

Luftgüte in Tirol

Jahresbericht 2019

INHALTSVERZEICHNIS

	Seite
Zusammenfassende Bewertung der Luftgütesituation	3
Einleitung	5
Material und Methoden	6
- Bestückung der Messstellen	6
- Messprinzipien und Kenngrößen	7
- Qualitätssicherung	9
Messergebnisse (inkl. Verfügbarkeiten der Messdaten)	16
Auswertungen und Ausweisung allfälliger Überschreitungen anhand der gesetzlichen Immissionsgrenzwerte sowie Feststellung von Überschreitungen gemäß Messkonzeptverordnung zum Immissionsschutzgesetz-Luft (IG-L – Messkonzeptverordnung 2012 – IG-L-MKV 2012, BGBI. II 127/2012) und § 7 des Bundesgesetzes zum Schutz vor Immissionen durch Luftschadstoffe (Immissionsschutzgesetz-Luft - IG-L, BGBI. I Nr. 115/1997), in den jeweils geltenden Fassungen	26
Schwefeldioxid	29
Kohlenstoffmonoxid	30
Stickstoffdioxid	31
Stickstoffoxide	33
PM10 Feinstaub	34
PM2.5 Feinstaub	38
Schwermetalle im Feinstaub	39
Benzo(a)Pyren in der PM10-Fraktion	40
Benzol	41
Depositionsmessergebnisse Staubniederschlag nach Bergerhoff	42
Messungen zur Quecksilberbelastung im Raum Brixlegg	51
Ozon	53
Eintragsmessergebnisse aus nasser Deposition	58
Anhänge	
Anhang 1: Grafikteil	60
Anhang 2: Liste mit Überschreitungen von gesetzlichen Grenz-, Alarm- bzw. Zielwerten	79
Anhang 3: Lage der Standorte	87
Anhang 4: Messergebnisse von Vorerkundungsmessungen 2019	89
Anhang 5: Abkürzungen	90

Dieser Bericht ist auch im Internet verfügbar:

https://www.tirol.gv.at/umwelt/luftqualitaet/

Abt. Waldschutz beim Amt der Tiroler Landesregierung

Für den Inhalt verantwortlich: DI Walter Egger (Leitung Fachbereich Luftgüte)

An diesem Bericht haben weiters mitgearbeitet:

Mag. Andreas Krismer, Dr. Georg Lair, Dionys Schatzer, Ing. Franz Schöler, Ing. Andreas Pöllmann, Ing. Georg Strickner BSc. Aufstellung, Wartung, Qualitätssicherung und Auswertungen der kontinuierlichen Schadstoffmessungen sowie alle weiteren Probenahmen im Vollzug des IG-L für Tirol wurden von der Abt. Waldschutz vorgenommen, die chemischen Analysen samt Wägearbeiten für die PM10- und PM2,5-Filter von der Chemisch Technischen Umweltschutzanstalt (=CTUA) beim Amt der Tiroler Landesregierung. Die Probenahmen für die Eintragsuntersuchungen ("Nasse Deposition") erfolgten durch externe Betreuer vor Ort, die österreichweite Auswertung durch die TU Wien. Titelseite gestaltet von Paul Tschörner (Foto: Messstelle Innsbruck Sadrach).

Zusammenfassende Bewertung der Luftgütesituation für das Jahr 2019

Immissionsschutzgesetz-Luft (IG-L)

Der Bericht erfüllt die gesetzlichen Vorgaben des Immissionsschutzgesetzes Luft, BGBl. I 115/1997, und der dazugehörigen Messkonzeptverordnung (BGBl. II 127/2012), jeweils in den geltenden Fassungen. Sowohl die Mindestanforderungen zur Messstellenanzahl wie auch zur Datenqualität sind für das Berichtsjahr als eingehalten auszuweisen. Bezüglich der Überprüfung der gesetzlichen <u>Grenzwerte zum (langfristigen) Schutz der menschlichen Gesundheit gemäß IG-L</u> ergibt sich folgendes Ergebnis:

- Bei den Schadstoffen **Schwefeldioxid** (SO₂) und **Kohlenmonoxid** (CO) sind alle Grenzwerte eingehalten.
- Für **Stickstoffdioxid** (NO₂) sind an 2 von 15 Standorten Überschreitungen der zulässigen Jahresgrenzwertschwelle von 35 μg/m³ (Grenzwert + Toleranzschwelle) auszuweisen. Der Kurzzeitgrenzwert wurde im gesamten Messnetz eingehalten.
- An allen 12 **PM10**-Messstellen sind die gesetzlichen Grenzwertvorgaben (40 μg/m³ als Jahresmittelwert; 25 Überschreitungen des Tagesgrenzwertes von 50 μg/m³) eingehalten.
- Der gesetzliche Grenzwert für **PM2.5** (25 μg/m³ als Jahresmittelwert) ist an allen drei Tiroler Messstandorten deutlich eingehalten.
- Die Schwermetallgehalte im PM10 (Arsen, Nickel, Blei und Cadmium), welche laufend an den Messstellen BRIXLEGG/Innweg und HALL IN TIROL/Sportplatz ermittelt werden, liegen 2019 unterhalb der gesetzlich festgelegten Grenzwerte des IG-L.
- Der gesetzlich vorgegebene Grenzwert von 1 ng/m³ für **Benzo[a]pyren** (B(a)P) als Jahresmittelwert wurde an keiner Messstelle überschritten.
- Bei **Benzol** ist der zulässige Grenzwert an der Trendmessstelle INNSBRUCK/Fallmerayerstraße, wie in den Jahren zuvor, deutlich eingehalten.
- Hinsichtlich der **Staubdeposition** (Staubniederschlag) und seiner Schwermetallgehalte sind an allen Messstandorten, mit Ausnahme des Standorts Container/Innweg in Brixlegg für die Komponente Blei, die gesetzlichen Grenzwerte gemäß IG-L eingehalten.

In Bezug auf die <u>gesetzlichen Grenzwerte zum Schutz der Vegetation gemäß IG-L</u> ergibt sich zusammenfassend, dass die vegetationsbezogenen Vorgaben für **Schwefeldioxid** (SO₂) und für **Stickstoffoxide** (NO_x) eingehalten wurden.

Zusammenfassend ist festzustellen, dass die Erstellung von Statuserhebungen nach § 8 IG-L nicht erforderlich ist, da entweder keine Grenzwertverletzungen auszuweisen waren bzw. bei ausgewiesenen Grenzwertverletzungen bereits Statuserhebungen bestehen. Im Weiteren sind auch die im IG-L genannten Alarmwerte für NO_2 und SO_2 eingehalten.

Ozongesetz

Der Bericht erfüllt die gesetzlichen Vorgaben des Ozongesetzes, BGBl. Nr. 210/1992, und der dazugehörigen Ozon-Messkonzeptverordnung (BGBl. II 99/2004), jeweils in den geltenden Fassungen.

Bei **Ozon** wurden die Alarmschwelle sowie die Informationsschwelle (mit Ausnahme an der Messstelle KUFSTEIN/Festung) gemäß Ozongesetz eingehalten. Das gesetzliche Zielwertkriterium zum Schutz der menschlichen Gesundheit (25 zulässige Tage mit Zielwertüberschreitungen von 120 µg/m³ als Achtstundenmittelwert gemittelt über 3 Jahre) wurde an der Messstelle INNSBRUCK/Nordkette und INNSBRUCK/Sadrach überschritten; an den restlichen 7 Standorten ist dieses Kriterium eingehalten. Das Kriterium zum Schutz der Vegetation wurde lediglich auf der Nordkette überschritten.

Die langfristigen Ziele zum Schutz des Menschen sowie der Vegetation ab 2020 werden derzeit an keinem der 9 Standorte eingehalten.

Zweite Verordnung gegen forstschädliche Luftverunreinigungen (2. FVO)

Hinsichtlich der Vorgaben gemäß der zweiten Forstverordnung sind für die Standorte Container sowie Bahnhof in Brixlegg bei der Komponente Kupfer im Staubniederschlag Überschreitungen auszuweisen. Zusätzlich wurde der Kurzzeitgrenzwert für SO₂ im Sommerhalbjahr an der Messstelle BRIXLEGG/Innweg überschritten. Abgesehen davon wurden sämtliche Vorgaben eingehalten.

EINLEITUNG

Der Landeshauptmann von Tirol hat in mittelbarer Bundesverwaltung gemäß dem Immissionsschutzgesetz-Luft (IG-L) und der IG-L-Messkonzeptverordnung sowie dem Ozongesetz und der Ozonmesskonzeptverordnung ein Luftgütemessnetz zu betreiben und darüber einen Jahresbericht zu erstellen.

Der gegenständliche Jahresbericht enthält zunächst für jede einzelne Messstelle – tabellarisch zusammengestellt – die über das Berichtsjahr ermittelten Messergebnisse. Im Kapitel "Auswertungen" sind die Ergebnisse des gesamten Messnetzes für jeden Schadstoff zusammengestellt. Hier erfolgt auch die Ausweisung von Grenzwertüberschreitungen und die Feststellung über die allfällige Notwendigkeit einer Statuserhebung gemäß § 8 IG-L.

Im Grafikteil werden zusätzlich zu den Jahresergebnissen für 2019 auch die Vorjahresergebnisse dargestellt.

Darüber hinaus sind in diesem Bericht enthalten:

- Ergebnisse der Eintragsuntersuchungen aus nasser Deposition, welche als "critical loads" besonders für terrestrische und aquatische Ökosysteme von Bedeutung sind;
- Ergebnisse der Schwermetalleinträge im Raum Brixlegg, ausgewertet nach den Grenzwerten der Verordnung des Bundesministers für Land- und Forstwirtschaft vom 24. April 1984 über forstschädliche Luftverunreinigungen (Zweite Verordnung gegen forstschädliche Luftverunreinigungen), BGBI. 199/1984;
- Messungen zur Quecksilberbelastung im Raum Brixlegg.

Ergänzender Hinweis:

Monatsberichte können über den Link https://www.tirol.gv.at/umwelt/luftqualitaet/luft-monatsbericht/ abgerufen werden, Langzeitverläufe der einzelnen Schadstoffkomponenten unter https://www.tirol.gv.at/umwelt/luftqualitaet/schadstoffverlaeufe/.

MESSSTELLEN, MESSGERÄTEAUSSTATTUNG, MESSMETHODEN

Messstellen, Messgeräteausstattung

Übersicht über die Messstellen sowie über die Ausstattung der Messstationen mit Angabe der in Österreich zugelassenen und typisierten Messgeräte. Die Standortfestlegung erfolgte nach Schwerpunkten der Immissionsbelastung, den Standortkriterien gem. Messkonzeptverordnung und den abzudeckenden Schutzzielen.

