforelle	99,41	27564	7,25	379934
Fische	PLA-08	Phoxinus sp.	Elritze	98,93	18045	4,75	379934
ш.	PLA-08	Cottus sp.	Корре	99,27	6338	1,67	379934
	PLA-08	Salmo sp.	Lachs/Bachforelle	97,52	960	0,25	379934
	PLA-08	Cottidae	Groppen	96,95	33	0,01	379934
Se	PLA-09	Austropotamobius sp.	Stein-/Dohlenkrebs	99,35	29537	93,04	31748
Krebse	PLA-09	Austropotamobius pallipes	Dohlenkrebs	98,85	2204	6,94	31748
×	PLA-09	Austropotamobius fulcisianus	Italienischer Dohlenkrebs	99,37	7	0,02	31748
	PLA-09	Perca fluviatilis	Flussbarsch	99,97	246241	66,83	368453
Fische	PLA-09	Phoxinus sp.	Elritze	99,43	117807	31,97	368453
Fis	PLA-09	Cottus sp.	Корре	99,41	2485	0,67	368453
	PLA-09	Barbatula barbatula	Bachschmerle	98,83	1920	0,52	368453
Se	PLA-10	Austropotamobius sp.	Stein-/Dohlenkrebs	99,35	84468	99,56	84838
Krebse	PLA-10	Austropotamobius pallipes	Dohlenkrebs	100	364	0,43	84838
¥	PLA-10	Austropotamobius fulcisianus	Italienischer Dohlenkrebs	99,37	6	0,01	84838
	PLA-10	Phoxinus csikii		100	226198	59,31	381369
		Perca fluviatilis	Flussbarsch	99,34	83955		381369
41		Barbatula barbatula	Bachschmerle	98,85	33000		381369
Fische		Phoxinus sp.	Elritze	98,74	20986		381369
Ë		Cottus sp.	Корре	99,34	17172		381369
	PLA-10	Squalius cephalus	Aitel	93,14	35		381369
	PLA-10	Cottus rhenanus	Rheingroppe	100	13	0	381369
		Leuciscidae	Weißfische	91,57	10		381369
se		Austropotamobius sp.	Stein-/Dohlenkrebs	99,35	39897	99,59	40060
Krebse		Austropotamobius pallipes	Dohlenkrebs	99,96	158	0,39	40060
_		Austropotamobius fulcisianus	Italienischer Dohlenkrebs	99,37		0,01	40060
		Phoxinus csikii			270252		431436
		Perca fluviatilis	Flussbarsch	99,32	71010		431436
d)		Cottus sp.	Koppe	99,31	41103		431436
Fische		Phoxinus sp.	Elritze	98,89	36460		431436
证		Barbatula barbatula	Bachschmerle	99,09	12489		431436
		Cottidae	Groppen	96,76	85		431436
		Cottus rhenanus	Rheingroppe	100	22		431436
(1)		Squalius cephalus	Aitel	93,14			431436
Krebse		Austropotamobius sp.	Stein-/Dohlenkrebs	,	107286		107620
호	PLA-12	Austropotamobius pallipes	Dohlenkrebs	99,36	334	0,31	107620
	PLA-12	Phoxinus sp.	Elritze	99,88	178206	71,26	250094
		Barbatula barbatula	Bachschmerle	98,68	50562		250094
Fische	PLA-12	Perca fluviatilis	Flussbarsch	99,37	10966	4,38	250094
Fis		Cottus sp.	Корре	99,2	7279	2,91	250094
		Salmo sp.	Lachs/Bachforelle	99,88	3025		250094
	PLA-12	Squalius cephalus	Aitel	92,87	56	0,02	250094

Seite **123** von **156**

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
	PLA-13	Phoxinus sp.	Elritze	99,35	222340	62,06	358261
	PLA-13	Cottus sp.	Корре	99,34	60883	16,99	358261
	PLA-13	Barbatula barbatula	Bachschmerle	99,12	40872	11,41	358261
ဉ	PLA-13	Perca fluviatilis	Flussbarsch	99,35	24103	6,73	358261
Fische	PLA-13	Salmo trutta	Bachforelle	99,41	9469	2,64	358261
ш.	PLA-13	Salmo sp.	Lachs/Bachforelle	97,71	462	0,13	358261
	PLA-13	Cottidae	Groppen	96,68	54	0,02	358261
	PLA-13	Squalius cephalus	Aitel	93,14	43	0,01	358261
	PLA-13	Cottus rhenanus	Rheingroppe	100	35	0,01	358261
se	PLA-14	Austropotamobius sp.	Stein-/Dohlenkrebs	99,32	71141	99,27	71667
Krebse	PLA-14	Austropotamobius pallipes	Dohlenkrebs	99,44	515	0,72	71667
~	PLA-14	Austropotamobius fulcisianus	Italienischer Dohlenkrebs	99,37	11	0,02	71667
	PLA-14	Phoxinus sp.	Elritze	99,38	28143	50,1	56170
	PLA-14	Barbatula barbatula	Bachschmerle	99,2	13905	24,76	56170
	PLA-14	Cottus sp.	Корре	99,39	7103	12,65	56170
Fische	PLA-14	Perca fluviatilis	Flussbarsch	99,4	5706	10,16	56170
Fis	PLA-14	Salmo trutta	Bachforelle	99,42	866	1,54	56170
	PLA-14	Oncorhynchus mykiss	Regenbogenforelle	100	421	0,75	56170
	PLA-14	Salmo sp.	Lachs/Bachforelle	99,41	16	0,03	56170
	PLA-14	Cottidae	Groppen	96,95	10	0,02	56170
	PLA-15	Perca fluviatilis	Flussbarsch	99,34	134237	49,44	271533
ဉ	PLA-15	Phoxinus sp.	Elritze	99,4	95149	35,04	271533
Fische	PLA-15	Salmo trutta	Bachforelle	99,35	29530	10,88	271533
ш.	PLA-15	Tinca tinca	Schleie	99,36	12022	4,43	271533
	PLA-15	Salmo sp.	Lachs/Bachforelle	98,37	595	0,22	271533
pse	PLA-16	Austropotamobius sp.	Stein-/Dohlenkrebs	98,4	204359	99,57	205235
Krebse	PLA-16	Austropotamobius pallipes	Dohlenkrebs	99,35	876	0,43	205235
	PLA-16	Phoxinus csikii		99,49	241216	80,73	298810
	PLA-16	Salmo trutta	Bachforelle	99,36	29480	9,87	298810
Fische	PLA-16	Phoxinus sp.	Elritze	98,9	20718	6,93	298810
Fis	PLA-16	Oncorhynchus mykiss	Regenbogenforelle	99,39	6726	2,25	298810
	PLA-16	Salmo sp.	Lachs/Bachforelle	98,69	650	0,22	298810
	PLA-16	Oncorhynchus sp.		99,71	20	0,01	298810
je j	PLA-17	Perca fluviatilis	Flussbarsch	99,33	141770	51,24	276653
Fische	PLA-17	Phoxinus csikii		98,52	127349	46,03	276653
ш.	PLA-17	Phoxinus sp.	Elritze	98,94	7534	2,72	276653

Gesamte Artenliste Plansee

Tabelle 35.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Plansee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
Krebse	Austropotamobius sp.	Stein-/Dohlenkrebs
	Phoxinus phoxinus	Elritze
	Perca fluviatilis	Flussbarsch
	Cottus gobio	Корре
Fische	Barbatula barbatula	Bachschmerle
Fis	Salmo trutta	Bachforelle
	Oncorhynchus mykiss	Regenbogenforelle
	Tinca tinca	Schleie
	Squalius cephalus	Aitel

Plausibilisierung

Im Plansee wurde in den siebzehn Filterproben eDNA von Fischen und Krebsen identifiziert.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Bachforelle Salmo trutta identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung Salmo bzw. überhaupt nur mehr auf Salmonidae schließen ließen. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf eine Art nicht erlauben. Für die vermeintlichen Nachweise von Lachs (S. salar) gibt es zwei mögliche Erklärungen: Theoretisch könnten die DNA-Spuren von Lachs über einen Fremdeintrag in das Gewässer gelangt sein. Aller Wahrscheinlichkeit nach handelt es sich jedoch hierbei um eine fehlerhafte Zuordnung von beeinträchtigten DNA-Molekülen von S. trutta. Darauf ist insbesondere aufgrund der verhältnismäßig geringen Übereinstimmung von 91,8% (PLA-02) mit den DNA-Sequenzen von S. salar in der Referenzdatenbank zu schließen (Tab. 35.1).

Ebenfalls ein "Nachrauschen" des eDNA-Signals ist bei der Regenbogenforelle zu beobachten: Neben den DNA-Sequenzen, welche eindeutig der Art *Oncorhynchus mykiss* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattung schließen ließen.

Bei dem vermeintlichen Nachweis der Rheingroppe *Cottus rhenanus* (Tab. 35.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, welche eigentlich von der heimischen Koppe (*Cottus gobio*) stammen, für welche bislang noch sehr wenige Einträge für den Genabschnitt 12S in der Referenzdatenbank vertreten sind. Dies gilt auch für jene DNA-Sequenzen, welche nur der Familie der Cottidae zugeordnet werden konnten.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. und *P. phoxinus* ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

Bei der Interpretation des Nachweises von eDNA von Leuciscidae in PLA-10 mit einer verhältnismäßig geringen Übereinstimmung von 91% für die Gattung (Tab. 35.1) gibt es unterschiedliche mögliche Rückschlüsse: es könnte sich um DNA-Sequenzen der Hasel (*L. leuciscus*) oder des Nerflings (*L. idus*) handeln, welche dieser Familie angehören und die aufgrund ihres Qualitätsmangels (bedingt durch natürliche Abbauprozesse der freien DNA in der Wassersäule) nur mehr der Familie zugeordnet worden sind. Es ist jedoch auch möglich, dass diese eDNA-Spuren auf ein Vorkommen der Laube (*Alburnus alburnus*) oder anderer Vertreter aus der Familie der Weißfische deuten. Da die eDNA dieser Familie jedoch nur in einer Probe und auch hier mit einer geringen Sequenzanzahl detektiert wurde, wurden die Leuciscidae aus der Überblickstabelle entfernt (Tab. 35.2).

Im Zuge einer Fischbestanderhebung im Jahr 2014 wurden am Plansee neben den detektieren Arten noch Seesaibling, Renken und eine Äsche gefangen (BAW 2014). Mögliche Ursachen für den fehlenden Nachweis dieser Spezies könnten sein, dass sich diese Fische in den heißen Sommermonaten in tiefere, kühle Wasserschichten zurückgezogen haben. Es ist anzunehmen, dass der Plansee aufgrund der hohen Temperaturen im August eine Schichtung aufwies und wenig Durchmischung der Wassersäule stattfand. Dadurch kann auch kaum oder nur sehr wenig eDNA dieser Fischarten an die Oberfläche und in den Bereich der Ufer gelangen, an denen beprobt wurde.

Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht (wie hier z.B. der Flussbarsch) und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden. Zur Klärung der Tatsache, ob sich die Arten noch im See aufhalten würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz für Renke und Seesaibling empfehlen.

Im Plansee wurde eDNA der Gattung *Austropotamobius* nachgewiesen, die mit bis zu 100% der DNA-Sequenzen des Dohlenkrebses *Austropotamobius pallipes* in der Referenzdatenbank übereinstimmt. Die Verbreitung des Dohlenkrebses reicht von Süd- nach Westeuropa bis zu den Britischen Inseln (Albrecht 1982, Holdich 2002), für Österreich sind in der Literatur Vorkommen in Kärnten und in Tirol im Plansee genannt (Füreder & Machino 1995, Holdich 2002). Aufgrund der bestehenden Verbindung zwischen dem Plansee und dem Heiterwangersee ist ein

Vorkommen des Dohlenkrebses im Heiterwangersee durchaus plausibel. Ein weiterer Vetreter aus der Gattung *Austropotamobius* ist der Steinkrebs *A. torrentium*, für den auch in Tirol im Haldensee und im Ausrinn des Plansees (Archbach) Vorkommen beschrieben wurden (Füreder & Machino 1996, Machino & Füreder 1998). Ein Vorkommen des Steinkrebses im Plansee kann daher nicht ausgeschlossen werden. Aus diesem Grund wurden die im Plansee erfasste eDNA-Sequenzen von Krebsen unter *Austropotamobius sp.* zusammengefasst und als Stein/Dohlenkrebs gelistet.Neben den Zielorganismen wurde in PLA-02 und PLA-06 auch eDNA des Bergmolchs (*Ichthyosaura alpestris*) nachgewiesen (Tab. 35.1), was darauf schließen lässt, dass diese Art im Plansee ebenfalls vorkommt. Gelegentlich können die Primer auch auf verwandte Tiergruppen ausweichen (sowohl Fische als auch Lurche sind Wirbeltiere). Amphibien waren aber nicht als Zielgruppe in dieser Studie enthalten. Für eine repräsentative Erhebung der Amphibien empfehlen wir eine gezielte Nachsuche mittels eines für Amphibien spezifischen Metabarcoding-Ansatzes in der Laichzeit, zu der sich die meisten Individuen in den Gewässern aufhalten.

3.36 Urisee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
RE	Reutte	1288	URI-01, -02, -03	21.08.2023

Lage der Probenstellen

Abbildung 36: Urisee

Artenliste je Probestelle

Tabelle 36.1: Auflistung der nachgewiesenen Taxa an den Probenstellen URI-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑Seq). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	URI-01	Rhodeus amarus	Bitterling	99,26	27966	47,97	58296
	URI-01	Perca fluviatilis	Flussbarsch	99,31	24494	42,02	58296
ē	URI-01	Tinca tinca	Schleie	99,18	3234	5,55	58296
Fische	URI-01	Cyprinus carpio	Karpfen	99,67	1713	2,94	58296
ш.	URI-01	Rutilus rutilus	Rotauge	99,43	385	0,66	58296
	URI-01	Anguilla anguilla	Aal	100	255	0,44	58296
	URI-01	Rhodeus sp.	Bitterling	100	249	0,43	58296
	URI-03	Rutilus rutilus	Rotauge	99,49	249885	73,62	339413
Fische	URI-03	Tinca tinca	Schleie	99,18	67674	19,94	339413
Fis	URI-03	Perca fluviatilis	Flussbarsch	99,25	21836	6,43	339413
	URI-03	Leuciscus sp.	Hasel/Nerfling	97,16	18	0,01	339413

Gesamte Artenliste Urisee

Tabelle 36.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Urisee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Rutilus rutilus	Rotauge	
	Tinca tinca	Schleie	
ē	Perca fluviatilis	Flussbarsch	
Fische	Rhodeus amarus	Bitterling	
	Cyprinus carpio	Karpfen	
	Anguilla anguilla	Aal	
	Leuciscus sp.	Hasel/Nerfling	

Plausibilisierung

In zwei der drei Proben vom Urisee wurde eDNA von Fischen identifiziert. Es gab jedoch keine Nachweise von DNA-Spuren für die untersuchten Tiergruppen in der Probe URI-02.

Bei den DNA-Sequenzen, welche der Gattung *Anguilla* zugeordnet werden konnten (in URI-01), ist davon auszugehen, dass es sich um einen Nachweis für den Europäischen Aal (*A. anguilla*) handelt, da nur diese eine Art in Europa vertreten ist. Jene Nachweise, welche der Gattung *Leuciscus* zugewiesen worden sind (in URI-03), lassen auf ein Vorkommen der Hasel (*L. leuciscus*) oder des nahe verwandten Nerflings (*L. idus*) schließen. Die beiden Spezies der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

In der Probe URI-01 finden sich zahlreiche Sequenzen, welche eindeutig als *Rhodeus amarus* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung *Rhodeus* zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf eine Art nicht mehr erlauben. Aufgrund ihrer speziellen Fortpflanzungsbiologie ist diese Fischart auf das Vorkommen bestimmter Muschelarten angewiesen, wie z.B. der Großen Teichmuschel, welche jedoch in den drei Proben vom Urisee nicht detektiert wurden.

3.37 Vilsalpsee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
RE	Tannheim	3733	VIL-01, -02, -03, -04	21.08.2023

Lage der Probenstellen

Abbildung 37: Vilsalpsee

Artenliste je Probestelle

Tabelle 37.1: Auflistung der nachgewiesenen Taxa an den Probenstellen VIS-01 – 04 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
		Perca fluviatilis	Flussbarsch		150806		280277
		Phoxinus sp.	Weißfisch	99,26			280277
		Barbatula barbatula	Bachschmerle	99,19			280277
he		Salvelinus sp.	Saibling	99,27			280277
Fische		Cottus sp.	Koppe	99,78	982	-	280277
		Salmo sp.	Lachs/Bachforelle	99,38		-	280277
		Rutilus rutilus	Rotauge	99,46		=	280277
		Leuciscidae	Weißfische	91,57			280277
		Phoxinus phoxinus	Elritze	94,32	12		280277
		Phoxinus csikii	Elizada a sa ala		231536		
		Perca fluviatilis	Flussbarsch		124973		581874
		Barbatula barbatula	Bachschmerle		107764		581874
		Salvelinus sp.	Saibling	99,26			581874
		Phoxinus sp. Salmo trutta	Weißfisch Bachforelle	98,33 99,42		-	581874 581874
		Salmo sp.	Lachs/Bachforelle	98,53			581874
Fische		Tinca tinca	Schleie	99,39		=	581874
Fis		Squalius cephalus	Aitel	93,72			581874
		Salmonidae	Lachsartige	94,7			581874
		Salvelinus namaycush	Amerikanischer Seesaibling	100	44		581874
		Perca sp.	Barsch	90,12	34		581874
		Rutilus rutilus	Rotauge	100	25		581874
		Phoxinus phoxinus	Elritze	93,41	20		581874
		Leuciscidae	Weißfische	91,57			581874
		Perca fluviatilis	Flussbarsch		104673		
		Phoxinus sp.	Weißfisch	98,99			184743
	VIL-03	Barbatula barbatula	Bachschmerle	98,93			184743
he	VIL-03	Tinca tinca	Schleie	98,91	5471	2,96	184743
Fische	VIL-03	Salmo sp.	Lachs/Bachforelle	99,89	1171	0,63	184743
	VIL-03	Rutilus rutilus	Rotauge	99,54	379	0,21	184743
	VIL-03	Leuciscidae	Weißfische	93,69	22	0,01	184743
	VIL-03	Leuciscus leuciscus	Hasel	96,04	15	0,01	184743
	VIL-04	Perca fluviatilis	Flussbarsch	99,33	175245	56,64	309409
Fische	VIL-04	Phoxinus sp.	Weißfisch	99,35	133485	43,14	309409
Fis(VIL-04	Barbatula barbatula	Bachschmerle	99,36	666	0,22	309409
	VIL-04	Leuciscidae	Weißfische	91,57	13	0	309409

Gesamte Artenliste Vilsalpsee

Tabelle 37.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Visalpsee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name	
	Perca fluviatilis	Flussbarsch	
	Barbatula barbatula	Bachschmerle	
	Salvelinus sp.	Saibling	
	Tinca tinca	Schleie	
Fische	Salmo trutta	Bachforelle	
Fis	Cottus gobio	Корре	
	Rutilus rutilus	Rotauge	
	Squalius cephalus	Aitel	
	Phoxinus sp.	Elritze	
	Leuciscus sp.	Hasel/Nerfling	

Plausibilisierung

Im Vilsalpsee wurde in den vier Filterproben eDNA von Fischen identifiziert.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als Bachforelle *Salmo trutta* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung *Salmo* bzw. überhaupt nur mehr auf Salmonidae schließen ließen. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle, welche eine eindeutige Zuordnung auf eine Art nicht erlauben. Ein ähnliches Phänomen ist für das Signal des Flussbarsches zu beobachten: Neben den DNA-Sequenzen, welche eindeutig der Art *Perca fluviatilis* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die Gattung schließen ließen.

Die Detektion für eDNA aus der Gattung Salvelinus lässt sich als Nachweis für das Vorkommen von Saiblingen interpretieren. Leider kann man die beiden Arten S. umbla und S. fontinalis molekular auf dem gewählten Genabschnitt 12S nicht voneinander unterscheiden. Der vermeintliche Nachweis des Amerikanischen Salblings S. namaycush ist entweder auf Besatz oder auf einen Fehler/eine Fehlbestimmung im Eintrag in der Referenzdatenbank zurückzuführen und wird daher ebenfalls nur als Nachweis einer Saiblingsart und somit als Salvelinus sp. gewertet.