Messstelle	SO ₂	CO	NO _x	O ₃	PM10	PM10	PM2.5	Benzol
					kont.	grav.	grav.	
	Type	Type	Type	Type	Туре	Type	Type	Type
2705/HÖFEN				APOA				
Lärchbichl				370				
2710/HEITERWANG			APNA	APOA	TH 63 ID			
Ort L355			370	370	FH 62 IR			
2315/IMST			APNA		FLI 63 ID			
A12			370		FH 62 IR			
2106/INNSBRUCK			APNA	APOA	FIL 60 ID	DHA		
Andechsstraße			370	370	FH 62 IR	80		
2110/INNSBRUCK	APSA	APMA	APNA			DHA	DHA	GS
Fallmerayerstraße	370	370	370		FH 62 IR	80	80	301
2113/INNSBRUCK			APNA	APOA				
Sadrach			370	370				
2123/INNSBRUCK				APOA				
Nordkette				370				
2223/MUTTERS			APNA					
Gärberbach			370		FH 62 IR			
2227/HALL			APNA			DHA		
Sportplatz			370		FH 62 IR	80		
2821/VOMP			APNA			DHA		
Raststätte A12			370		FH 62 IR	80		
2822/VOMP			APNA					
An der Leiten			370		FH 62 IR			
2519/BRIXLEGG	APSA		370			DHA	DHA	
Innweg	370				FH 62 IR	80	80	
2538/KRAMSACH	3,0		APNA	APOA		- 00	- 00	
Angerberg			370	370				
2550/KUNDL			APNA	370				
A12			370					
2530/WÖRGL			APNA	APOA				
Stelzhamerstr.			370	370	FH 62 IR			
2552/KUFSTEIN			APNA	3/0				
Praxmarerstraße			370		FH 62 IR			
2547/KUFSTEIN			3/0	APOA				
Festung				370				
		V DI	V DVI V	3/0		DHV	DHV	
2910/LIENZ		API 300E	APNA 370		FH 62 IR	DHA 80	DHA 80	
Amlacherkreuzung		SUUE		A D		6U	ăU.	<u> </u>
2912/LIENZ			APNA	APOA				
Tiefbrunnen			370	370				
Anzahl der Geräte	2	2	15	9	12	6	3	1

Messmethoden und Kenngrößen der kontinuierlich registrierenden Messgeräte

Schwefeldioxid wird nach dem physikalischen Verfahren der UV-Fluoreszenz gemessen. Die Geräte besitzen folgende Nachweisgrenzen (laut Hersteller):

Geräteserie	SO ₂ (µg/m³)
TE 43i	1,3
APSA 370	1,3

Stickstoffoxidmessungen erfolgen nach dem sog. Chemilumineszenz Prinzip, wobei Stickstoffdioxid (NO₂) als Differenz von NO_x und NO bestimmt wird. Die Geräte besitzen folgende Nachweisgrenzen (laut Hersteller):

Geräteserie	NO (μg/m³)
APNA 370	0,6

Die Messung von **Kohlenmonoxid** beruht auf dem Infrarot-Absorptionsverfahren. Die Geräte besitzen folgende Nachweisgrenzen (laut Hersteller):

Geräteserie	CO (mg/m³)
API 300E	0,6

Ozon wird über die UV-Absorption gemessen. Die Geräte besitzen folgende Nachweisgrenzen (laut Hersteller):

Geräteserie	Nachweisgrenze O ₃ (µg/m³)
APOA 370	1,0
API 400E	1,2
TE 49i	1,0

Schwebstaub, PM10 und PM2.5

Folgende Geräte werden im Tiroler Luftmessnetz eingesetzt:

Gerätetyp	Nachweisgrenze	Messprinzip
	$(\mu g/m^3)$	
FH 62 IR	3,6	Durchlässigkeit eines β-Strahlers, Probenahmevorrichtung PM10-Kopf
		(Fa. DIGITEL)
DHA 80	1,0	Differenz Ein-Auswaage exponierter Filter, welche mit Umgebungsluft
		über eine typisierte PM10- oder PM2.5-Ansaugvorrichtung während
		eines Tages beaufschlagt wurde (gravimetrische Methode)

Die mittels kontinuierlich registrierender Gerätschaft (FH 62 IR) ermittelten Rohwerte (in mg/m³) wurden mit der Korrekturfunktion (Messwert · 1,042+1,289; für Brixlegg gesondert: Messwert · 0,947+1,904) zum **PM10**-Wert berechnet. Bei Einsatz beider Gerätetypen an einem Messstandort werden die Ergebnisse der gravimetrischen Messungen im Jahresbericht veröffentlicht.

Die IG-L-Messkonzeptverordnung schreibt zur Bestimmung von Blei, Arsen, Nickel und Cadmium im Schwebstaub (PM10) zumindest eine Messung pro Woche vor. An den beiden Tiroler Messstandorten BRIXLEGG/Innweg und HALL in Tirol/Sportplatz wurde im Gegensatz dazu jedoch eine lückenlose Prüfung des Jahresgrenzwertes auf Basis von Tagesmittelwerten vorgenommen. Zu Monatsperioden zusammengefasste sog. "batches" erlauben sowohl die Darstellung des Jahresganges wie auch die Angabe eines Jahresmittelwertes für die analysierten Schwermetalle.

Zur Bestimmung von **Benzol** wird im Tiroler Luftgütemessnetz ein aktives Probenahmeverfahren verwendet. An der Messstelle INNSBRUCK/Fallmerayerstraße wurden Sammelröhrchen vom Typ NIOSH (6x70mm) der Fa. Dräger unter Verwendung des 10fach-Wechslers des Aktivprobenahmesystems Desaga GS301 eingesetzt. An jedem dritten Tag wurde Außenluft mit einem Durchflussvolumen von 1 dm³/min über 24 Stunden durch die Aktivkohle des Sammelröhrchens gesaugt und das Röhrchen anschließend im Landeslabor (CTUA) analysiert. Die angegebenen Volumina sind auf 1013 mbar und 20°C bezogen.

Die Messung von Benzo[a]pyren im PM10 erfolgt über die Zusammenfassung ausgestanzter Segmente exponierter PM10-Tagesfilter zu Monatsproben (sog. "batches"), anschließender Extraktion mit Toluol, Auftrennung mittels HPLC (Hochdruckflüssigkeitschromatographie) und Detektion mittels UV- bzw. Fluoreszenzanalyse nach DIN ISO 16362. Somit kann das gesamte Jahr lückenlos bei gleichzeitig geringen Kosten überprüft und im Jahresgang dargestellt werden.

Die Probenahme für den **Staubniederschlag** (Bergerhoff-Methode) sowie die Analyse auf dessen Inhaltsstoffe (Blei, Arsen, Kupfer, Zink und Cadmium im Staubniederschlag) wurde entsprechend der Vorgabe der Verordnung zum Messkonzept durchgeführt. Die chemische Analyse der Schwermetalle erfolgte mittels Plasma Emissions- und Massenspektroskopie bei der CTUA.

Das Untersuchungsprogramm zur Erfassung des Eintrages an Elementen (Stickstoff, Schwefel) wurde mit Hilfe des WADOS-Probensammelgeräts (wet and dry only sampler; "Nasse Deposition") durchgeführt und die Niederschlagsproben in der CTUA auf Inhaltsstoffe analysiert.

Qualitätssicherung

In der IG-L Messkonzeptverordnung 2012 wird in den §§ 10 und 11 für die Qualitätssicherung von Messdaten gefordert:

- § 10. (1) Jeder Messnetzbetreiber hat die Rückführbarkeit der Messdaten und die Qualitätssicherung sowie die Qualitätskontrolle entsprechend den Bestimmungen in Anlage 4 sicherzustellen.
- (2) Die Sicherstellung der Vergleichbarkeit und Rückführbarkeit der Messergebnisse erfolgt durch die Messnetzbetreiber zumindest einmal jährlich durch die Anbindung an die Primär- oder Referenzstandards eines Referenzlabors gemäß Artikel 3 der Richtlinie 2008/50/EG über die Beurteilung und die Kontrolle der Luftqualität, ABI. Nr. L 152 vom 21.5.2008 S. 1, und durch regelmäßige Teilnahme an Ringversuchen.
- § 11. (1) Das Umweltbundesamt hat einmal jährlich seine Referenz- und Primärstandards für SO₂, NO, CO und Benzol (aktive Probenahme) den Landeshauptmännern zum Abgleich zur Verfügung zu stellen. Auch für Komponenten, die nicht direkt auf Primär- oder Referenzstandards rückgeführt werden können, wie auch für physikalische Messgrößen, die unmittelbaren Einfluss auf Messergebnisse und ihre Vergleichbarkeit haben, hat das Umweltbundesamt geeignete qualitätssichernde Maßnahmen auszuarbeiten sowie Vergleichsmessungen oder Ringversuche zu organisieren und durchzuführen. Die Messnetzbetreiber können sich auch anderer Referenzlabors bedienen. Die österreichischen Referenzlabors stellen den nationalen und internationalen Abgleich ihrer Primär- und Referenzstandards zumindest einmal jährlich sicher.
- (2) Die Messnetzbetreiber haben ihrerseits die Rückführbarkeit der erhobenen Messwerte sicherzustellen.

Von Vertretern der Länder und des Bundes wurde ein Leitfaden zur Immissionsmessung nach dem Immissionsschutzgesetz - Luft (i.d.g.F) erarbeitet. Er enthält die Anforderungen an eine österreichweit einheitliche Vorgangsweise für die Immissionsmessung nach dem IG-L, mit der die harmonisierte Umsetzung der EN14211, EN14212, EN14625 und EN14626 sichergestellt werden soll.

Ob die erhobenen Messdaten diesen Qualitätszielen entsprechen, wird durch die Ermittlung der erweiterten kombinierten Messunsicherheit beschrieben. Diese muss zumindest einmal jährlich berechnet werden.

Die kombinierte Messunsicherheit setzt sich aus den messgerätespezifischen und ortsspezifischen Anteilen, Unsicherheiten des Messverfahrens und der zur Kalibration eingesetzten Prüfgasquelle zusammen. Verluste durch die Probennahme werden in der Berechnung nicht berücksichtigt.

Die Repräsentativität der Messstelle kann nur schwer quantifiziert werden und wird daher nicht in die Berechnung der Messunsicherheit einbezogen.

Im Feldbetrieb wird die Messunsicherheit von O_3 für den HMW bzw. MW1 und MW8, für CO für den MW8, sowie für SO_2 und NO/NO_2 für den HMW bzw. MW1 und für den JMW berechnet.

Für die kombinierte Messunsicherheit werden alle Beiträge gemäß GUM (ENV 13005) aufsummiert.

Für die erweiterte Messunsicherheit wird das Ergebnis mit der kombinierten Messunsicherheit mit dem Faktor 2 multipliziert (95% Vertrauensniveau).

Die erweiterte kombinierte Messunsicherheit wird in weiterer Folge in die relative Messunsicherheit, bezogen auf den jeweiligen Grenzwert, umgerechnet und mit dem für alle gasförmigen Schadstoffkomponenten vorgegebenen Datenqualitätsziel von 15 % verglichen:

SO₂:

Messstation	Messunsicherheit HMW/MW1 [%]	Messunsicherheit JMW [%]	Datenqualitätsziel eingehalten
INNSBRUCK - Fallmerayerstraße	10,0	9,8	ja
BRIXLEGG – Innweg	10,0	6,8	ja

CO:

Messstation	Messunsicherheit MW8 [%]	Datenqualitätsziel eingehalten
INNSBRUCK - Fallmerayerstraße	11,6	ja
LIENZ – Amlacherkreuzung	11,0	ja

NO/NO₂:

Messstation	Messunsicherheit HMW/MW1 [%]	Messunsicherheit JMW [%]	Datenqualitätsziel eingehalten
INNSBRUCK – Andechsstraße	9,7	9,5	ja
INNSBRUCK - Fallmerayerstraße	9,7	8,9	ja
INNSBRUCK – Sadrach	9,7	8,9	ja
MUTTERS – Gärberbach	9,7	8,9	ja
HALL – Sportplatz	9,7	8,9	ja
IMST – A12	9,7	8,9	ja
WÖRGL – Stelzhamerstraße	9,7	8,9	ja
KRAMSACH – Angerberg	9,7	8,9	ja
KUNDL – A12	9,7	8,9	ja
KUFSTEIN – Praxmarerstraße	9,7	8,9	ja
HEITERWANG – Ort/L355	9,7	8,9	ja
VOMP – Raststätte/A12	9,7	8,9	ja
VOMP – An der Leiten	9,7	8,9	ja
LIENZ – Amlacherkreuzung	9,7	8,9	ja
LIENZ – Tiefbrunnen	9,7	8,9	ja

O₃:

Messstation	Messunsicherheit HMW/MW1 [%]	Messunsicherheit MW8 [%]	Datenqualitätsziel eingehalten
INNSBRUCK – Andechsstraße	3,7	3,8	ja
INNSBRUCK – Sadrach	3,8	3,8	ja
INNSBRUCK – Nordkette	3,9	4,0	ja
WÖRGL – Stelzhamerstraße	3,8	3,8	ja
KRAMSACH – Angerberg	3,7	3,8	ja
KUFSTEIN – Festung	3,7	3,8	ja
HÖFEN – Lärchbichl	3,8	3,9	ja
HEITERWANG – Ort/L355	3,8	3,8	ja
LIENZ – Tiefbrunnen	3,8	3,9	ja

Schwebstaub:

Gravimetrische Messmethode

In der EN12341 werden die Qualitätssicherungs-/Qualitätskontrollverfahren (QS/QK-Verfahren) für die Probennahme, den Transport, die Handhabung und das Wägen von Filtern beschrieben.