Beim Nachweis der Gattung *Cottus* in VIL-01 (Tab. 35.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, welche eigentlich von der heimischen Koppe (*Cottus gobio*) stammen.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. und *P. phoxinus* ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

Bei der Interpretation des Nachweises von eDNA der Leuciscidae mit 91,6% und von *L. leuciscus* in VIL-03 gilt es als wahrscheinlich, dass die Hasel im Vilsalpsee vorkommt (Tab. 35.1). Aufgrund der verhältnismäßig geringen Übereinstimmung der DNA-Sequenzen mit jenen in der Referenzdatenbank von 96% ist es jedoch auch nicht auszuschließen, dass diese eDNA-Spuren auf ein Vorkommen des Nerflings (*L. idus*) deuten. Diese beiden nahe verwandten Arten der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

Im Zuge einer Fischbestanderhebung im Jahr 2015 wurden am Vilsalpsee neben den detektieren Arten in geringer Stückzahl noch die Regenbogenforelle und die Rotfeder gefangen (BAW 2015). Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht (wie hier z.B. der Flussbarsch) und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden. Zur Klärung der von Rotfeder und Regenbogenforelle im Vilsalpsee würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz empfehlen.

3.38 Achensee

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
SZ	Achenkirch	20565	ACH-01 - 21	24.08.2023

Lage der Probenstellen

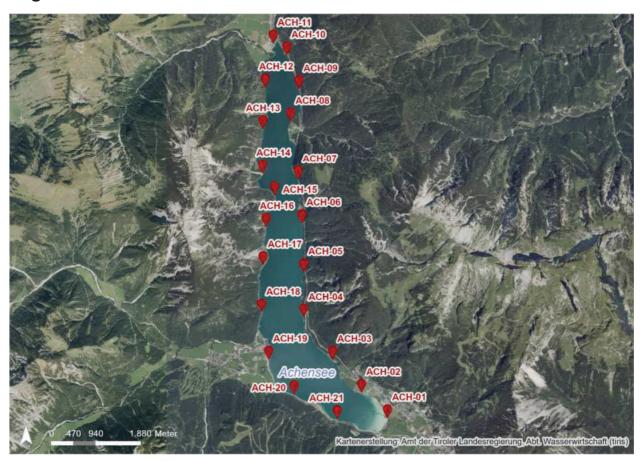


Abbildung 38: Achensee

Artenliste je Probestelle

Tabelle 38.1: Auflistung der nachgewiesenen Taxa an den Probenstellen ACH-01 − 21 (4-teilig) Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	ACH-02	Perca fluviatilis	Flussbarsch	99,39	52064	76,38	68164
Fische		Cottus sp.	Корре	99,39		23,5	68164
뜐		Cottidae	Groppen	96,95	51	0,07	68164
	ACH-02	Rutilus rutilus	Rotauge	100	31	0,05	68164
Muscheln		Euglesa casertana	Gemeine Erbsenmuschel		113753		113889
Σ	ACH-02	Sphaeriidae	Kugelmuscheln	95,26	136	0,12	113889
		Perca fluviatilis	Flussbarsch		229419		359067
he		Cottus sp.	Koppe	99,79			359067
Fische		Phoxinus sp.	Elritze	98,83	38752	-	359067
_	ACH-04	Cottidae	Groppen	96,82	279		359067
		Cottus rhenanus	Rheingroppe	100	47	·	359067
		Perca fluviatilis	Flussbarsch		121549		177718
he		Esox lucius	Hecht	99,38	32934		177718
Fische		Cottus sp.	Корре	99,34	23104		177718
-		Esox sp.	Hecht	100	118		177718
	ACH-05	Cottus rhenanus	Rheingroppe	100	13	0,01	177718
Muscheln	ACH-05	Euglesa parvula		98,96	130393	100	130393
	ACH-06	Perca fluviatilis	Flussbarsch	99,31	123494	72,19	171059
	ACH-06	Phoxinus sp.	Elritze	99,41	24364	14,24	171059
	ACH-06	Cottus sp.	Корре	99,26	11717	6,85	171059
	ACH-06	Esox lucius	Hecht	99,29	6552	3,83	171059
Fische	ACH-06	Coregonus sp.	Renke	99,39	4777	2,79	171059
Fis	ACH-06	Cottidae	Groppen	96,95	92	0,05	171059
	ACH-06	Esox sp.	Hecht	99,07	32	0,02	171059
	ACH-06	Salmonidae	Lachsartige	91,91	11	0,01	171059
	ACH-06	Cottus rhenanus	Rheingroppe	100	10	0,01	171059
	ACH-06	Barbatula barbatula	Bachschmerle	100	10	0,01	171059
	ACH-07	Esox lucius	Hecht	99,43	112232	48,59	230995
	ACH-07	Perca fluviatilis	Flussbarsch	99,87	92359	39,98	230995
Je.		Cottus sp.	Корре	99,35	21540		230995
Fische		Coregonus sp.	Renke	99,13			230995
_		Cottidae	Groppen	96,95	180		230995
		Esox sp.	Hecht	95,4			230995
	ACH-07	Salmonidae	Lachsfische	91,91	15	0,01	230995
Muscheln	ACH-07	Pisidium obtusale	Aufgeblasene Erbsenmuschel	98,66	49528	100	49528

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	ACH-08	Perca fluviatilis	Flussbarsch	99,41	177296	77,35	229208
	ACH-08	Cottus sp.	Koppe	98,32	36418	15,89	229208
e	ACH-08	Barbatula barbatula	Bachschmerle	99,4	12113	5,28	229208
Fische	ACH-08	Coregonus sp.	Renke	99,36	3292	1,44	229208
	ACH-08	Cottus rhenanus	Rheingroppe	100	50		229208
	ACH-08	Cottidae	Groppen	95,93	24	0,01	229208
	ACH-08	Salmonidae	Lachsartige	91,91	15	0,01	229208
Muscheln	ACH-08	Musculium lacustre	Häubchenmuschel	99,07	60777	100	60777
	ACH-09	Perca fluviatilis	Flussbarsch	99,4	205117	69,05	297059
	ACH-09	Cottus sp.	Корре	99,76	68710	23,13	297059
Fische	ACH-09	Barbatula barbatula	Bachschmerle	99,12	14062	4,73	297059
Fis	ACH-09	Phoxinus sp.	Elritze	99,39	8640	2,91	297059
	ACH-09	Cottidae	Groppen	96,81	494	0,17	297059
	ACH-09	O Cottus rhenanus Rheingroppe		100	36	0,01	297059
eln	ACH-09	Musculium lacustre	Häubchenmuschel	99,09	132016	85,73	153997
Muscheln	ACH-09	Pisidium obtusale	Aufgeblasene Erbsenmuschel	98,82	20594	13,37	153997
Σ	ACH-09	Musculium	Häubchenmuschel	97,55	1387	0,9	153997
	ACH-10	Perca fluviatilis Flussbarsch			194990		273475
	ACH-10	Phoxinus sp. Elritze		99,34	52755	19,29	273475
	ACH-10	Cottus sp. Koppe		99,29	17984	6,58	273475
Fische	ACH-10	Esox lucius Hecht		99,37	6718	2,46	273475
Fis	ACH-10	Coregonus sp. Renke		99,39	775	0,28	273475
	ACH-10	Cottidae Groppen		96,28	224	0,08	273475
	ACH-10	Leuciscidae Weißfische		91,57	15	0,01	273475
	ACH-10	Esox sp.	Hecht	98,48	14	0,01	273475
Krebse		Asellus aquaticus	Wasserassel	100	5	100	5
		Perca fluviatilis	Flussbarsch		167347		249849
		Phoxinus sp.	Elritze	99,27	39407		249849
		Barbatula barbatula	Bachschmerle	99,25	30035		249849
		Oncorhynchus mykiss	Regenbogenforelle	99,26	5971		249849
a		Salmo sp.	Lachs/Bachforelle	99,39			249849
Fische		Salvelinus fontinalis	Bachsaibling	99,34		,	249849
Œ		Cottus sp.	Koppe	99,3	1263		249849
		Salvelinus sp. Salmonidae	Saibling Lachsartige	98,67 98,31			249849249849
		Cottidae	Groppen	96,95			249849
		Squalius cephalus	Aitel	93,14			249849
		Leuciscidae	Weißfische	91,57	14		249849
Muscheln		Musculium lacustre	Häubchenmuschel		151514		151514

Fische	ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12	Cottus sp. Barbatula barbatula Perca fluviatilis Esox lucius Phoxinus sp. Oncorhynchus mykiss Oncorhynchus sp. Cottidae Esox sp. Cottus rhenanus	Koppe Bachschmerle Flussbarsch Hecht Elritze Regenbogenforelle Groppen Hecht	99,34 99,26	69923 329	19,43 19,03 14,55 10,83 8,77	796896 796896 796896 796896 796896
Fische	ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12	Perca fluviatilis Esox lucius Phoxinus sp. Oncorhynchus mykiss Oncorhynchus sp. Cottidae Esox sp. Cottus rhenanus	Flussbarsch Hecht Elritze Regenbogenforelle Groppen	99,26 99,24 99,35 99,36 98,6 96,23	151650 115937 86268 69923 329	19,03 14,55 10,83 8,77	796896 796896 796896
Fische Fische	ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12	Esox lucius Phoxinus sp. Oncorhynchus mykiss Oncorhynchus sp. Cottidae Esox sp. Cottus rhenanus	Hecht Elritze Regenbogenforelle Groppen	99,24 99,35 99,36 98,6 96,23	115937 86268 69923 329	14,55 10,83 8,77	796896 796896
Eische H	ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12	Phoxinus sp. Oncorhynchus mykiss Oncorhynchus sp. Cottidae Esox sp. Cottus rhenanus	Elritze Regenbogenforelle Groppen	99,35 99,36 98,6 96,23	86268 69923 329	10,83 8,77	796896
Fisch	ACH-12 ACH-12 ACH-12 ACH-12 ACH-12 ACH-12	Oncorhynchus mykiss Oncorhynchus sp. Cottidae Esox sp. Cottus rhenanus	Regenbogenforelle Groppen	99,36 98,6 96,23	69923 329	8,77	
	ACH-12 ACH-12 ACH-12 ACH-12 ACH-12	Oncorhynchus sp. Cottidae Esox sp. Cottus rhenanus	Groppen	98,6 96,23	329		796896
	ACH-12 ACH-12 ACH-12 ACH-12	Cottidae Esox sp. Cottus rhenanus		96,23		0.04	
<i>P</i>	ACH-12 ACH-12 ACH-12	Esox sp. Cottus rhenanus		,	230	0,04	796896
P	ACH-12 ACH-12	Cottus rhenanus	Hecht	99 87			796896
	ACH-12						796896
		C !! ! !	Rheingroppe	99,41			796896
	ACH-13	Squalius cephalus	Aitel	93,14	15		796896
		Phoxinus sp.	Elritze	-	117721		195880
P	ACH-13	Perca fluviatilis	Flussbarsch	99,34	38715		195880
		Cottus sp.	Корре	99,34	18767	9,58	195880
Fische	ACH-13	Barbatula barbatula	Bachschmerle	99,07	17112	8,74	195880
E A	ACH-13	Salmo sp.	Lachs/Bachforelle	99,38	2908	1,48	195880
P	ACH-13	Coregonus sp.	Renke	98,97	607	0,31	195880
P	ACH-13	Salmo salar	Atlantischer Lachs	93,96	29	0,01	195880
	ACH-13	Squalius cephalus	Aitel	92,73	21	0,01	195880
Krebse	ACH-14	Leptodora kindti	Glaskrebschen	100	226	100	226
A	ACH-14	Perca fluviatilis	Flussbarsch	98,99	196320	84,95	231111
	ACH-14	Barbatula barbatula Bachschmerle		99,41	17374	7,52	231111
Fische	ACH-14	Cottus sp.	Корре	99,86	13826	5,98	231111
ES A	ACH-14	Coregonus sp. Renke		99,38	3457	1,5	231111
P	ACH-14	Cottidae	Groppen	96,95	124	0,05	231111
P	ACH-14	Salmonidae	Lachsartige	91,91	10	0	231111
P	ACH-15	Perca fluviatilis	Flussbarsch	99,35	143077	62,58	228620
P	ACH-15	Cottus sp.	Корре	99,35	29825	13,05	228620
P	ACH-15	Esox lucius	Hecht	99,38	27014	11,82	228620
<u>و</u> ا	ACH-15	Phoxinus sp.	Elritze	99,13	15244	6,67	228620
17		Oncorhynchus mykiss	Regenbogenforelle	99,04	13132		228620
F		Cottidae	Groppen	96,88	177	0,08	228620
P	ACH-15	Oncorhynchus sp.		98,75	78	0,03	228620
P	ACH-15	Esox sp.	Hecht	100	63	0,03	228620
		Cottus rhenanus	Rheingroppe	100	10		228620
		Perca fluviatilis	Flussbarsch		156917		246234
		Cottus sp.	Koppe	99,43	54783		246234
1 12 H		Esox lucius	Hecht	99,4	23671		246234
		Coregonus sp.	Renke	99,4	10600		246234
P	ACH-16	Cottidae	Groppen	96,9	185	0,08	246234
	ACH-16	Esox sp.	Hecht	99,75	78	0,03	246234
Muscheln	ACH-16	Euglesa parvula		98,98	103953	100	103953