Die Qualitätssicherungs-/Qualitätskontrollverfahren in dieser Europäischen Norm werden in Tätigkeiten eingeteilt, die üblicherweise bei jeder Messung anfallen, und solche, die weniger häufig durchgeführt werden.

QS/QK-Verfahren, die bei jeder Messung angewendet werden, beziehen sich auf die Filterhandhabung und – Konditionierung, Wägeraumbedingungen, ordnungsgemäße Arbeitsweise der Waage und den Gebrauch der Leerfilter.

Zusätzliche QS/QK-Verfahren, die weniger häufig angewendet werden, beziehen sich auf die Kalibrierung des Volumenstroms, die Kalibrierung der Waage, Wartung (Reinigung des Probeneinlasses) und die Dichtheitsprüfung des Probennahmesystems.

Die Kalibrierung der Waage fällt in die Zuständigkeit des Fachbereiches der CTUA (Chemisch-technische Umweltschutzanstalt des Landes Tirol), welche auch für die Konditionierung und Wägung der Filter verantwortlich ist.

Die letzte Kalibrierung der Waage wurde am 04.11.2019 von der Bautechnischen Versuchs- und Forschungsanstalt, akkreditierte durch AKKREDITIERUNG AUSTRIA, durchgeführt (Zertifikat-Nr. K36/308/19-3).

Der für die Konstanz der Waagraumbedingungen eingesetzten Temperatur- und Feuchtesensor wurde am 20.01.2020 durch die Firma E+E, akkreditierte durch AKKREDITIERUNG AUSTRIA, kalibriert (Zertifikat-Nr. KA010934).

Die Wartung des Probeneinlasssystems wird in einer digitalen Datenbank ("MISS-Tirol" –Messstelleninformations- und Servicesystem Tirol) protokolliert.

Zur Überprüfung des Volumenstromes der im Messnetz eingesetzten DIGITEL-Analysatoren wurde das dazu verwendete Durchflussmessrohr (Rotameter) am 19.02.2019 im nationalen Referenzlabor des Umweltbundesamtes in Wien abgeglichen.

Mit Hilfe dieses Standards wurde jeder einzelne Analysator vor Ort 4-mal jährlich einer Durchflussüberprüfung unterzogen. Dabei wurde die eventuelle Abweichung vom Sollwert ermittelt.

Die Ergebnisse für das Jahr 2019 sind in der folgenden Tabelle zusammengefasst:

Messstelle	Fraktion	Maximaler Durchfluss-fehler [%]	Dichtheitsprüfung [%]
Grenzwert lt. EN12341	-	± 5	1,0
INNSBRUCK Andechsstraße	PM10	2,1	0,04
INNSBRUCK Fallmerayerstraße	PM10	1,8	0,03
INNSBRUCK Fallmerayerstraße	PM2.5	1,0	0,05
HALL Sportplatz	PM10	2,7	0,02
BRIXLEGG Innweg	PM10	1,3	0,05
BRIXLEGG Innweg	PM2.5	1,3	0,04
HEITERWANG Ort/L355	PM 10	1,2	0,03
VOMP Raststätte/A12	PM10	1,9	0,02
LIENZ Amlacherkreuzung	PM10	0,5	0,05
LIENZ Amlacherkreuzung	PM2.5	1,0	0,05

Aus der Tabelle ist ersichtlich, dass alle gemessenen Werte innerhalb der zulässigen Abweichung lt. EN 12341 liegen.

Kontinuierliche Messmethode

In ÖNORM EN16450 werden die Qualitätssicherungs-/Qualitätskontrollverfahren (QS/QK-Verfahren) beschrieben. Zur Überprüfung der im Messnetz eingesetzten FH62 IR-Analysatoren wurden die dazu verwendeten Standards für Temperatur, Druck, Durchfluss und Masse im nationalen Referenzlabor des Umweltbundesamtes in Wien abgeglichen.

Mit Hilfe dieser Standards wurde jeder einzelne Analysator vor Ort in der Messstelle 4-mal jährlich einer Überprüfung unterzogen. Dabei wurde die Abweichung vom Sollwert ermittelt:

Maximale Abweichungen vom Sollwert	Masse [%]	Durchfluss [%]	Temperatursensor Messkopf [°C]	Temperatursensor Bestaubungskammer [°C]	Temperatursensor Kompensationskammer [°C]	Temperatursensor Ansaugheizung [°C]	Drucksensor [mbar]	Gesamtfehler [%]
Grenzwert	3	5	2	2	2	2	10	-
INNSBRUCK Andechsstraße	1,2	1,8	2	1	1	2	3	3,0
INNSBRUCK Fallmerayerstraße	1,0	8,6 *	1	1	2	2	4	9,2
MUTTERS Gärberbach	1,4	1,0	1	2	1	1	0	1,8
HALL Sportplatz	1,3	10,8 *	1	2	1	1	1	10,0
IMST A12	1,3	1,7	2	1	1	1	2	2,9
BRIXLEGG Innweg	0,8	2,9	0	1	1	1	4	3,4
WÖRGL Stelzhamerstraße	0,7	2,3	2	1	2	2	1	3,0
KUFSTEIN Praxmarerstraße	0,8	2,1	2	2	1	2	1	1,8
HEITERWANG Ort/L355	1,7	3,1	2	2	2	1	2	2,4
VOMP Raststätte/A12	1,0	1,6	1	1	1	2	2	2,2
VOMP An der Leiten	2,0	2,1	2	1	1	2	0	4,0
LIENZ Amlacherkreuzung	1,3	3,1	3	3	3	2	1	3,8

^{* ...} Diese Werte liegen zwar über dem vorgegebenen Grenzwert. Aufgrund der parallel gemessenen gravimetrischen Staubdaten sind sie aber für die Messunsicherheit der endgültig verwendeten Daten unerheblich.

Laut Leitfaden zur Äquivalenz (Ausgabe 2010) und der Technischen Spezifikation 16450 für die kontinuierliche PM-Messung (soll zukünftig Norm-Status erlangen) ist es erforderlich, eine Äquivalenz der kontinuierlichen PM-Messungen gegenüber einer Referenzmethode zu bestimmen.

Der Leitfaden zur Äquivalenz ist lt. Messkonzept VO verpflichtend.

Bei den für 2019 durchgeführten Äquivalenzberechnungen konnten folgende Ergebnisse erzielt werden:

Messstation	Erweiterte Messunsicherheit [%]	Datenqualitätsziel eingehalten
Grenzwert	25	
INNSBRUCK – Andechsstraße	6,0	ja
INNSBRUCK – Fallmerayerstraße	7,7	ja
HALL – Sportzentrum	6,0	ja
BRIXLEGG – Innweg	5,0	ja
HEITERWANG – ORT/L355	10,2	ja
VOMP – Raststätte/A12	8,0	ja
LIENZ – Amlacherkreuzung	6,1	ja

MESSERGEBNISSE 2019 (inkl. Verfügbarkeiten der Messdaten)

Die Jahresauswertung erfolgt messstellenbezogen von West nach Ost. In den jeweiligen Tabellen ist auch die Verfügbarkeit der gültigen Einzelwerte angegeben (2. Spalte).

HÖFEN – Lärchbichl Seehöhe: 877 m

gemessene Luftschadstoffe: Ozon (O₃)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung, Ökosysteme u.

Vegetation, Trendaussagen; (forstrelevante Messstelle)

Standorttyp: nordalpine Tallage, ländlicher Hintergrund

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
O ₃ (μg/m³)	97	60	81	118	163	162	167	168	170

HEITERWANG - Ort/L355 Seehöhe: 985 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO), Feinstaub (PM10), Ozon (O₃)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung; Immissionsschutzgesetz-Luft – allgemeine Exposition der Bevölkerung, Trendaussagen

Standorttyp: nordalpine Tallage, ländlicher Hintergrund

Schadstoff	Verf.	JMW	MW	max.	max.	max.	max.	max.	max.
	%		9-16 Veg.P.	TMW	8MW	8MW EU	3MW	1MW	HMW
			veg.P.			EU			
PM10 (μg/m³)	100	9		35					
NO (µg/m³)	97	4		41					151
NO ₂ (µg/m³)	97	15		68			111		121
O ₃ (μg/m³)	97	54	82	109	162	159	166	167	168

Bericht über die Luftgüte in Tirol im Jahr 2019

IMST – A12 Seehöhe: 719 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO $_2$), Stickstoffmonoxid (NO),

Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung - Verkehr, Trendaussagen;

Standorttyp: nordalpine Tallage, verkehrsnahe Messstelle

Schadstoff	Verf. %	JMW	max. TMW	max. 8MW	max. 3MW	max. 1MW	max. HMW
PM10 (µg/m³)	99	14	42				
NO (μg/m³)	97	21	127				313
NO_2 (µg/m³)	97	29	78		122		132

INNSBRUCK - Andechsstraße

Seehöhe: 570 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO), Feinstaub (PM10), Ozon (O₃)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung; Trendaussagen;

Immissionsschutzgesetz-Luft – maximale Belastung - Verkehr Trendaussagen

Standorttyp: nordalpine Tallage, verkehrsnah

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
PM10 g. (μg/m³)	100	14		58					
NO (μg/m³)	97	18		185					426
NO ₂ (µg/m³)	97	29		87			117		128
O ₃ (µg/m³)	97	42	71	112	135	133	150	154	157

INNSBRUCK - Fallmerayerstraße

Seehöhe: 577 m

gemessene Luftschadstoffe: Schwefeldioxid (SO₂), Kohlenmonoxid (CO), Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO), Feinstaub (PM10, PM2.5)

Messziel: Immissionsschutzgesetz-Luft – allgemeine Exposition der Bevölkerung, Trendaussagen;

Standorttyp: nordalpine Tallage, städtischer Hintergrund > 100000 EW

Schadstoff	Verf.	JMW	WinterHJ.	max.	max.	max.	max.	max.
	%			TMW	8MW	3MW	1MW	HMW
SO ₂ (µg/m³)	97	2	3	So: 2		7	So: 7	So: 13
				Wi:4			Wi: 8	Wi: 9
PM10 g. (µg/m³)	100	14		52				
PM2.5 g. (µg/m³)	100	9		45				
NO (μg/m³)	97	19		126				288
NO ₂ (µg/m³)	97	33		94		122		143
CO (mg/m³)	97	0,3		0,7	0,9	1,1	1,5	1,5

INNSBRUCK - Sadrach Seehöhe: 678 m

gemessene Luftschadstoffe: Ozon (O_3) , Stickstoffmonoxid (NO),

Stickstoffdioxid (NO₂)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung; Ökosysteme und Vegetation;

Immissionsschutzgesetz-Luft – allgemeine Exposition der Bevölkerung

Standorttyp: nordalpine Tallage, städtischer Hintergrund > 100000 EW

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max HMW
NO (µg/m³)	97	3		40					116
NO ₂ (µg/m³)	97	16		66			94		97
O ₃ (μg/m³)	96	55	77	130	161	158	168	173	174

Bericht über die Luftgüte in Tirol im Jahr 2019

INNSBRUCK - NORDKETTE

Seehöhe: 1958 m

gemessene Luftschadstoffe: Ozon (O₃)

Messziel: Ozongesetz – Ökosysteme und Vegetation, Trendaussagen;

Standorttyp: nordalpine Bergstation, ländlicher Hintergrund

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
O_3 (µg/m³)	97	93	94	139	157	153	161	162	162

MUTTERS – Gärberbach A13

Seehöhe: 688 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO),

Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung - Verkehr,

Trendaussagen;

Standorttyp: nordalpine Tallage, verkehrsnah

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 (μg/m³)	99	15	50				
NO (μg/m³)	97	29	69				238
NO ₂ (µg/m³)	97	36	68		111		136

HALL - Sportplatz Seehöhe: 558 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO),

Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft – allgemeine Exposition der Bevölkerung, Trendaussagen

Standorttyp: nordalpine Tallage, Verkehr (> 10 m von Straße entfernt)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 g. (μg/m³)	99	16	53				
NO (µg/m³)	97	21	163				372
NO ₂ (µg/m³)	97	32	84		110		126

VOMP - Raststätte A12 Seehöhe: 557 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO),

Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung Verkehr;

Trendaussagen

Standorttyp: nordalpine Tallage, verkehrsnah

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 g. (μg/m³)	100	15	50				
NO (µg/m³)	97	45	171				430
NO ₂ (µg/m³)	97	47	96		143		163

Bericht über die Luftgüte in Tirol im Jahr 2019

VOMP – An der Leiten Seehöhe: 543 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO),

Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung Verkehr

(Exposition der Bevölkerung), Trendaussagen

Standorttyp: nordalpine Tallage, Verkehr (> 10 m von Straße entfernt)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 (μg/m³)	99	14	61				
NO (µg/m³)	97	16	115				346
NO ₂ (µg/m³)	97	32	80		112		121

BRIXLEGG - Innweg Seehöhe: 519 m

gemessene Luftschadstoffe: Schwefeldioxid (SO₂), Feinstaub (PM10, PM2.5)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung – Industrie (Exposition Bevölkerung); Trendaussagen

Standorttyp: nordalpine Tallage, Industrie

Schadstoff	Verf. %	JMW	Winter	max.	max.	max.	max.	max.
			HJ.	TMW	8MW	3MW	1MW	HMW
SO ₂ (μg/m³)	97	3	4	So: 17 Wi: 21		69	So:119 Wi: 87	So:158 Wi: 170
PM10 g. (μg/m³)	100	14		49				
PM2.5 g. (μg/m³)	99	10		41				

KRAMSACH - Angerberg Seehöhe: 602 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO_2), Stickstoffmonoxid (NO), Ozon (O_3)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung; Ökosysteme und Vegetation;

Immissionsschutzgesetz-Luft – maximale Belastung Verkehr, Ökosysteme und Vegetation; Trendaussagen;

Standorttyp: nordalpine Tallage, ländlicher Hintergrund, Verkehr (> 10 m von Straße entfernt)

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8 MW EU	max. 3MW	max. 1MW	max. HMW
NO (µg/m³)	97	3		35					94
NO ₂ (µg/m³)	97	16		60			79		90
NO _x -IGL (μg/m³)	97	21							
O ₃ (µg/m³)	97	51	73	124	165	165	169	176	177

KUNDL – A12 Seehöhe: 507 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung Verkehr; Trendaussagen

Standorttyp: nordalpine Tallage, verkehrsnah

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
NO (μg/m³)	97	23	77				206
NO ₂ (µg/m³)	97	34	86		113		121

WÖRGL - Stelzhamerstraße

Seehöhe: 508 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO_2), Stickstoffmonoxid (NO), Feinstaub (PM10), Ozon (O_3)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung; Immissionsschutzgesetz-Luft – allgemeine Exposition der Bevölkerung, Trendaussagen;

Standorttyp: nordalpine Tallage, Städtischer Hintergrund 5.000–20.000 EW

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
PM10 (μg/m³)	99	14		70					
NO (μg/m³)	97	12		72					218
NO ₂ (µg/m³)	97	24		75			100		104
O ₃ (μg/m³)	97	38	71	105	163	161	168	172	172

KUFSTEIN - Praxmarerstraße

Seehöhe: 489 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO), Feinstaub (PM10)

Messziel: Immissionsschutzgesetz-Luft – allgemeine Exposition der Bevölkerung, Trendaussagen

Standorttyp: nordalpine Tallage, Städtischer Hintergrund 5.000–20.000 EW

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 (μg/m³)	100	12	65				
NO (μg/m³)	97	8	53				154
NO ₂ (µg/m³)	97	22	64		87		90

KUFSTEIN - Festung Seehöhe: 550 m

gemessene Luftschadstoffe: Ozon (O₃)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung, Ökosysteme und Vegetation, Trendaussagen;

Standorttyp: nordalpine Tallage, Städtischer Hintergrund 5.000–20.000 EW

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW	max. 3MW	max. 1MW	max. HMW
						EU			
O ₃ (μg/m³)	97	45	72	117	176	176	186	188	191

LIENZ - Amlacherkreuzung Seehöhe: 675 m

gemessene Luftschadstoffe: Kohlenmonoxid (CO), Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO), Feinstaub (PM10, PM2.5)

Messziel: Immissionsschutzgesetz-Luft – maximale Belastung Verkehr, allgemeine Exposition der Bevölkerung, Trendaussagen

Standorttyp: südalpine Tallage, verkehrsnah (Stadt)

Schadstoff	Verf. %	JMW	max.	max.	max.	max.	max.
			TMW	8MW	3MW	1MW	HMW
PM10 g. (μg/m³)	100	17	67				
PM2.5 g. (µg/m³)	99	10	36				
NO (μg/m³)	97	44	177				452
NO ₂ (µg/m³)	97	33	78		125		138
CO (mg/m³)	97	0,4	1,1	1,7	2,2	2,5	2,6

LIENZ - Tiefbrunnen Seehöhe: 681 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO), Ozon (O₂)

Messziel: Ozongesetz - allgemeine Exposition der Bevölkerung, Input für Quellzuordnung

Standorttyp: südalpine Tallage, ländlicher Hintergrund

Schadstoff	Verf. %	JMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
NO (μg/m³)	97	4	108	42					101
NO ₂ (µg/m³)	97	12		50			76		85
O ₃ (µg/m³)	97	48	74	99	133	133	148	149	153

AUSWERTUNGEN der Messergebnisse und AUSWEISUNG von allfälligen ÜBERSCHREITUNGEN

Immissionsschutzgesetz - Luft (IG-L)

Gemäß IG-L sind die Überschreitungen von Grenz-, Alarm- und Zielwerten auszuweisen und in den Jahresbericht aufzunehmen.

Alarm- Grenz- und Zielwerte sowie AEI zum Schutz des Menschen

Grenzwerte: Angaben in μg/m³ (ausgenommen b	ei angegebe	enen Einh	eiten)		
	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200*)			120	
Kohlenmonoxid			10 mg/m³)		
Stickstoffdioxid	200				30**)
PM10				50***)	40
PM2,5					25
Benzol					5
Blei in der PM10-Fraktion					0,5
Arsen in der PM10-Fraktion					6 ng/m³
Cadmium in der PM10-Fraktion					5 ng/m³
Nickel in der PM10-Fraktion					20 ng/m
Benzo(a)Pyren in der PM10-Fraktion					1 ng/m³
Depositionsgrenzwerte in mg/m²*d		l			<u>I</u>
Staubniederschlag					210
Blei im Staubniederschlag					0,100
Cadmium im Staubniederschlag					0,002
Alarmwerte in μg/m³					
Schwefeldioxid		500			
Stickstoffdioxid		400			
Zielwerte in μg/m³					
Stickstoffdioxid *) Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstu als Überschreitung. **) Der Immissionsgrenzwert von 30 µg/m³ ist ab 1. Jänner 2012 einzu 5 µg/m³ gilt bis auf weiteres gleich bleibend ab 1. Jänner 2010. S ***) Pro Kalenderjahr sind (seit 2010) 25 Überschreitungen des Tagesg	ihalten. Die Tolera Somit liegt derzeit	anzmarge vor die Grenzwe	١) μg/m³gelten nic
Verpflichtung in Bezug auf den AEI					
Der AEI wird berechnet als Durchschn Jahresmittelwerte der Messstellen, die gemäß der 4 zur Berechnung des AEI herangezogen werden.		ber alle gemäß §			20

Für die Festlegung von Maßnahmen in einem Programm gemäß § 9a IG-L ist seit der Novelle BGBI. I Nr. 77/2010 hinsichtlich des Tagesmittelwertes für PM10 die Anzahl von 35 Überschreitungen pro Jahr und hinsichtlich des Jahresmittelwertes für NO₂ der um 10 µg/m³ erhöhte Grenzwert gemäß Anlage 1a maßgeblich.

Grenz- und Zielwerte zum Schutz der Vegetation (siehe Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation, BGBI. II Nr. 298/2001)

Grenzwerte (µg/m³)					
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid					201)
Stickstoffoxide*					30
Zielwerte (µg/m³)					
Schwefeldioxid				50	
Stickstoffdioxid				80	
1) gilt für das Kalenderjahr und da	s Winterhalbjahr (1.Oktober bis 31	I.März)		

^{*} NO_x = Stickstoffoxide im Sinne dieser Verordnung sind die Summe von Stickstoffmonoxid und Stickstoffdioxid, ermittelt durch die Addition als Teile auf eine Milliarde Teile und ausgedrückt als Stickstoffdioxid in µg/m³.

Ozongesetz

Die Komponente Ozon wurde im Jahr 2003 aus dem Immissionsschutzgesetz-Luft herausgenommen; gleichzeitig wurden durch eine Änderung des Ozongesetzes Informations- und Warnwerte sowie (langfristige) Zielwerte zum Schutz der menschlichen Gesundheit und der Vegetation eingeführt (BGBI. I Nr. 34/2003).

Informations- und Warnwerte für Ozon	
Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)
Zielwerte für Ozon	
Zum Schutz der menschlichen Gesundheit	120 μg/m³ als Achtstundenmittelwert*) eines Tages dürfen im Mittel über drei Jahre an höchstens 25 Tagen pro Kalenderjahr überschritten werden
Zum Schutz der Vegetation	AOT40**) von 18000 µg/m³.h, berechnet aus den Einstundenmittelwerten von Mai bis Juli, gemittelt über 5 Jahre
Langfristige Ziele für Ozon für das Jahr 2020	
Zum Schutz der menschlichen Gesundheit	120 μg/m³ als höchster Achtstundenmittelwert*) innerhalb eines Kalenderjahres
Zum Schutz der Vegetation	AOT40**) von 6000 µg/m³.h; berechnet aus den Einstundenmittelwerten von Mai bis Juli

^{*)} Der Achtstundenmittelwert ist gleitend aus den Einstundenmittelwerten zu berechnen; jeder Achtstundenmittelwert gilt für den Tag, an dem der Mittelungszeitraum endet.

^{&#}x27;) AOT40 bedeutet die Summe der Differenzen zwischen den Konzentrationen über 80 μg/m³ als Einstundenmittelwerte und 80 μg/m³ unter ausschließlicher Verwendung der Einstundenmittelwerte zwischen 8 und 20 Uhr MEZ.

Zweite Verordnung gegen forstschädliche Luftverunreinigungen

Hier sind u.a. Grenzwerte für SO_2 und Schwermetalle für die Waldvegetation festgelegt; die Einhaltung dieser Bundesverordnung wird in diesem Bericht mitüberprüft.

Gemäß § 4 Abs. 1 gelten im Sinne des § 48 lit. b des Forstgesetzes 1975 folgende Höchstmengen für SO₂:

Schwefeldioxid (SO ₂)					
	April - Oktober	November - März			
97,5 Perzentil für den	0,07 mg/m³	0,15 mg/m ³			
Halbstundenmittelwert					
(HMW) in den Monaten					
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100%					
des Grenzwertes betragen.					
Tagesmittelwert (TMW)	0,05 mg/m³	0,10 mg/m ³			
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m ³			

Gemäß § 4 Abs. 3 werden folgende Höchstmengen im Staubniederschlag im Sinne des § 48 lit. b des Forstgesetzes 1975 festgesetzt:

	Jahresmittelwert		
	(kg pro ha und Jahr)		
Blei (Pb)	2,5		
Zink (Zn)	10,0		
Kupfer (Cu)	2,5		
Cadmium (Cd)	0,05		

Auf den folgenden Seiten wird die Auswertung der im Jahr 2019 erhobenen Messdaten geordnet nach Luftschadstoff und den jeweiligen gesetzlichen Grenzwerten vorgenommen.

Vorab ist anzumerken, dass im Jahr 2019 die im IG-L genannten

• ALARMWERTE (für NO₂ und SO₂)

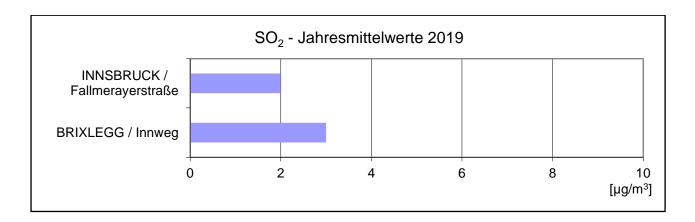
an allen Tiroler Luftgütemessstellen eingehalten sind.

Ebenso wird die

• ALARMSCHWELLE für Ozon gemäß Ozongesetz

nicht überschritten.