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	ACH-17			99,38	101082	57,12	176949
	ACH-17	Phoxinus sp.	Elritze	99,42	41684	23,56	176949
Fische	ACH-17	Cottus sp.	Корре	99,37	20894	11,81	176949
Fis	ACH-17	Esox lucius	Hecht	99,39	13121	7,42	176949
	ACH-17	Cottidae	Groppen	96,24	120	0,07	176949
	ACH-17	Esox sp.	Hecht	100	48	0,03	176949
	ACH-18	Perca fluviatilis	Flussbarsch	99,85	226168	65,37	345963
Fische	ACH-18	Cottus sp.	Корре	99,31	119173	34,45	345963
Fis	ACH-18	Cottidae	Groppen	96,26	511	0,15	345963
	ACH-18	Cottus rhenanus	Rheingroppe	100	111	0,03	345963
	ACH-19	Perca fluviatilis	Flussbarsch	99,36	115690	45,64	253503
Fische	ACH-19	Esox lucius	Hecht	99,95	106762	42,11	253503
Fis	ACH-19	Barbatula barbatula Bachschmerle		99,28	30923	12,2	253503
	ACH-19	Esox sp.	Hecht	98,14	128	0,05	253503
Muscheln	ACH-19	Musculium lacustre	Häubchenmuschel	99,2	102799	100	102799
	ACH-20	Perca fluviatilis	Flussbarsch	99,88	191346	56,77	337054
	ACH-20	Cottus sp.	Корре	99,35	104375	30,97	337054
Fische	ACH-20	Esox lucius	Hecht	99,36	40862	12,12	337054
Fis	ACH-20	Cottidae	Groppen	96,23	344	0,1	337054
	ACH-20	Esox sp.	Hecht	100	77	0,02	337054
	ACH-20	Cottus rhenanus	Rheingroppe	100	50	0,01	337054
Muscheln	ACH-20	Musculium lacustre	Häubchenmuschel	99,11	106381	100	106381

Gesamte Artenliste Achensee

Tabelle 38.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Achensee Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name		
	Perca fluviatilis	Flussbarsch		
	Cottus gobio	Koppe		
	Esox lucius	Hecht		
	Phoxinus phoxinus	Elritze		
<u>a</u>	Barbatula barbatula	Bachschmerle		
Fische	Oncorhynchus mykiss	Regenbogenforelle		
ш	Coregonus sp.	Renke		
	Salmo trutta	Bach- bzw. Seeforelle		
	Salvelinus sp.	Saibling		
	Squalius cephalus	Aitel		
	Rutilus rutilus	Rotauge		
<u></u>	Musculium lacustre	Häubchenmuschel		
che	Euglesa parvula			
Muscheln	Euglesa casertana	Gemeine Erbsenmuschel		
2	Pisidium obtusale	Aufgeblasene Erbsenmuschel		

Plausiblilisierung

Im Achensee wurde in den 21 Filterproben eDNA von Fischen, Krebstieren und Muscheln identifiziert. Keine Nachweise von DNA-Spuren für die gewählten Tiergruppen gab es in den drei Proben am Südende des Sees (ACH-01, ACH-03 und ACH-21). Da es sich bei den Glaskrebschen und den Wasserasseln um keine Zehnfußkrebse (Decapoda) handelt, wurden diese aus der Übersichtstabelle entfernt (Tab. 38.2).

In den Proben sind zahlreiche Sequenzen, welche der Gattung Salmo zugeordnet werden konnten bzw. überhaupt nur auf die Familie der Salmonidae schließen ließen. Es ist davon auszugehen, dass es sich hierbei um Bruchstücke oder durch Abbauprozesse beschädigte Moleküle von eDNA der Bachforelle handelt (S. trutta). Für die vermeintlichen Nachweise von Lachs (S. salar) in ACH-13 gibt es zwei mögliche Erklärungen: theoretisch könnten die DNA-Spuren von Lachs über einen Fremdeintrag in das Gewässer gelangt sein. Aller Wahrscheinlichkeit nach handelt es sich jedoch hierbei um eine fehlerhafte Zuordnung von beeinträchtigten DNA-Molekülen ebenfalls von S. trutta. Darauf ist insbesondere aufgrund der

verhältnismäßig geringen Übereinstimmung von 94% mit den DNA-Sequenzen von *S. salar* in der Referenzdatenbank zu schließen (Tab. 38.1).

Ebenfalls ein "Nachrauschen" des eDNA-Signals ist bei der Regenbogenforelle und des Hechts zu beobachten: Neben den DNA-Sequenzen, welche eindeutig der Art *Oncorhynchus mykiss* bzw. *Esox lucius* zuzuordnen waren, fanden sich auch welche, die nur mehr auf die jeweiligen Gattungen schließen ließen.

Ein ähnliches Phänomen ist bei den Muscheln zu beobachten: Neben den DNA-Sequenzen, welche eindeutig den beiden Arten *Pisidium subtruncatum* und *Musculium lacustre* zuzuordnen waren, fanden sich auch welche, die nur mehr auf Vertreter aus deren Gattungen oder Familie (Sphaeriidae) schließen ließen.

Die morphologische Artunterscheidung von Renken ist schwierig und umstritten, entsprechend unzuverlässig ist auch die Datenlage rund um *Coregonus* sp. in den Referenzdatenbanken.

Die Detektion für eDNA aus der Gattung *Salvelinus* und von *S. fontinalis* in ACH-11 lässt sich als Nachweis für das Vorkommen von Saiblingen interpretieren. Leider kann man die beiden Arten *S. umbla* und *S. fontinalis* molekular auf dem gewählten Genabschnitt 12S nicht voneinander unterscheiden. Höchstwahrscheinlich handelt es sich hierbei um den Seesaibling *S. umbla*, der auch im Jahr 2006 bei Fischbestandserhebungen festgestellt wurde (BAW Mondsee 2006).

Bei dem vermeintlichen Nachweis der Rheingroppe *Cottus rhenanus* (Tab. 38.1) dürfte es sich aller Wahrscheinlichkeit nach um DNA-Sequenzen handeln, welche eigentlich von der heimischen Koppe (*Cottus gobio*) stammen, für welche bislang noch sehr wenige Einträge für den Genabschnitt 12S in der Referenzdatenbank vertreten sind. Dies gilt auch für jene DNA-Sequenzen, welche nur der Familie der Cottidae zugeordnet werden konnten.

Bei der Interpretation des Nachweises von eDNA von *Phoxinus* sp. und *P. phoxinus* ist zu berücksichtigen, dass es sich um Detektionen der Elritze aus dem Artenkomplex *P. phoxinus* handeln dürfte, aus dem 13 genetische Linien als eigene Arten gelten (Vgl. Elritzenprojekt des NHM Wien https://elritzen.at/projekt). Genetische Untersuchungen haben gezeigt, dass außer *P. phoxinus* noch mindestens drei weitere Arten in österreichischen Gewässern leben, nämlich *P. csikii*, *P. lumaireul* und *P. marsilii* (https://www.abol.ac.at/project/phoxinus).

Bei der Interpretation des Nachweises von eDNA von Leuciscidae in den Proben ACH-10 und ACH-11 mit einer verhältnismäßig geringen Übereinstimmung von 91,6% für die Gattung (Tab. 38.1) gibt es unterschiedliche mögliche Rückschlüsse: es könnte sich um DNA-Sequenzen der Hasel (*L. leuciscus*) oder des Nerflings (*L. idus*) handeln, welche dieser Familie angehören und die aufgrund ihres Qualitätsmangels (bedingt durch natürliche Abbauprozesse der freien DNA in der Wassersäule) nur mehr der Familie zugeordnet werden konnten. Es ist jedoch auch möglich, dass diese eDNA-Spuren auf ein Vorkommen der Laube (*Alburnus alburnus*) oder anderer Vertreter aus der Familie der Weißfische zurückzuführen sind. Da die eDNA dieser Familie jedoch nur in einer Probe und auch hier mit einer geringen Sequenzanzahl detektiert wurde, wurden die Leuciscidae aus der Überblickstabelle entfernt (Tab. 38.2).

Im Zuge von Befischungen im Jahr 2006 wurden am Achensee neben den im gegenständlichen Projekt detektieren Arten noch Aalrutte, Bitterling, Rotfeder, Schleie und Seelaube als Einzelfänge nachgewiesen (BAW Mondsee 2006). Für die Aalrutte ist anzunehmen, dass sich diese Fische während der Sommermonate in tiefere, kühle Wasserschichten und dabei weg von den beprobten Uferabschnitten zurückgezogen haben. Aufgrund der natürlichen Temperatur-schichtung im Sommer findet zu dieser Jahreszeit kaum eine Durchmischung der Wassersäule statt. Dadurch kann auch kaum oder nur sehr wenig eDNA dieser Fischart an die Oberfläche und in den Bereich der Ufer gelangen, an denen beprobt wurde. Dasselbe gilt für den Edelkrebs, für den es Hinweise

auf ein Vorkommen im Achensee gibt (mündliche Mitteilung Martin Schletterer). Die Krebse wurden in einer Tiefe von ca. 15 m festgestellt und konnten vermutlich wegen der Wasserschichtung im Hochsommer nicht in den Oberflächenproben nachgewiesen werden.

Die Cypriniden Rotfeder, Bitterling, Schleie und Seelaube wurden bei der Fischbestandserhebung 2006 nur in sehr geringer Stückzahl oder als Einzelfänge nachgewiesen. Bei einem Metabarcoding gibt es eine definierte Anzahl an Analyseplätzen pro Durchlauf für die Sequenzierung. Die DNA-Moleküle auf der Platte werden vervielfältigt und auch gelesen (sequenziert). Wenn hier eine Dominanz der eDNA von einzelnen Arten vorherrscht (wie hier z.B. der Flussbarsch) und von anderen vergleichsweise nur wenige DNA-Spuren vorhanden sind, dann kann es dazu kommen, dass der überwiegende Teil der Plätze an die dominanten Arten geht und die wenigen DNA-Moleküle von Spezies, welche sich eher außerhalb der beprobten Bereiche aufhalten, nicht erfasst und damit auch nicht detektiert werden. Zur Klärung der Tatsache, ob sich die Arten, die in der Vergangenheit nachgewiesen wurden, noch im See aufhalten, würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz für diese Arten sowie eine Analyse zu einer anderen Jahreszeit empfehlen.

3.39 Weißlahn

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
SZ	Terfens	623	WEI-01, -02, -03	16.08.2023

Lage der Probenstellen

Abbildung 39: Weißlahn

Artenliste je Probestelle

Tabelle 39.1: Auflistung der nachgewiesenen Taxa an den Probenstellen WEI-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq.), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq.). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	Σ Seq. pro PS und ZG
	WEI-02	Perca fluviatilis	Flussbarsch	99,32	194665	57,06	341188
	WEI-02	Abramis brama	Brachse	99,39	73607	21,57	341188
	WEI-02	Carassius auratus	Goldfisch	99,37	66336	19,44	341188
	WEI-02	Carassius sp.	Goldfisch/Giebel	99,32	2860	0,84	341188
e e	WEI-02	Leuciscus leuciscus	Hasel	97,75	1618	0,47	341188
Fische	WEI-02	Leuciscus sp.	Hasel/Nerfling	98,55	992	0,29	341188
"	WEI-02	Rutilus rutilus	Rotauge	100	385	0,11	341188
	WEI-02	Cyprinus sp.	Karpfen	98,38	370	0,11	341188
	WEI-02	Scardinius erythrophthalmus	Rotfeder	98,13	133	0,04	341188
	WEI-02	Vimba sp.	Rußnase	95,17	111	0,03	341188
	WEI-02	Leuciscidae	Weißfische	95,98	111	0,03	341188
	WEI-03	Perca fluviatilis	Flussbarsch	99,4	113914	46,23	246403
	WEI-03	Carassius auratus	Goldfisch	99,38	52137	21,16	246403
	WEI-03	Alburnus alburnus	Laube	99,39	35886	14,56	246403
	WEI-03	Abramis brama	Brachse	99,38	18203	7,39	246403
Fische	WEI-03	Tinca tinca	Schleie	99,31	14507	5,89	246403
Fis	WEI-03	Cyprinus carpio	Karpfen	99,3	10777	4,37	246403
	WEI-03	Carassius sp.	Goldfisch/Giebel	99,32	895	0,36	246403
		Vimba sp.	Rußnase	94,87	45	0,02	246403
	WEI-03	Cyprinus sp.	Karpfen	97,23	27	0,01	246403
	WEI-03	Carassius gibelio	Giebel	100	12	0	246403

Gesamte Artenliste Weißlahn

Tabelle 39.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Weißlahn Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Perca fluviatilis	Flussbarsch
	Carassius sp.	Goldfisch/Giebel
	Abramis brama	Brachse
	Alburnus alburnus	Laube
Fische	Tinca tinca	Schleie
Fis	Cyprinus carpio	Karpfen
	Leuciscus sp.	Hasel/Nerfling
	Rutilus rutilus	Rotauge
	Vimba vimba	Rußnase
	Scardinius erythrophthalmus	Rotfeder

Plausibilisierung

Im Badesee Weißlahn wurde in den drei Filterproben eDNA von Fischen identifiziert. Keine Nachweise gab es dort für Krebstiere oder Fische.

In den Proben sind zahlreiche Sequenzen, welche eindeutig als *Cyprinus carpio* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf Gattungsniveau zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben.

Bei den DNA-Sequenzen, welche *Carassius auratus, C. gibelio* oder der Gattung *Carassius* zugeordnet werden konnten, handelt es sich aller Wahrscheinlichkeit nach um jene vom Goldfisch (*Carassius auratus*) oder dessen Wildform, dem Giebel (*Carassius gibelio*).

Jene Nachweise, welche der Gattung *Leuciscus* und auch der Art *L. leuciscus* zugewiesen worden sind, deuten auf ein Vorkommen der Hasel (*L. leuciscus*) hin. Allerdings ist diese Art nahe verwandt mit dem Nerfling (*L. idus*). Die beiden Spezies der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

Der Nachweis von eDNA von *Vimba* sp. weist auf ein Vorkommen der Rußnase hin. Diese Fischart kommt jedoch vorwiegend in großen Flüssen wie der Donau und den großen Seen im

Alpenvorland vor. Ein Vorkommen im Badesee Weißlahn durch Besatz kann nicht vollkommen ausgeschlossen werden. Allerdings ist aufgrund der geringen Übereinstimmung mit der DNA-Sequenz der Gattung in der Referenz-Datenbank von 95% der Nachweis nicht als gesichert zu werten (Tab. 39.1). Zur Klärung der Tatsache würde sich eine gezielte Nachsuche mit einem diagnostischen PCR-Ansatz, welcher spezifisch für *V. vimba* ist, empfehlen.

3.40 Schlitterer See

Bezirk	Gemeinde	Uferlänge [m]	Proben	Datum der Probennahme
SZ	Schlitters	412	SCL-01, -02, -03	16.098.2023

Lage der Probenstellen

Abbildung 40: Schlitterer See

Artenliste je Probestelle

Tabelle 40.1: Auflistung der nachgewiesenen Taxa an den Probenstellen SCL-01, -02, -03 Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für die detektierte Art, Gattung oder Familie; Ausmaß an Übereinstimmung der DNA-Sequenzen in der Probe mit jenen aus den Datenbanken (%ID), Anzahl an detektierten DNA-Sequenzen pro Probenstelle (PS) (# Seq. pro PS), relativer Anteil der detektierten Sequenzen pro PS und ZG (% Seq), und Summe der detektierten Sequenzen pro PS und ZG (∑ Seq). DNA-Sequenzen mit einer Übereinstimmung unter 99% und/oder einer geringen Anzahl (<1% pro PS und ZG) gelten als "nicht gesicherte" Nachweise (grau hinterlegt).

Zielgruppe (ZG)	Probenstelle (PS)	wissenschaftl. Name	deutscher Name	QI%	# Seq. pro PS	% Seq. pro PS und ZG	∑ Seq. pro PS und ZG
Krebse	SCL-01	Asellus aquaticus	Wasserassel	99,18	35580	100	35580
	SCL-01	Leuciscus idus	Nerfling	97,95	72840	35,34	206129
	SCL-01	Perca fluviatilis	Flussbarsch	99,32	52817	25,62	206129
		Esox lucius	Hecht	98,46	46229		206129
9	SCL-01	Cyprinus carpio	Karpfen	99,21	20200	9,8	206129
Fische	SCL-01	Leuciscus sp.	Hasel/Nerfling	98,27	12301	5,97	206129
"	SCL-01	Leuciscidae	Weißfische	96,56	855	0,41	206129
		Rutilus rutilus	Rotauge	99,9	538	0,26	206129
	SCL-01	Leuciscus leuciscus	Hasel	97,84	330	0,16	206129
	SCL-01	Silurus glanis	Europäischer Wels	100	19	0,01	206129
Muscheln	SCL-01	Musculium lacustre	Häubchenmuschel	98,99	108949	100	108949
Krebse	SCL-02	Asellus aquaticus	Wasserassel	98,99	14635	100	14635
	SCL-02	Perca fluviatilis	Flussbarsch	99,32	44125	49,85	88519
	SCL-02	Esox lucius	Hecht	99,34	37273	42,11	88519
9		Leuciscus sp.	Hasel/Nerfling	98,27	5841	6,6	
Fische		Esox sp.	Hecht	99,4	1019	1,15	88519
		Leuciscus leuciscus	Hasel	98,86	119	0,13	
		Scardinius erythrophthalmus	Rotfeder	98,29	112	0,13	88519
	SCL-02	Rutilus rutilus	Rotauge	99,43	30	0,03	88519
Krebse	SCL-03	Asellus aquaticus	Wasserassel	98,97	4961	100	4961
	SCL-03	Perca fluviatilis	Flussbarsch	99,3	148765	50,81	292796
	SCL-03	Rutilus rutilus	Rotauge	100	89611	30,61	292796
	SCL-03	Esox lucius	Hecht	99,36	40766	13,92	292796
e	SCL-03	Leuciscus sp.	Hasel/Nerfling	98,66	8381	2,86	292796
Fische	SCL-03	Cyprinus carpio	Karpfen	99,21	4782	1,63	292796
"	SCL-03	Esox sp.	Hecht	98,1	149	0,05	292796
	SCL-03	Leuciscidae	Weißfische	96,53	120	0,04	292796
	SCL-03	Scardinius erythrophthalmus	Rotfeder	98,29	117	0,04	292796
		Leuciscus leuciscus	Hasel	98,86	105		292796
		Musculium lacustre	Häubchenmuschel	99,01		62,11	
r c		Pisidium obtusale	Aufgeblasene Erbsenmuschel	99,24		21,56	
che		Pisidium subtruncatum	Schiefe Erbsenmuschel	98,73	5051	9,29	
Muscheln		Musculium	Häubchenmuschel	98,22	2921	5,37	
_		Pisidium nitidum	Glänzende Erbsenmuschel	98,89	544	1	54348
	SCL-03	Pisidium	Erbsenmuschel	97,09	359	0,66	54348

Gesamte Artenliste Schlitterer See

Tabelle 40.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Schlitterer See Sortiert nach den Zielgruppen (ZG) Fische, Krebse, Muscheln; Angabe der wissenschaftlichen und deutschen Namen für das niedrigste taxonomische Niveau (Art- oder Gattungsniveau)

Zielgruppe (ZG)	wissenschaftl. Name	deutscher Name
	Perca fluviatilis	Flussbarsch
	Esox lucius	Hecht
e	Rutilus rutilus	Rotauge
Fische	Leuciscus sp.	Hasel/Nerfling
ш.	Cyprinus carpio	Karpfen
	Scardinius erythrophthalmus	Rotfeder
	Silurus glanis	Europäischer Wels
<u>_</u>	Musculium lacustre	Häubchenmuschel
che	Pisidium obtusale	Aufgeblasene Erbsenmuschel
Muscheln	Pisidium subtruncatum	Schiefe Erbsenmuschel
	Pisidium nitidum	Glänzende Erbsenmuschel

Plausiblilisierung

Im Schlitterer See wurde in den drei Filterproben eDNA von Fischen, Krebsen und Muscheln identifiziert. Da es sich bei der Wasserassel um keinen Vertreter der Zehnfußkrebse (Decapoda) handelt, wurde diese aus der Gesamtartenliste gestrichen (Tab. 40.2).