Schwefeldioxid (SO₂)


Tabelle: Ergebnisse der Auswertungen 2019 für Schwefeldioxid (Angaben in µg/m³ Luft)

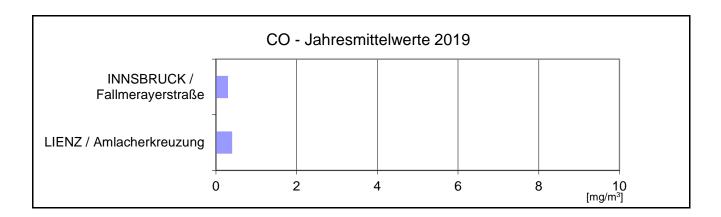
	JMW	Max.TMW	Max.3MW	Max.HMW
INNSBRUCK/Fallmerayerstraße	2	So: 2	7	So: 13
		Wi: 4		Wi: 9
BRIXLEGG/Innweg	3	So: 17 Wi: 21	69	So: 158 Wi: 170

An beiden Standorten sind die Alarm-, Grenz- und Zielwerte für Schwefeldioxid gemäß IG-L zum Schutz der menschlichen Gesundheit wie auch zum Schutz der Ökosysteme und der Vegetation eingehalten.

Der <u>Langzeittrend bei Schwefeldioxid</u> zeigt einen deutlichen Rückgang der Belastung seit Ende der 80iger Jahre. In den letzten Jahren hat sich die mittlere jährliche Belastung auf einem geringen Niveau weit unterhalb der Grenzwertvorgaben gemäß IG-L eingependelt.

Erhöhte Kurzzeitspitzen treten bisweilen am Standort Brixlegg wegen eines nahegelegenen metallverarbeitenden Betriebes auf. Diese Kurzzeitspitzen führten 2019 zu Überschreitungen der Grenzwertvorgaben der zweiten Verordnung gegen forstschädliche Luftverunreinigungen.

Feststellung nach § 7 IG-L:


Die gemessenen Immissionen an Schwefeldioxid (SO₂) im Jahr 2019 liegen unterhalb des gesetzlichen Grenzwertes gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

Kohlenstoffmonoxid (CO)

Tabelle: Ergebnisse der Auswertungen 2019 für Kohlenmonoxid (Angaben in mg/m³ Luft)

	Max. 8MW
INNSBRUCK/Fallmerayerstraße	0,9
LIENZ/Amlacherkreuzung	1,7

Der Grenzwert gemäß IG-L für Kohlenmonoxid von 10 mg/m³ zum Schutz der menschlichen Gesundheit ist an den Messstellen des Tiroler Luftgütemessnetzes, wie auch schon in den Jahren zuvor, deutlich eingehalten. Der Langzeittrend zeigt einen deutlichen Rückgang der CO-Belastung seit Ende der 80iger Jahre. In den letzten Jahren hat sich die Belastung auf einem geringen Niveau eingependelt.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Kohlenmonoxid (CO) im Jahr 2019 liegen unterhalb des gesetzlichen Grenzwertes gem. IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

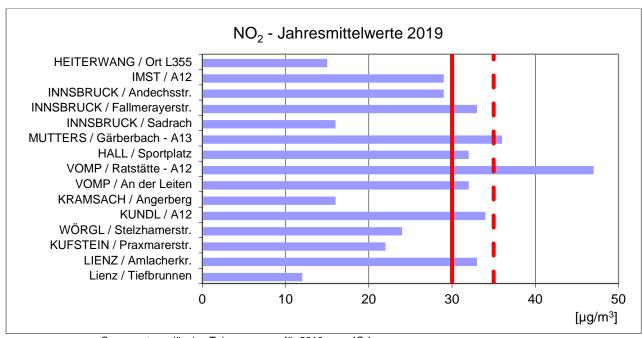

Stickstoffdioxid (NO₂)

Tabelle: Ergebnisse der Auswertungen 2019 für Stickstoffdioxid (Konzentrationen in µg/m³)

	JMW	Max. TMW	Anzahl Tage Zielwertüber- schreitungen	Max. 3MW	Max. HMW	Anzahl der IG-L Grenzwertüber- schreitungen
HEITERWANG/Ort L355	15	68		111	121	
IMST/A12	29	78		122	132	
INNSBRUCK /Andechsstraße	29	87	1	117	128	
INNSBRUCK/Fallmerayerstraße.	<mark>33</mark>	94	1	122	143	
INNSBRUCK/Sadrach	16	66		94	97	
MUTTERS/Gärberbach – A13	<mark>36</mark>	68		111	136	
HALL/Sportplatz	<mark>32</mark>	84	2	110	126	
VOMP/Raststätte A12	<mark>47</mark>	96	24	143	163	
VOMP/An der Leiten	<mark>32</mark>	80		112	121	
KRAMSACH/Angerberg	16	60		79	90	
KUNDL/A12	<mark>34</mark>	86	1	113	121	
WÖRGL/Stelzhamerstraße	24	75		100	104	
KUFSTEIN/Praxmarerstraße	22	64		87	90	
LIENZ/Amlacherkreuzung	33	78		125	138	
LIENZ/Tiefbrunnen	12	50		76	85	

X Messwert liegt über 30 aber unterhalb von 35 µg NO₂/m³.

X Messwert liegt über dem gesetzlichen Grenzwert für den Halbstundenmittelwert von 200 μg/m³.

⁻ Grenzwert + zulässige Toleranzmarge für 2019 gem. IG-L

Messwert liegt über 35 μg NO₂/m³ (Gesetzlicher Grenzwert gem. IG-L von 30 μg/m³ plus der für 2019 zulässigen Toleranzmarge von 5 μg/m³).

⁻ Grenzwert zum Schutz des Menschen gem. IG-L

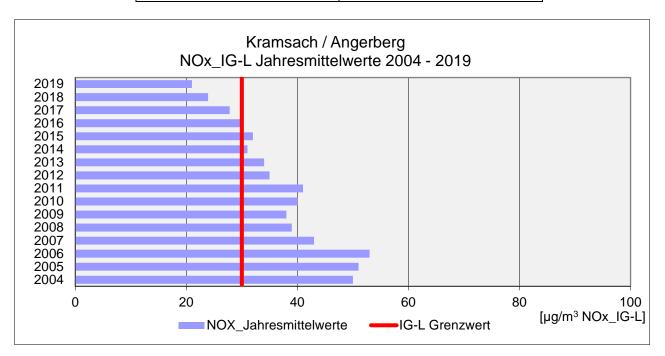
Bei Stickstoffdioxid wurde an 7 Messstellen der gesetzliche Jahresgrenzwert gemäß IG-L (30 μ g/m³) überschritten, an 2 davon auch der derzeit gültige Grenzwert plus Toleranzmarge (35 μ g/m³) und an einer Messstelle der gemäß EU-Richtlinie einzuhaltende Jahresmittelwert von 40 μ g/m³. Der Kurzzeitgrenzwert (200 μ g/m³ als Halbstundenmittelwert) wurde im gesamten Messnetz relativ deutlich eingehalten. Das Zielwertkriterium gemäß IG-L (TMW > 80 μ g/m³) wurde an 5 der 15 Messstellen zumindest an einem Tag überschritten. Die meisten Zielwertüberschreitungen entfielen mit 24 auf die Messstelle VOMP/Raststätte A12. In Summe wurden 29 Zielwertüberschreitungen im gesamten Messnetz verzeichnet.

Bei Betrachtung der Langzeitentwicklung der Stickstoffdioxidbelastung zeigt sich, insbesondere an den verkehrsnahen Messstandorten, seit 2006 ein rückläufiger Trend in der Stickstoffdioxidbelastung trotz einer stetigen Verkehrszunahme. Dies ist vor allem auf verbesserte Emissionsstandards bei der Fahrzeugflotte sowie auf die verordneten Maßnahmen beim Schwerverkehr (z.B. Nachfahrverbot, Euroklassen-Fahrverbote, Sektorales Fahrverbot), wie auch beim PKW-Verkehr (z.B. Tempolimits), zurückzuführen.

Auswertung nach IG-L:

Der für das Jahr 2019 gesetzliche Jahresgrenzwert von 35 μg/m³ ist an den Standorten MUTTERS/Gärberbach A13 und VOMP/Raststätte A12 überschritten.

Der gesetzliche <u>Kurzzeitgrenzwert</u> von 200 µg/m³ wurde im gesamten Messnetz eingehalten.


Feststellung nach § 7 IG-L:

Da für den Luftschadstoff NO_2 in den von Grenzwertüberschreitungen betroffenen Gebieten bereits Statuserhebungen erstellt sowie Sanierungsgebiete ausgewiesen wurden, und sich die Verursacherstruktur der Emittenten in den betreffenden Gebieten nicht wesentlich geändert hat, sind gem. § 8 Abs. 7 Z 1 für die 2019 als überschritten ausgewiesenen Messstandorte keine neuerlichen Statuserhebungen erforderlich.

Stickstoffoxide (NO_x)

Tabelle: Ergebnisse der Auswertung 2019 für Stickstoffoxide (NO_x / Summe aus NO_2 + NO_3); Angaben in μ g/m³ Luft.

	JMW
KRAMSACH/Angerberg	21

Für die Überprüfung der Einhaltung des Jahresgrenzwertes zum Schutz der Ökosysteme und der Vegetation gemäß entsprechender Verordnung zum IG-L von 30 µg/m³ ist von den insgesamt 15 Luftmessstellen mit Stickoxidbestückung aufgrund der Bestimmungen der Messkonzeptverordnung lediglich die Messstelle KRAMSACH/Angerberg heranzuziehen; in Ballungsräumen ist dieser Grenzwert nicht anzuwenden.

Der Zeitverlauf an der Messstelle KRAMSACH/Angerberg zeigt einen deutlichen Rückgang der Stickoxidbelastung über die letzten Jahre. Im Vergleich zum am höchsten belasteten Jahr 2006 mit 53 μ g/m³ liegt der NO_x -Jahresmittelwert 2019 mit 21 μ g/m³ weit unterhalb der damaligen Belastung. Zudem wird damit in KRAMSACH/Angerberg der Grenzwert zum Schutz der Ökosysteme und der Vegetation nach der erstmaligen Einhaltung 2016 nunmehr schon im vierten Jahr in Folge eingehalten.

Feststellung nach § 7 IG-L:

Im Jahr 2019 ist der gesetzliche NO_x-Grenzwert gemäß IG-L eingehalten. Damit besteht keine Notwendigkeit, eine Statuserhebung gemäß § 8 IG-L durchzuführen.

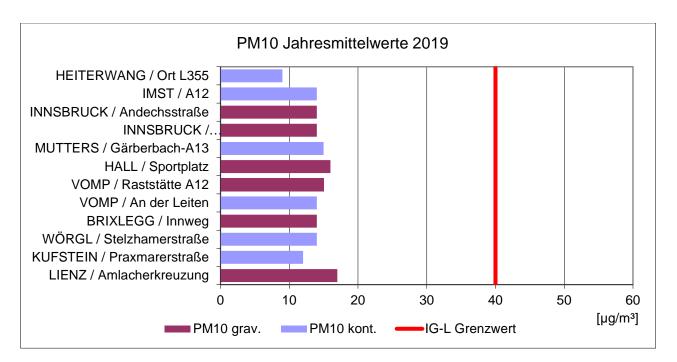
PM10 Feinstaub

(particulate matter mit einer aerodynamischen Korngröße von weniger als 10 µm).

Die Messung dieses Schadstoffes erfolgt konform zur Messkonzeptverordnung in zweifacher Weise:

- PM10-Messungen mittels kontinuierlicher Registrierung. Diese Messmethode ist für den täglichen Luftgütebericht notwendig und liefert zudem eine tageszeitliche Auflösung durch Dauerregistrierung (=> verbesserte Interpretation der Zuwehungsverhältnisse bzw. des zeitlichen Emissionsverhaltens).
- PM10-Messungen mittels gravimetrischer Methode. Diese Methode entspricht unmittelbar den Erfordernissen der EN 12341 und dient zur Bestimmung der täglichen Menge und Qualität des Feinstaubes in der Luft (=> Bestimmung der täglichen Staubmenge und der Staubinhaltstoffe).