In den Proben sind zahlreiche Sequenzen, welche eindeutig als *Esox lucius* identifiziert wurden und ein "Nachrauschen" von Sequenzen, welche aufgrund ihrer minderen Qualität nur mehr auf die Gattung zugeordnet werden können. Neben den gut erhaltenen und damit auch gut lesbaren DNA-Sequenzen finden sich immer auch Bruchstücke oder durch natürliche Abbauprozesse beschädigte Moleküle in der freien Wassersäule, welche eine eindeutige Zuordnung auf Artniveau nicht mehr erlauben.

Ein ähnliches "Nachrauschen" des eDNA-Signals ist bei den Muscheln zu beobachten: Neben den DNA-Sequenzen, die eindeutig den beiden Arten *Pisidium subtruncatum, P. nitidum* und *Musculium lacustre* zuzuordnen waren, fanden sich auch welche, die nur mehr auf Vertreter aus deren jeweiligen Gattungen schließen ließen.

Jene Nachweise, welche der Gattung *Leuciscus* und auch den Arten *L. leuciscus* und *L. idus* zugewiesen worden sind, lassen auf ein Vorkommen der Hasel und/oder des Nerflings deuten.

Allerdings sind diese beiden Arten sehr nahe verwandt. Die beiden Spezies der Gattung *Leuciscus* unterscheiden sich nur durch ein einziges Basenpaar auf dem Genabschnitt 12S. Bei einer %ID unter 100% kann daher zwischen den beiden Arten nicht eindeutig unterschieden werden.

4. Zusammenfassung

Ziel der vorliegenden Studie war es, in 40 ausgewählten Tiroler Seen die vorkommenden Arten der Tiergruppen Fische, Krebse und Muscheln sowie von invasiven Wasserpflanzen zu erheben. Anhand der dabei generierten Artenlisten wird das Arteninventar der einzelnen Gewässer, die Verbreitung von seltenen und gefährdeten Arten sowie aquatischer Neobiota der Taxa Fische, Muscheln, Krebse und Wasserpflanzen dargestellt.

Im Zuge des Projektes wurde an den 40 Tiroler Seen insgesamt an 167 Stellen Wasserproben genommen, die darin enthaltene eDNA isoliert und mittels molekularer Methoden auf die drei ausgewählten Tiergruppen und Gefäßpflanzen analysiert. In allen untersuchten Gewässern wurde zumindest ein Taxon aus den vier gewählten Organismengruppen detektiert. Allein im Lanser See wurden zum Zeitpunkt der Erhebung nur Pflanzen-DNA jedoch keine DNA von Tieren gefunden, obwohl von diesem Gewässer ein Fischbestand bekannt ist.

Von den in den Proben nachgewiesenen Fischarten (siehe Anhang, Tabelle C (1)) wurden am häufigsten der Flussbarsch und Vertreter aus der Gruppe der Weißfische detektiert. Unter den geschützten Fischarten (FFH-Richtlinie und Tiroler Naturschutzverordnung 2006) wurden in mehreren Gewässern Nachweise für Bachschmerle (n=9), Koppe (n=7), Bitterling (n=3) und Gründling (n=1) erbracht. Der Sonnenbarsch wurde in zwei Gewässern (Baggersee Rossau, Stimmer See) nachgewiesen und ist die einzige nachgewiesene Fischart, die in der EU-Verordnung zu invasiven gebietsfremden Arten (EU-Verordnung Nr. 1143/2014) gelistet ist. Weitere nachgewiesene, nicht heimische Arten sind Goldfisch, Gras-, Marmor- und Silberkarpfen, die Regenbogenforelle und ein Vertreter der Bagridenwelse. Die Karpfenarten sowie die Regenbogenforelle werden aus fischerei- bzw. teichwirtschaftlichen Gründen häufig in Gewässer besetzt und Goldfische gelangen als beliebte Zierfischart immer wieder in heimische Gewässer. Überraschend war der DNA-Nachweis von der Gattung der Bagridenwelse im Blindsee. Es handelt sich dabei um eine ostasiatische Welsart, von der in Mitteleuropa bisher nur ein Vorkommen des Gelben Drachenwelses *Tachysurus fulvidraco* in der bayerischen Donau bekannt ist.

Insgesamt wurde in den beprobten Seen eDNA von zwölf Vertretern der Krebstiere aus der Gruppe der Asseln, der Flohkrebse und der Zehnfußkrebse nachgewiesen. Häufigster Vertreter unter den Zehnfußkrebsen war der Edelkrebs in fünf der beprobten Gewässer. Im Heiterwanger See und Plansee wurde zudem noch DNA der Gatttung *Austropotamobius* festgestellt, was auf ein Vorkommen des geschützten Dohlenkrebses und/oder des Steinkrebses schließen lässt. Als einzige gebietsfremde Krebsart wurde der Galizische Sumpfkrebs im Baggersee Rossau detektiert (siehe Anhang, Tabelle C (2)).

Bei der molekularen Analyse zur Identifikation der vorkommenden Muschelarten wurden insgesamt 16 verschiedene Arten festgestellt (siehe Anhang, Tabelle C (3)). Am häufigsten vertreten sind Arten aus der Gruppe der Kugelmuscheln, aber auch Großmuscheln wie die Gemeine Teichmuschel und die Große Teichmuschel wurden in 13 der untersuchten Seen nachgewiesen. In sechs Seen im Bezirk Kufstein wurde DNA der gebietsfremden Wander- oder Zebramuschel *Dreissena polymorpha* festgestellt. Dabei handelt es sich um eine gebietsfremde Muschelart, die sehr konkurrenzstark ist und dadurch heimische Arten verdrängen kann.

In den in diesem Auftrag untersuchten Tiroler Gewässern wurde auch eDNA von zahlreichen terrestrischen und aquatischen Pflanzenarten detektiert. Jedoch wurde in keinem der beprobten Seen eine in der EU-Verordnung zu invasiven gebietsfremden Arten geführten Wasserpflanzen (siehe Anhang, Tabelle B) nachgewiesen.

Anhänge

 Tabelle B: Invasive gebietsfremde Wasserpflanzen gemäß EU-Verordnung Nr. 1143/2014

wissenschaftlicher Artname	deutscher Artname
Alternanthera philoxeroides	Alligatorkraut
Cabomba caroliniana	Karolina-Haarnixe
Eichhornia crassipes	Dickstielige Wasserhyazinthe
Elodea nuttallii	Schmalblättrige Wasserpest
Gymnocoronis spilanthoides	Falscher Wasserfreund
Hydrocotyle ranunculoides	Großer Wassernabel
Lagarosiphon major	Wechselblatt - Wasserpest
Ludwigia grandiflora	Großblütiges Heusenkraut
Ludwigia peploides	Flutendes Heusenkraut
Myriophyllum aquaticum	Brasilianisches Tausendblatt
Myriophyllum heterophyllum	Verschiedenblättriges Tausendblatt
Pistia stratiotes	Wassersalat
Salvinia molesta	Büschelfarn

Tabelle C: (1) Detektionsliste Fische, (2) Krebse, (3) Muscheln

Zeichenerklärung:

*	geschützte Art gemäß FFH Richtlinie Anhang II und/oder Tiroler Naturschutzverordnung 2006
*	gebietsfremde Art
**	invasive gebietsfremde Art gemäß EU-Verordnung Nr. 1143/2014
(*)	Artengruppe mit sowohl heimischen als auch gebietsfremden Arten