Tabelle: Ergebnisse der Auswertungen 2019 für PM10 Feinstaub; Angaben in $\mu g/m^3$ Luft; JMW= Jahresmittelwert, max. TMW = maximaler Tagesmittelwert.


	JMW	Max. TMW	Anzahl der Tage mit einem TMW >50µg/m³
HEITERWANG/Ort L355	9	35	0
IMST/A12	14	42	0
INNSBRUCK/Andechsstraße*	14	58	1
INNSBRUCK/Fallmerayerstraße*	14	52	1
MUTTERS/Gärberbach-A13	15	50	0
HALL/Sportplatz*	16	53	1
VOMP/Raststätte A12*	15	50	0
VOMP/An der Leiten	14	61	1
BRIXLEGG/Innweg*	14	49	0
WÖRGL/Stelzhamerstraße	14	70	1
KUFSTEIN/Praxmarerstraße	12	65	1
LIENZ/Amlacherkreuzung*	17	67	8

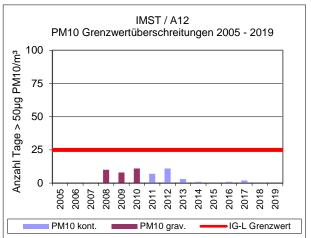
Ergebnisse mittels gravimetrischer Messmethode

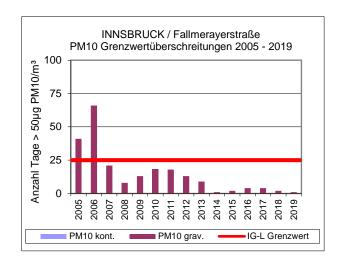
Wie aus vorangegangener Tabelle ersichtlich ist, wurden bei allen Standorten die Grenzwertvorgaben gemäß IG-L zum Schutz der menschlichen Gesundheit eingehalten. An 5 der 12 Messstellen wurden überhaupt keine Tagesgrenzwertüberschreitungen verzeichnet. Ein Großteil der Tagesgrenzwertüberschreitungen an den restlichen Messstellen steht in Zusammenhang mit dem Feuerwerk zum Jahreswechsel. Ohne Feuerwerk wären überhaupt nur für den Standort LIENZ/Amlacherkreuzung Tagesgrenzwertüberschreitungen auszuweisen. Die Überschreitungshäufigkeit lag aber selbst an der Messstelle in Lienz deutlich unterhalb der gemäß IG-L zulässigen 25 Tagesgrenzwertüberschreitungen pro Kalenderjahr. In nachfolgender Abbildung sind die Ergebnisse der PM10-Messungen im Tiroler Luftgütemessnetz graphisch dargestellt.

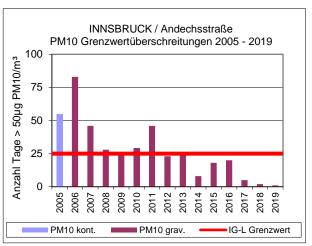
X Oberhalb der zulässigen Anzahl an Tagesgrenzwertüberschreitungen (gem. IG-L sind 25 Überschreitungen zulässig)

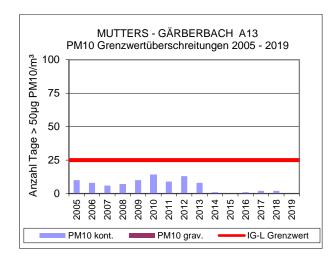
X Oberhalb der zulässigen Anzahl an Tagesgrenzwertüberschreitungen gem. RL 2008/50/EG (hier sind 35 Überschreitungen erlaubt).

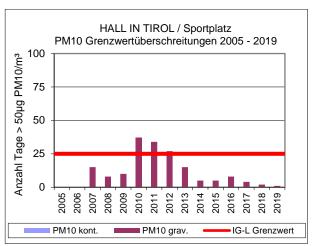

Der Langzeittrend bei PM10 zeigt einen deutlichen Rückgang der PM10-Jahresmittelwerte in den vergangenen 10 Jahren. In den letzten vier Jahren lagen die Jahresmittelwerte im gesamten Messnetz unter 20 µg/m³ und damit unterhalb der 50 %-Marke des Jahresgrenzwertes gemäß IG-L. Auch die Entwicklung der Anzahl an Tagesgrenzwertüberschreitungen in den nachfolgenden Abbildungen spiegelt die deutliche Abnahme der PM10-Belastung in den letzten Jahren nachdrücklich wieder. So wurden 2006 noch an einer Vielzahl der Tiroler Luftgütemessstellen zum Teil deutlich mehr als 25 Tagesgrenzwertüberschreitungen registriert. Seit 2013 wurde dieses Kriterium jedoch an keiner Tiroler Luftgütemessstelle mehr überschritten. Im Jahr 2019 lag die Überschreitungshäufigkeit bei maximal 8 Überschreitungstagen.

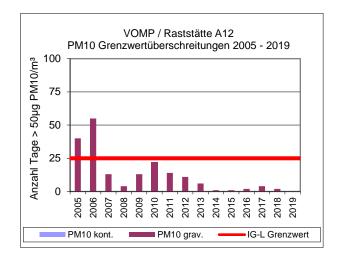

Feststellung nach § 7 IG-L:

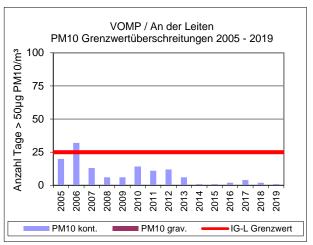

Die gemessenen Immissionen an PM10 im Jahr 2019 liegen unterhalb des gesetzlichen Grenzwertes gemäß IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

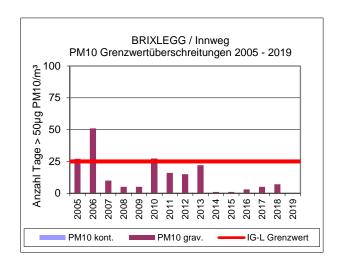

Entwicklung der Überschreitungsanzahlen des PM10-Tagesgrenzwertes

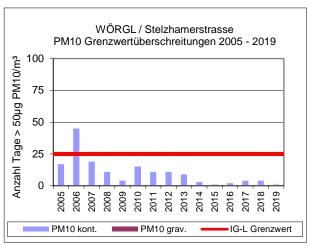

(*Anmerkung:* An der Messstelle IMST / A12 wurde mit den Messungen erst im Jahr 2008 begonnen, an der Messstelle HALL / Sportplatz erst 2007)

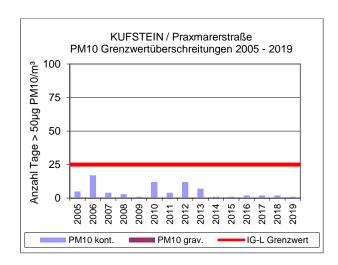


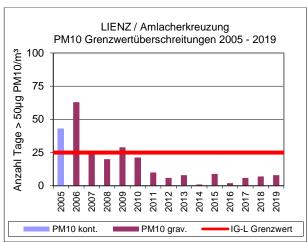


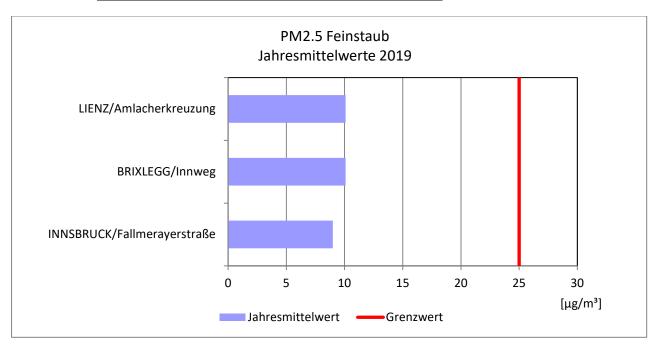











PM2.5-Feinstaub

(particulate matter mit einer aerodynamischen Korngröße von weniger als 2,5 µm).

Die Messung dieses Schadstoffes erfolgt konform zu § 5 IG-L-Messkonzeptverordnung an drei Standorten, an denen PM10 gleichfalls mittels gravimetrischer Messmethode erfasst wird.

Tabelle: Ergebnisse der Auswertungen 2019 für PM2.5; Angaben in μg/m³ Luft

	JMW	Max. TMW
INNSBRUCK/Fallmerayerstraße	9	45
BRIXLEGG/Innweg	10	41
LIENZ/Amlacherkreuzung	10	36

Mit einem Jahresmittelwert von 9 – 10 μ g/m³ liegt die Belastung an allen 3 Standorten im Bereich der Vorjahre und deutlich unterhalb des Grenzwertes gemäß IG-L. Mit einem maximalen Jahresmittelwert von 10 μ g PM2.5/m³ liegt die Belastung unterhalb der unteren Beurteilungsschwelle gemäß der entsprechenden RL 2008/50/EG.

Der <u>Langzeitverlauf bei PM2.5</u> zeigt wie bei PM10 auf Grund der allgemeinen Verringerung der Emissionen einen durch die jährlich wechselnden meteorologischen Bedingungen modifizierten fallenden Trend.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an PM2.5 im Jahr 2019 liegen unterhalb des gesetzlichen Grenzwertes gemäß IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

SCHWERMETALLE IM FEINSTAUB PM10 und PM2.5

an den Messstellen Brixlegg/Innweg und HALL/Sportplatz

Die folgende Tabelle zeigt die Jahresmittelwerte:

		PM10	PM2.5	PM10
		BRIXLEGG / Innweg	BRIXLEGG / Innweg	HALL / Sportplatz
Blei	µg/m³	0,055	0,045	0,005
Nickel	ng/m³	2,8	2,0	2,0
Arsen	ng/m³	1,2	1,2	1,1
Cadmium	ng/m³	0,6	0,5	0,2
Kupfer	µg/m³	0,114	0,059	0,022
Eisen	µg/m³	0,160	0,048	0,534

Blei in der PM10-Fraktion

Mit dem ermittelten Jahreswert für 2019 von 0,055 µg/m³ Blei im PM10 an der Messstelle BRIXLEGG/Innweg ist die Belastung gegenüber 2018 um 23 ng/m³ geringer ausgefallen. An der Messstelle HALL IN TIROL/Sportplatz wurde ein Jahreswert von 0,005 µg/m³ Blei im PM10 ermittelt. Der **Grenzwert** zum Schutz der menschlichen Gesundheit gemäß IG-L (0,5 µg/m³ Blei im PM10) ist deutlich eingehalten.

Nickel in der PM10-Fraktion

Die Nickelbelastung 2019 liegt in BRIXLEGG/Innweg bei einem Wert von weniger als 2,8 ng/m³ Nickel im PM10. An der Messstelle HALL/Sportplatz wurde ein Jahreswert von weniger als 2,0 ng/m³ Nickel im PM10 ermittelt. Der **Grenzwert** zum Schutz der menschlichen Gesundheit gemäß IG-L (20 ng/m³ Nickel im PM10) für diese Komponente ist eingehalten.

Arsen in der PM10-Fraktion

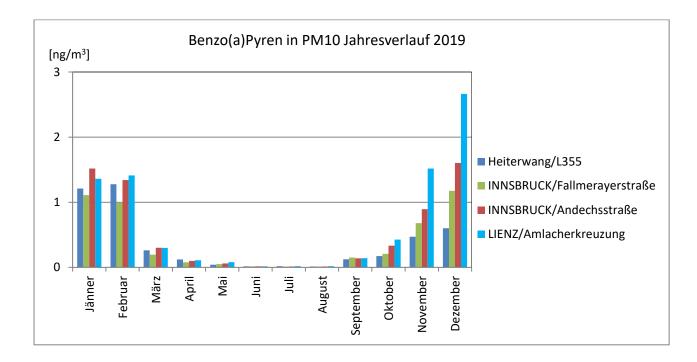
Mit dem ermittelten Jahreswert von 1,2 ng/m³ Arsen im PM10 im Jahr 2019 an der Messstelle BRIXLEGG/Innweg und 1,1 ng/m³ an der Messstelle HALL/Sportplatz ist der **Grenzwert** zum Schutz der menschlichen Gesundheit gem. IG-L (6 ng/m³ Arsen im PM10) für diese Komponente eingehalten.

Cadmium in der PM10-Fraktion

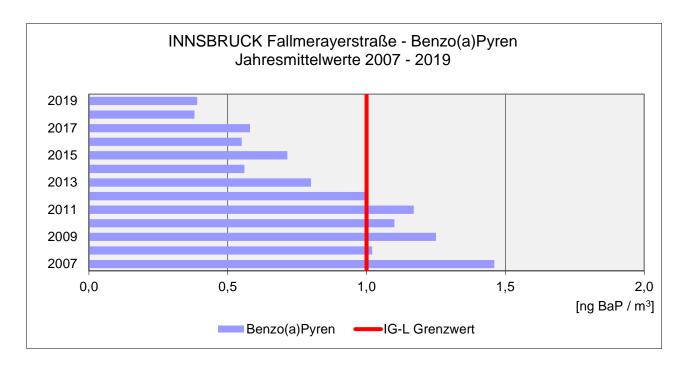
Mit dem ermittelten Jahreswert von 0,6 ng/m³ Cadmium im PM10 an der Messstelle BRIXLEGG/Innweg und 0,2 ng/m³ an der Messstelle HALL/Sportplatz ist der **Grenzwert** zum Schutz der menschlichen Gesundheit gem. IG-L (5 ng/m³ Cadmium im PM10) für diese Komponente eingehalten.

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Blei, Nickel, Arsen und Cadmium im PM10 im Jahr 2019 liegen unterhalb der gesetzlichen Grenzwerte gemäß IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.


Benzo[a]pyren in der PM10-Fraktion

Die für 2019 ermittelten Jahreswerte (in ng Benzo[a]pyren/m³) betragen:


	ng Benzo[a]pyren/m³
Standort	
HEITERWANG / Ort L355	0,36
INNSBRUCK/ Fallmerayerstraße	0,39
INNSBRUCK / Andechsstraße	0,53
LIENZ / Amlacherkreuzung	0,67

Die Messwerte sind gemäß Rundungsregel (ÖNORM A6403) ganzzahlig in der Größenordnung des **gesetzlichen Grenzwertes** (1 ng/m³) zu bewerten. Mit einem auszuweisenden Jahresmittelwert von 1 ng/m³ wird an der Messstelle LIENZ/Amlacherkreuzung sowie INNSBRUCK/Andechsstraße der gesetzliche Grenzwert zum Schutz der menschlichen Gesundheit gemäß IG-L erreicht, jedoch nicht überschritten. An den restlichen Messstellen wird der Grenzwert unterschritten.

Aus der nachstehenden Darstellung der Monatsmittelwerte von 2019 wird der ausgeprägte Jahresgang der Benzo[a]pyren -Belastung offensichtlich. Während in den Sommermonaten kaum Immissionen verzeichnet werden, sind die Immissionsbelastungen in den Wintermonaten um ein vielfaches höher. Verstärktes Betreiben von Feststoffheizungsanlagen und die meteorologisch ungünstigeren Ausbreitungsbedingungen in dieser Zeit sind dafür verantwortlich.

Die Jahresmittelwerte an der Trendmessstelle INNSBRUCK/Fallmerayerstraße in nachstehender Grafik zeigen deutlich sinkende Benzo[a]pyren -Immissionen seit dem Messbeginn im Jahr 2007.

Feststellung nach § 7 IG-L:

Der Grenzwert für Benzo[a]pyren wurde im Jahr 2019 an keinem der 4 Messstandorte überschritten, daher ist keine Statuserhebung nach § 8 IG-L erforderlich.

Benzol

Die Benzolmessergebnisse an der Messstelle INNSBRUCK/Fallmerayerstraße (jeden dritten Tag wurde eine Tagesprobe gezogen) ergeben für 2019 eine mittlere Jahresbelastung von 0,80 µg Benzol/m³. Dieser Wert ist gegenüber 2018 (0,85 µg Benzol/m³) gesunken, insgesamt ergibt sich beim Langzeittrend von Benzol seit Beginn der Messungen im Jahr 2001 ein deutlicher Rückgang der Immissionskonzentrationen. Der Grenzwert zum Schutz der menschlichen Gesundheit gem. IG-L (5 µg Benzol/m³) für diese Komponente ist eingehalten.

Feststellung nach § 7 IG-L:

Die gemessene Immission an Benzol im Jahr 2019 liegt unterhalb des gesetzlichen Grenzwertes gemäß IG-L; daher ist keine Statuserhebung nach § 8 IG-L durchzuführen.

DEPOSITIONSMESSERGEBNISSE Staubniederschlag

(gem. IG-L i.d.g.F.; Anlage 2)

Gesamtstaubniederschlag

IMST (Jahresmittelwerte in [mg/m²*d])

lm 1	lm 2	lm 3	lm 4	lm 5
HTL-Garten	B 171-Tankstelle	Brennbichl	Fabrikstraße	Auf Arzill
93	130	136	64	92

INNSBRUCK (Jahresmittelwerte in [mg/m²*d])

lbk 1	lbk 2	lbk 3	lbk 4	lbk 5	lbk 6
Zentrum	O-Dorf (An der	Reichenau	Innpromenade-	Hungerburg-	Höttinger Au
(Fallmerayerstr.)	Lan Str.)	(Andechsstr.)	Rennweg	Talstation	(Daneyg.)
107	101	74	68	120	127

BRIXLEGG (Jahresmittelwerte in [mg/m²*d])

Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp
151	105	97	73	129	72	63	50

WÖRGL (Jahresmittelwerte in [mg/m²*d])

1 0	27	
W 1	W 2	W 4
Peter-Anich-Straße	Salzburgerstraße-Garten	Ladestraße-Hochhaus Dach
56	*	50

^{*-}Datenverfügbarkeit <75%, Ausfall von 4 Messperioden!

ST.JOHANN/OBERNDORF (Jahresmittelwerte in [mg/m²*d])

0 2	0 4	0 6	O 10	011
Griesbach	Weiberndorf	Apfeldorf	Sommerer	Prantlstraße 34
145	99	100	113	111

Feststellung nach § 7 IG-L:

Die gemessenen Immissionen an Staubniederschlag im Jahr 2019 liegen überall unterhalb des gesetzlichen Grenzwertes von 210 mg/m². Tag gemäß IG-L; demnach ist nirgendwo eine Statuserhebung nach § 8 IG-L durchzuführen.

Blei und Cadmium im Staubniederschlag

An insgesamt 10 Orten in zwei Staubniederschlagsmessnetzen (2 in Innsbruck und 8 im Raum Brixlegg) wurden die Blei- sowie Cadmiumanteile im Staubniederschlag untersucht. Die Auswertungen ergeben für das Berichtsjahr 2019 am Standort Brixlegg-Container mit 0,170 mg Blei/m²*d wieder eine Überschreitung des Grenzwertes von 0,1 mg bzw. 100 µg Blei/m²*d. An den restlichen Standorten der beiden Staubniederschlagsmessnetze wurden keine Überschreitungen des Grenzwertes für Blei bzw. Cadmium festgestellt.

Blei im Staubniederschlag

INNSBRUCK Jahresmittelwerte in [mg/m²*d]

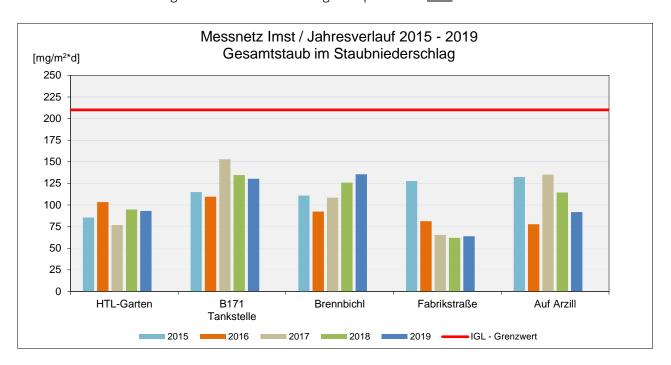
lbk 1	lbk 5		
Zentrum	Hungerburg		
(Fallmerayerstraße)	Talstation		
0,007	0,006		

BRIXLEGG Jahresmittelwerte in [mg/m²*d]

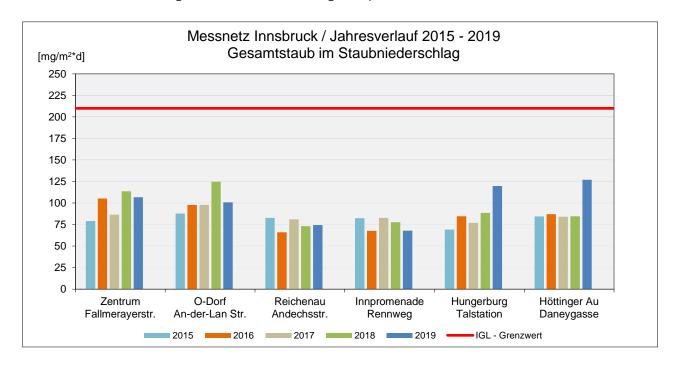
Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg- Bahnhof	Brixlegg- Kirche	Reith- Matzenköpfl	Reith- Matzenau	Münster- Innufer	Brixlegg- Container	Kramsach- Hagau	Kramsach- Volldöpp
0,068	0,008	0,013	0,011	0,011	0,170	0,014	0,004

Cadmium im Staubniederschlag

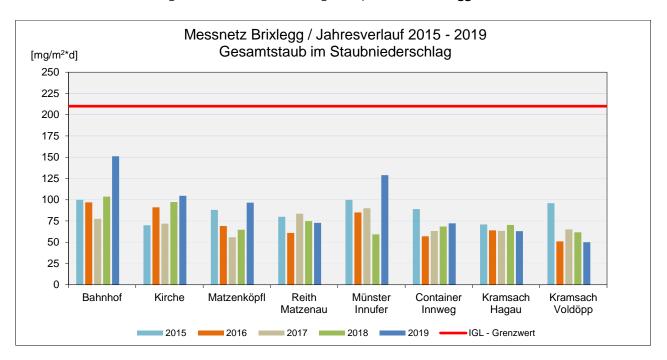
INNSBRUCK Jahresmittelwerte in [mg/m²*d]

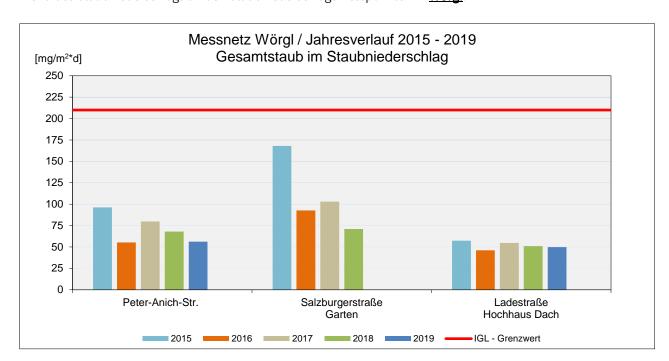

lbk 1	lbk 5		
Zentrum (Fallmerayerstraße)	Hungerburg Talstation		
0,0002	0,0001		

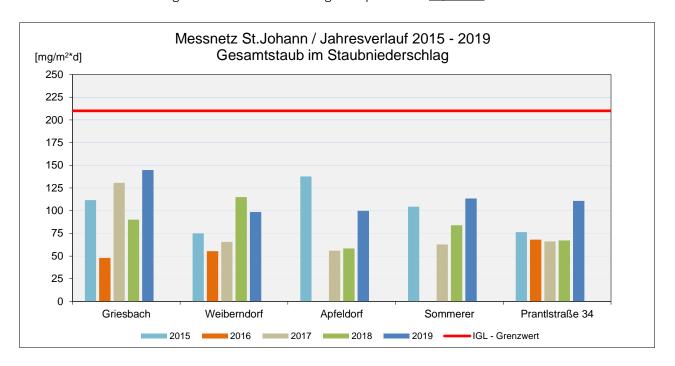
BRIXLEGG Jahresmittelwerte in [mg/m²*d]


Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg- Bahnhof	Brixlegg- Kirche	Reith- Matzenköpfl	Reith- Matzenau	Münster- Innufer	Brixlegg- Container	Kramsach- Hagau	Kramsach- Volldöpp
0,0004	0,0008	0,0002	0,0002	0,0007	0,0009	0,0002	0,0003