_
$\overline{}$
\overline{c}
-
<u></u>
×
7
~
\subseteq
Ω
Ψ
Ø
_
- 1

**************************************)		1													_								1						. 1	. 1	_	_	.1	_
	Н		+				4	4	4	4	_	-		Н	\Box	4		-	×	-			×	╀			\dashv	×	×	\dashv	×	4	×	-	L
• 190 190 190 190 190 190 190 190 190 190	Н		_		Н		4		4	-	×	-		Н	_	4	×	_	+	-				╀			×	4		×	4	\perp	-	-	L
1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ц	Ц	╧		Ш		×			4	_			Ц				4	1	_			1						×			\downarrow	_		L
1. 1 TETE 1817 8 12 8 12 8 12 8 12 8 12 8 12 8 12	Ш																		×		×								×						L
			>	<		×		×	×				×			×	×		× >	< ×			×	×				×				×	< ×	×	×
* 19 1 00 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×										>	<				×					×	×	>	4								,	<		
TO THE TOTAL TO STATE OF THE COURT	П																													×				×	
THE SEN STATE STEELS								×			×	×	:	×		×	×		× >	< ×			××	4	×		×	×	×	×	×		×	×	
	ایرا							×			×		×	×			×		×	×			×			×	×	×		×		××	< ×	×	×
Selection of the select	×									×			×		×																				
**************************************	×			×	×					×						×	1				×	×	× ×	×								T			×
1 1 1 4 2 3 3 2 2		\dag	\dagger	Ħ	H			1	1		×			П			×		×	T			\dagger	t			7	1	×	1		\dagger		T	T
**************************************	П	\sqcap	\dagger	T	П			×	1		\dagger	t	T	П		1	\forall	1	×	T	×	\top	\dagger	t				×	×	1	1	\dagger		t	Г
10 10 10 10 10 10 10 10 10 10 10 10 10 1	H		>	<			×				×	×	:	×		×					H				×	×		×		×	×	\top	×	×	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×		t	t	H				1	×	>	<		П	×				t		H		>	×				7		\dagger	\top	-;	<	T	
14 16 16 16 16 16 16 16	H	Ħ	T				7		1			t			П		7		×		H			t				7		7	7	+		T	Г
* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H			×	×	×		×	1		×	×	:	×			×		×	×	×		>		×		×	×	×	×	×	×	×	: ×	×
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×		>	<				×	1		×	×	×	×		1	×		× >	< ×	T		t	t			×	×		×	1	\dagger	×	:	×
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	П	Ħ	>	<	П			×	1		×	×	:	×		×	×		× >	< ×			×	T	×	×	×	×	×	×	×	××	< ×	: ×	
* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ħ		t	Ħ					1							1			t		T		t	t				×			1	\dagger			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H	Ħ	>	<	П				1	1				П		7			T		T		T	T	П		\exists				1	\dagger		T	
* 6. 6. 7. 	П	×			×				1		×						×		×		×						1		×			\dagger			
	H	H	\dagger	×	Н	×	7		1		×	+	t	Н		7	×	1	t	t	×	Ħ	t	t	×		7	×		×	×	+		×	
Programme Clarent	×	\vdash	+	+	Н		+	×	×	+	×	×	×	×	×	×	×	+	× >	< ×	\vdash	\dashv	×	×	\vdash		-	+	×	×	\dashv	× >	< ×	+	⊢
	IJ	H	$^{\perp}$	×		×	_	_	+	×	>	+			×	×			+		H	×	>	╫	\vdash					1	+	+	<		H
					Н					+	×			Н	-		×	1	×						×			×		×	1	+	` ×	×	
1 21/20 14 18 12 18 18 18 18 18 18 18 18 18 18 18 18 18	H		+	×	H		1		+	+				Н		1			+	+	H	H	×	H			+			1	+	×			H
* 810 11 10 10 10 10 10 10 10 10 10 10 10 1	H	\forall	+	H	H			+	×	+	+	\dagger	+	H	H	\dashv	\dashv	+	\dagger	+	H	\dashv	+	\dagger	H		\dashv	\dashv	+	\dashv	\dashv	+	+	t	H
Marie Land	Ţ	\vdash	+	×		×				+		+			×	×	+	+	+	+	×		>	: ×				+		+		٠,	<	\vdash	H
W Tall Sille Tal	Ž	Η,	×	_	Н				+	×	>				×			+		+	×	×	>	+	\vdash							_	` <		×
elling of the	Ĥ	H	+	H					+	7	ť	+			×	1	1	+	+	+	_	Ĥ	ť	1			+	+		+		ť	+		Ê
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ţ	\vdash	+	×		×			+	×		+		×	^	-	+	+	+	+	H		× ×	: ×		×		+	×	+		٠,	< ×	_	H
OF A	Ĥ			_		Î				+	×			_												^			^			×	` ^	+	H
	Н		t								+													H								7	ŕ	1	
	nsee	Badesee Going	Badesee Kircnberg	Badesee Ried	Badeteich Brixen	Badeteich Ladis	Baggersee Roßau	Bergisteiner See	see	Brennersee	Bucnsee	Gieringer Weiher	Haldensee	tsee	Heiterwanger See	Hintersteiner See	Krummsee	Lanser See	Lauchsee Fleberbrunn Moorstrandhad Kirchhichl	Möserer See	Natterer See	Obernberger See	Piller See	996	Reintaler See	Reither See	Schlitterer See	Schwarzsee	Stimmersee	see	Tristacher See	Urisee	hsee	lahn	see
	Achensee	Bade	Bade	Bade	Bade	Bade	Bagg	Berg	Blindsee	Bren	Bucnsee	Gierii	Halde	Hechtsee	Heite	Hinte	Krum	Lans	Moor	Möse	Natte	Ober	Piburger 3	Plansee	Reint	Reith	Schli	Schw	Stim	Thiersee	Trist	Urisee	Walchsee	Weißlahn	Wildsee

Seite **150** von **156**

2

Astacus astacus eptodachyus Gainischer Strophreibes aseinkerbs astacus astropotamobius sp. Donarkreibes aseinkreibs

	P	N.	Ans
Achensee			
Badesee Going			
Badesee Kirchberg			
Badesee Mieming			
Badesee Ried			
Badeteich Brixen			
Badeteich Ladis			
Baggersee Roßau		X	
Berglsteiner See			
Blindsee			
Brennersee			
Buchsee			
Fernsteinsee			
Gieringer Weiher			
Haldensee			
Hechtsee			
Heiterwanger See			Х
Hintersteiner See	Х		
Krummsee			
Lanser See			
Lauchsee Fieberbrunn			
Moorstrandbad Kirchbichl			
Möserer See	Х		
Natterer See			
Obernberger See			
Piburger See			
Piller See			
Plansee			Х
Reintaler See			
Reither See			
Schlitterer See			
Schwarzsee			
Stimmersee	Х		
Thiersee			
Tristacher See	Х		
Urisee			
Vilsalpsee			
Walchsee	Х		
Weißlahn			
Wildsee			

Ergebnisbericht

Apprinted by State Continues Apprile Continues					DIOT OF OF STATE	Sals July Welde	1949 PHILIPPINES	Polis di Aduns	Polys Million 9613	1945 PALITIES OF THE PALITIES	16, 14/1		lay Shull delloube	Shi Dus o	Shillies Stante
The state of the s					1010 10 10 CO TO	SUSTAIN MELLOLO	1940s Hallebules	John A Johns	Se Mulle Heby	SALVINIOSO: OCA	1 / W/	1 40 140 1	led Sundandus	on Dus of	Shulles by Stante
The state of the s					Joio Storoes allo	May Seldio	S THIS TO WE	es din souns	UIL Y OF IN	iusso.	AN TO SERVICE STATE OF THE PARTY OF THE PART	4. 14.	Shinn della della	on Dus o	Tous en Tella
The state of the s					en sold ariod	Melidio,	Alous Selfield	Stolung &	86/4	Oct	Y//_\	~ \ \ '	Johne	OUS O	S LIMES
A STANDARD LINE OF THE STANDARD STANDAR				OUIOS	Moc	EL S	01/10	14			б	~,)	,	8,0
	Ŋ	OPOUL	THELE BUY	105 85 10 10 S	el salous	ES ES ON	leludole solon	Ted Bolos	6 26 1	ons sale	5/2/6	, , , , ,	THE LIME	1/25/2	THE LOS
			<u>-</u>	_	> ~	_	×	_	>	×	-	~		0	5
	see Going						-					+			
	see Kirchberg											H			
x x x x x x x x x x x x x x x x x x x	see Mieming									×		П			
	see Ried	×													
	teich Brixen				-	4			Ţ			1	+		
	teich Ladis								I			1			
	ersee Roßau		+	+	+	+	\downarrow	\downarrow	$oxed{\bot}$	Ī	1	\dagger	+	+	+
	200		l_	+		-	×	1			×	t	t		
	Jersee		_	r	~	-	-	×		İ		t	×		
	200		╁	╁	+	\vdash	L	-	Ĺ	İ		T	+		
x x x x x x x x x x x x x x x x x x x	teinsee		╁	_	H	\vdash	L	×		İ	×	T	×		
	iger Weiher	-	×	_						×			×		
	nsee											Г			
	see			×								П			
The state of the	wanger See		_		-	4	4		J		×	1	×		
x	rsteiner See	\dashv	\dashv	\dashv	J	4		1	\prod		×	1			
Techbich X	msee		+	×	+		-		\prod				×		
	r See	;	+	+	+	+	+	;	\prod			\dagger	;		+
	Isee Fieberbrunn	+	,	+	+	+	\downarrow	×	Ţ			\dagger	× >	+	-
	strandbad Nirchbigni	+	(×	╀		+	+	\downarrow	I		×	\dagger	< ×	$\frac{1}{1}$	+
	rer See			_						×		×	×		×
	nberger See														
	ger See		×		-	4		4	Ţ			1	\dashv		
	See			^	Ž	+	1	\downarrow	_		×	\dagger	×	1	
	ee		+	>		-							+		
	S S S S S S S S S S S S S S S S S S S	>	+		-	-	ļ	ļ	I	İ		l	t		
	terer See	<				-	-	-		×	×	×	×		
	arzsee		×	-		L		L				1	+	H	
	nersee		L				L	L				T	H		
× × × × × × × × × × × × × × × × × × ×	see			×								\forall			
× × × × × × × × ×	cher See						_		\prod			1			
× × × × × × × × ×	0					4	4	1	\prod			\dashv			
× × × × × × × × × × × × × × × × × × ×	see		+	+	-	4	-	_	-	;	;	;	;	1	
	ısee		+	+	J	+	+	1	×	×	×	×	×	7	+
	ahn		+		+	+	+		\prod				1		

Seite **152** von **156**

Tabellen- & Abbildungsverzeichnis

Abbildung A: Akku-Peristaltikpumpe (Solinst Modell 410) und eDNA Dual Filter Caps	
(Sylphium) zur automatisierten Beprobung von eDNA	
Abbildung B: Filtration mittels dem Buerkle™ Vampire Probensammler im Feld	
Tabelle A: Liste der 40 ausgewählten Seen mit der jeweiligen Uferlänge und der dar	aus
resultierenden Anzahl von genommenen Filterproben	. 10
Abbildung 1: Badesee Mieming	
Tabelle 1.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSM-01, -02, -03	. 12
Tabelle 1.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badesee Mieming	. 13
Abbildung 2: Fernsteinsee	. 14
Tabelle 2.1: Auflistung der nachgewiesenen Taxa an den Probenstellen FER-01 – 04	. 15
Tabelle 2.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Fernsteinsee	. 16
Abbildung 3: Piburger See	. 17
Tabelle 3.1: Auflistung der nachgewiesenen Taxa an den Probenstellen PIB-01, -02, -03	. 18
Tabelle 3.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Piburger See	. 19
Abbildung 4: Natterer See	. 20
Tabelle 4.1: Auflistung der nachgewiesenen Taxa an den Probenstellen NAT-01, -02, -03	. 20
Tabelle 4.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Natterer See	. 22
Abbildung 5: Brennersee	. 24
Tabelle 5.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BRE-01, -02, -03	. 24
Tabelle 5.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Brennersee	. 26
Abbildung 6: Lanser See	
Abbildung 7: Möserer See	. 28
Tabelle 7.1: Auflistung der nachgewiesenen Taxa an den Probenstellen MOE-01, -02, -03	. 29
Tabelle 7.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Möserer See	. 31
Abbildung 8: Obernberger See	. 32
Tabelle 8.1: Auflistung der nachgewiesenen Taxa an den Probenstellen OBE-01, -02, -03	. 33
Tabelle 8.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Obernberger See	
Abbildung 9: Wildsee	. 35
Tabelle 9.1: Auflistung der nachgewiesenen Taxa an den Probenstellen WIL-01, -02, -03	. 35
Tabelle 9.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Wildsee	. 37
Abbildung 10: Baggersee Roßau	. 38
Tabelle 10.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BGR-01, -02, -03	. 39
Tabelle 10.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Baggersee Roßau	. 39
Abbildung 11: Badesee Going	. 41
Tabelle 11.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSG-01, -02, -03	. 42
Abbildung 12: Badeteich Brixen	. 43
Tabelle 12.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BTB-01, -02, -03	. 44
Tabelle 12.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badeteich Brixen	
Abbildung 13: Badesee Kirchberg	. 46
Tabelle 13.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSK-01, -02, -03	. 47
Tabelle 13.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badesee Kirchberg	. 47
Abbildung 14: Gieringer Weiher	. 48
Tabelle 14.1: Auflistung der nachgewiesenen Taxa an den Probenstellen GIE-01, -02, -03	. 49
Tabelle 14.2: Auflistung aller nachgewiesenen, plausiblen Arten im Gieringer Weiher	
Abbildung 15: Lauchsee Fieberbrunn	
Tabelle 15.1: Auflistung der nachgewiesenen Taxa an den Probenstellen LAU-01, -02, -03	
Tabelle 15.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Lauchsee Fieberbrunn	
Abbildung 16: Piller See	55

Tabelle 16.1: Auflistung der nachgewiesenen Taxa an den Probenstellen PIL-01 – 05	55
Tabelle 16.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Piller See	
Abbildung 17: Schwarzsee	
Tabelle 17.1: Auflistung der nachgewiesenen Taxa an den Probenstellen SCW-01, -02, -03	
Tabelle 17.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Schwarzsee	
Abbildung 18: Berglsteiner See	
Tabelle 18.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BER-01, -02, -03	
Tabelle 18.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Berglsteiner See	
Abbildung 19: Buchsee	
Tabelle 19.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BUC-01, -02, -03	
Tabelle 19.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Buchsee	
Abbildung 20: Hechtsee	
Tabelle 20.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HEC-01, -02, -03	
Tabelle 20.1: Auflistung aller nachgewiesenen, plausiblen Arten im Hechtsee	
Abbildung 21: Hintersteiner See	
Tabelle 21.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HIN-01 – 04	
Tabelle 21.1. Auflistung aller nachgewiesenen, plausiblen Taxa im Hintersteiner See	
Abbildung 22: Krummsee	
Tabelle 22.1: Auflistung der nachgewiesenen Taxa an den Probenstellen KRU-01, -02, -03	
Tabelle 22.1. Auflistung der nachgewiesenen Taxa an den Probenstellen KKO-01, -02, -03 Tabelle 22.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Krummsee	
Abbildung 23: Moorstrandbad Kirchbichl	
Tabelle 23.1: Auflistung der nachgewiesenen Taxa an den Probenstellen MOO-01, -02, -03	
Tabelle 23.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Moorstrandbad Kirchbichl	
Abbildung 24: Reintaler See	
Tabelle 24.1: Auflistung der nachgewiesenen Taxa an den Probenstellen REN-01 – 04	
Tabelle 24.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Reintaler See	
Abbildung 25: Reither See	
Tabelle 25.1: Auflistung der nachgewiesenen Taxa an den Probenstellen REI-01, -02, -03	
Tabelle 25.2: Auflistung aller nachgewiesenen Arten im Reither See	
Abbildung 26: Stimmersee	
Tabelle 26.1: Auflistung der nachgewiesenen Taxa an den Probenstellen STI-01, -02, -03	
Tabelle 26.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Stimmersee	
Abbildung 27: Thiersee	
Tabelle 27.1: Auflistung der nachgewiesenen Taxa an den Probenstellen THI-01, -02, -03	
Tabelle 27.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Thiersee	
Abbildung 28: Walchsee	
Tabelle 28.1: Auflistung der nachgewiesenen Taxa an den Probenstellen WAL-01 – 06 (2-te	
Tabelle 28.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Walchsee	
Abbildung 29: Badesee Ried	
Tabelle 29.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BSR-01, -02, -03	
Tabelle 29.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badesee Ried	
Abbildung 30: Badeteich Ladis	
Tabelle 30.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BTL-01, -02, -03	
Tabelle 30.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Badeteich Ladis	
Abbildung 31: Tristacher See	
Tabelle 31.1: Auflistung der nachgewiesenen Taxa an den Probenstellen TRI-01, -02, -03	
Tabelle 31.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Tristacher See	
Abbildung 32: Blindsee	
Tabelle 32.1: Auflistung der nachgewiesenen Taxa an den Probenstellen BLI-01 – 04	112

Tabelle 32.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Blindsee	. 113
Abbildung 33: Haldensee	. 114
Tabelle 33.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HAL-01 – 04	. 115
Tabelle 33.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Haldensee	. 116
Abbildung 34: Heiterwanger See	
Tabelle 34.1: Auflistung der nachgewiesenen Taxa an den Probenstellen HEI-01 – 07	. 117
Tabelle 34.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Heiterwanger See	. 119
Abbildung 35: Plansee	
Tabelle 35.1: Auflistung der nachgewiesenen Taxa an den Probenstellen PLA-01 – 17 (3-to-	
Tabelle 35.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Plansee	. 125
Abbildung 36: Urisee	. 127
Tabelle 36.1: Auflistung der nachgewiesenen Taxa an den Probenstellen URI-01, -02, -03	. 128
Tabelle 36.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Urisee	. 129
Abbildung 37: Vilsalpsee	
Tabelle 37.1: Auflistung der nachgewiesenen Taxa an den Probenstellen VIS-01 – 04	
Tabelle 37.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Visalpsee	
Abbildung 38: Achensee	
Tabelle 38.1: Auflistung der nachgewiesenen Taxa an den Probenstellen ACH-01 – 21 (4-to	- ,
Tabelle 38.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Achensee	. 139
Abbildung 39: Weißlahn	. 141
Tabelle 39.1: Auflistung der nachgewiesenen Taxa an den Probenstellen WEI-01, -02, -03	.142
Tabelle 39.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Weißlahn	. 143
Abbildung 40: Schlitterer See	. 144
Tabelle 40.1: Auflistung der nachgewiesenen Taxa an den Probenstellen SCL-01, -02, -03	
Tabelle 40.2: Auflistung aller nachgewiesenen, plausiblen Taxa im Schlitterer See	
Tabelle B: Invasive gebietsfremde Wasserpflanzen gemäß EU-Verordnung Nr. 1143/2014	. 149
Tabelle C: (1) Detektionsliste Fische, (2) Krebse, (3) Muscheln	. 149

Literatur

- Albrecht, H. (1982) Das System der Europäischen Flusskrebse: Vorschlag und Begründung, Mitt. Hamb. Zoolog. Mus. Inst. Band 79 S. 187-210
- Bundesamt für Wasserwirtschaft Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee (2006) Achensee Standardisierte Fischbestandserhebung und Bewertung des fisch-ökologischen Zustandes gemäß EU-WRRL
- Bundesamt für Wasserwirtschaft Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee (2011) Hintersteinersee Standardisierte Fischbestands-erhebung und Bewertung des fisch-ökologischen Zustandes gemäß EU-WRRL
- Bundesamt für Wasserwirtschaft Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee (2013) Haldensee Standardisierte Fischbestandserhebung und Bewertung des fisch-ökologischen Zustandes gemäß EU-WRRL
- Bundesamt für Wasserwirtschaft Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee (2014) Heiterwanger See Standardisierte Fischbestands-erhebung und Bewertung des fisch-ökologischen Zustandes gemäß EU-WRRL
- Bundesamt für Wasserwirtschaft Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee (2014) Plansee Standardisierte Fischbestandserhebung und Bewertung des fisch-ökologischen Zustandes gemäß EU-WRRL
- Bundesamt für Wasserwirtschaft Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee (2015) Vilsalpsee Standardisierte Fischbestandserhebung und Bewertung des fisch-ökologischen Zustandes gemäß EU-WRRL
- Fürreder, L. & Macchino, Y. (1995) Record of the White-clawed Crayfish *Austropotamobius* pallipes (LEREBOULLET 1858) from Plansee (Tyrol, Austria). Ber. nat.-med. Verein Innsbruck, Band 82 S. 241 246
- Fürreder, L. & Macchino, Y. (1996) Das letzte natürliche Vorkommen des Steinkrebses Austropotamobius torrentium (SCHRANK, 1803) in Tirol. Ber. nat.-med. Verein Innsbruck, Band 83 S. 211-219
- Gassner, H., Zick, D., Wanzenböck, J., Lahnsteiner B. & G. Tischler (2003): Die Fischartengemeinschaften der großen österreichischen Seen. Schriftenreihe des BAW, Band 18, Wien. Gassner H., Achleitner
- Härtl, M. Höllein, M. & Schliewen, U.K. (2018) First record of the East Asian Yellow Catfish *Tachysurus fulvidraco* (Richardson, 1846) in Germany, Spixiana 41 (2): 167-168
- Holdrich (2002) Distribution of crayfish in Europe and some adjoining countries Bull. Fr. Pêche Piscic. 367: 611-650
- Macchino, Y. & Fürreder, L. (1998) Der Steinkrebs *Austropotamobius torrentium* (SCHRANK, 1803) im Haldensee (Tirol, Österreich) und weitere Nachweise von Flusskrebsen in hochgelegenen Gewässern. Ber. nat.-med. Verein Innsbruck Band 85 S. 223 229
- Mark, W. (2023) Fischereiliche Untersuchungen Baggersee IBK/Freizeitanlage Rossau. Bericht im Auftrag der Innsbrucker Kommunalbetriebe AG, Bestellnummer 3000/ 4500275379, ARGE für Fisch- & Gewässerökologie
- Mark, W. (2011) Fischbestandserhebung am Möserer See. ARGE für Fisch- & Gewässerökologie
- Miya, Y. et al. (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Openscience 2: 150088.http://dx.doi.org/10.1098/rsos.150088
- Thalinger, B., Wolf, E., Traugott, M., Wanzenböck, J. (2019) Monitoring spawning migrations of potamodromous fish species via eDNA. Scientific Reports 15388