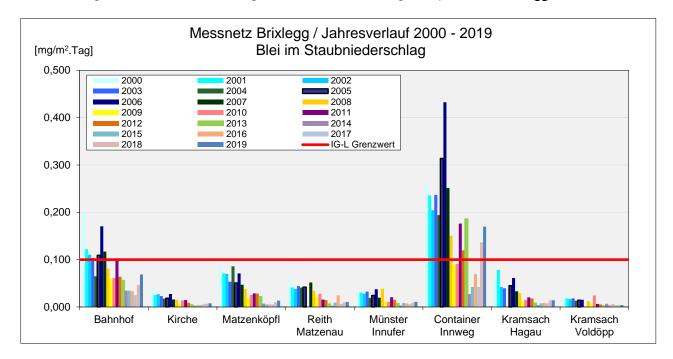
Entwicklung des Staubniederschlags


Trend des Staubniederschlags an den Staubniederschlagsmesspunkten in Imst:

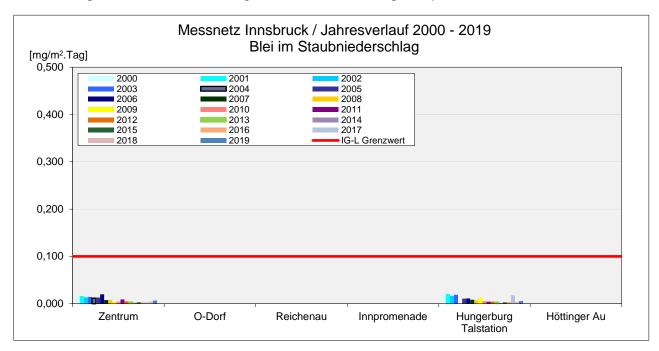

Trend des Staubniederschlags an den Staubniederschlagsmesspunkten in **Innsbruck**:


Trend des Staubniederschlags an den Staubniederschlagsmesspunkten in **Brixlegg**:

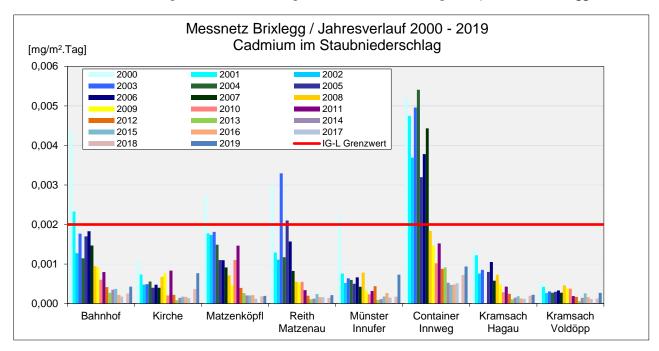
Trend des Staubniederschlags an den Staubniederschlagsmesspunkten in Wörgl:

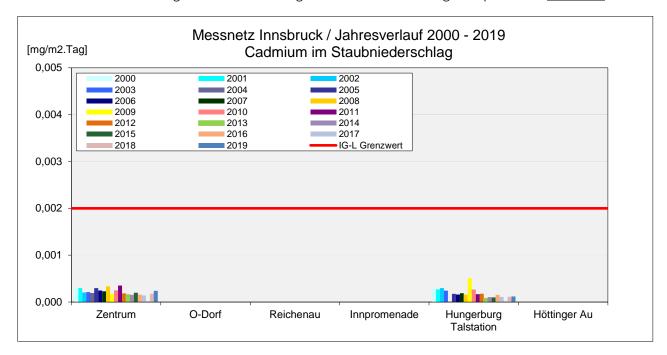


Trend des Staubniederschlags an den Staubniederschlagsmesspunkten in **St.Johann**:



Entwicklung der Blei- und Cadmiumgehalte im Staubniederschlag


Trend der Bleigehalte im Staubniederschlag an den Staubniederschlagsmesspunkten in Brixlegg:


Trend der **Blei**gehalte im Staubniederschlag an den Staubniederschlagsmesspunkten in **Innsbruck**:

Trend der Cadmiumbelastung im Staubniederschlag an den Staubniederschlagsmesspunkten in Brixlegg:

Trend der Cadmiumbelastung im Staubniederschlag an den Staubniederschlagsmesspunkten in Innsbruck:

Feststellung nach § 7 IG-L:

Die gemessenen <u>Blei- wie auch Cadmiumgehalte</u> im Staubniederschlag lagen im Jahr 2019 mit Ausnahme der Messstelle Brixlegg/Innweg (Blei) unterhalb der gesetzlich zulässigen Grenzwerte gemäß IG-L.

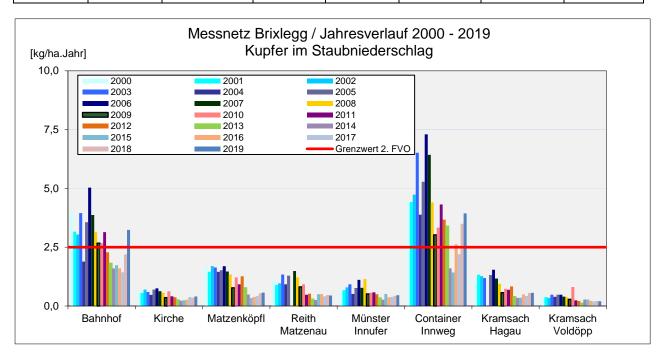
Eine Statuserhebung nach § 8 IG-L ist nicht erforderlich, da für den Standort bereits eine Statuserhebung durchgeführt wurde und die Ursachen für die Überschreitung bekannt sind.

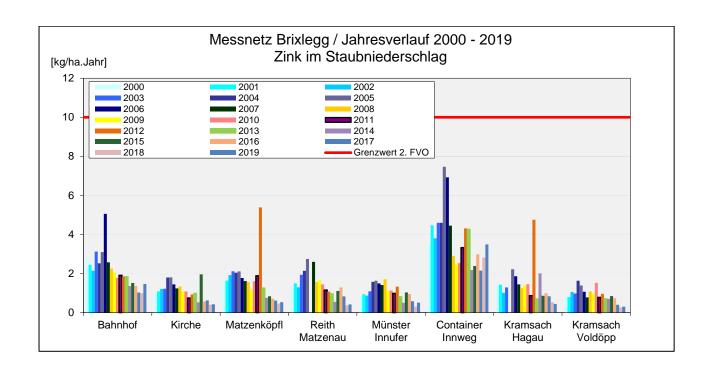
Kupfer und Zink im Staubniederschlag

(Grenzwerte gem. Zweiter Verordnung gegen forstschädliche Luftverunreinigungen)

Zusätzlich zu denen im IG-L geregelten Schwermetallgehalten an Blei und Cadmium im Staubniederschlag, für welche gleichzeitig die Grenzwertvorgaben der 2. Verordnung gegen forstschädliche Luftverunreinigung eingehalten werden, sind im Folgenden die Auswertung hinsichtlich der Grenzwerte für Kupfer und Zink gemäß 2. Verordnung gegen forstschädliche Luftverunreinigung behandelt. Der für Kupfer festgelegte Grenzwert von 2,5 kg/ha*Jahr wurde am Standort Brixlegg-Container wie bereits im Vorjahr überschritten. Zudem wurde am Standort Brixlegg-Bahnhof der Kupfergrenzwert erstmals seit 2011 wieder überschritten. Bei den Zinkkonzentrationen war kein deutlicher Wiederanstieg zu beobachten, wobei die gemessenen Konzentrationen ohnehin weit unter dem Grenzwert für Zink von 10 kg/ha*Jahr liegen.

Kupfer im Staubniederschlag

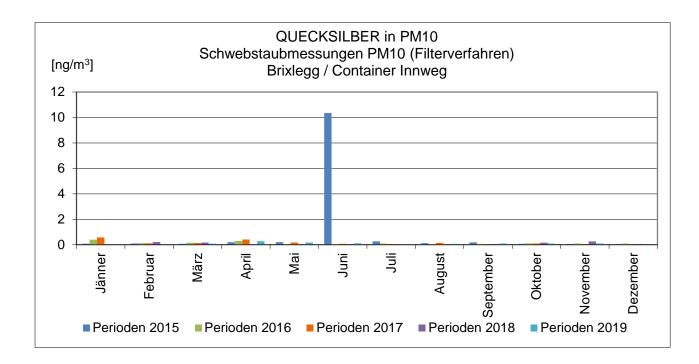

BRIXLEGG Jahresmittelwerte in [kg/ha*a]


Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp
3,24	0,41	0,56	0,45	0,46	3,94	0,56	0,20

Zink im Staubniederschlag

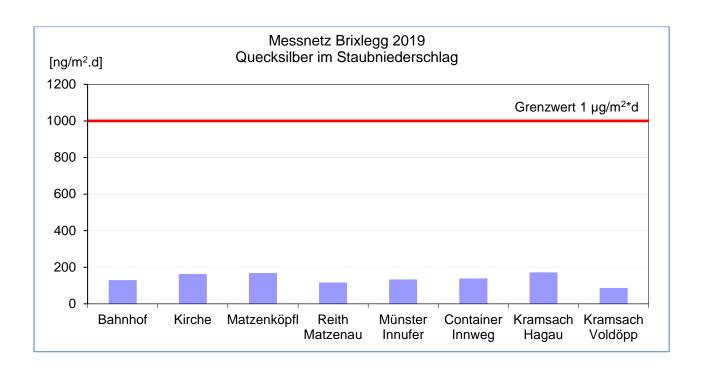
BRIXLEGG Jahresmittelwerte in [kg/ha*a]

Bri 1	Bri 3	Bri 4	Bri 5	Bri 6	Bri 7	Bri 8	Bri 9
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp
1,47	0,43	0,53	0,42	0,51	3,49	0,44	0,31



Messungen zur Quecksilberbelastung im Raum Brixlegg

Nachdem im Rahmen des forstlichen Bioindikatornetzes im Jahr 2015 erhöhte Quecksilberwerte in den Fichtennadeln im Raum Brixlegg festgestellt wurden, werden seit 2015 die Proben aus dem Staubniederschlagsmessnetz sowie die Feinstaubproben im Raum Brixlegg auch hinsichtlich der Quecksilbergehalte analysiert.


Ergebnis der PM10-Messungen:

Aus nachstehender Abbildung, in der die monatlichen Quecksilbergehalte im PM10 von 2015 bis 2019 für den Standort BRIXLEGG-Container Innweg dargestellt sind, wird besonders die hohe Quecksilberimmission im Juni 2015 deutlich. Alle weiteren Monatsmittelwerte im betrachteten Zeitraum liegen deutlich darunter.

Ergebnisse der Staubniederschlagsmessungen im Jahr 2019:

Die Quecksilbermessungen im Staubniederschlag ergaben an den 8 Messstandorten Einträge im Bereich von rund 87 bis 172 ng/m²*d und lagen damit unter dem Depositionsjahresgrenzwert gemäß TA-Luft¹ von 1000 ng bzw. 1 μg/m²*d.

Quecksilber im Staubniederschlag

BRIXLEGG Jahresmittelwerte in [ng/m²*d]

Bri 1a	Bri 3a	Bri 4a	Bri 5a	Bri 6a	Bri 7a	Bri 8a	Bri 9a
Brixlegg-	Brixlegg-	Reith-	Reith-	Münster-	Brixlegg-	Kramsach-	Kramsach-
Bahnhof	Kirche	Matzenköpfl	Matzenau	Innufer	Container	Hagau	Volldöpp
129	163	168	116	133	139	172	87

Derzeit gibt es noch keine für Österreich rechtverbindliche Grenzwertregelung für Quecksilber.
 Seite 52 von 90 Amt der Tiroler Landesregierung, Abt. Waldschutz

Ozon (O₃)

In nachstehender Tabelle werden die maximalen diskreten Einstundenmittelwerte sowie die Anzahl an Tagen mit Einstundenmittelwerten über 180 μ g O_3/m^3 (=Informationsschwelle gemäß Ozongesetz) für die letzten fünf Jahre angeführt. Basierend auf dieser Auswertung wurde die **Alarmschwelle** (240 μ g O_3/m^3 als Einstundenmittelwert) im aktuellen Berichtsjahr bei allen Messstandorten wie auch in den Vorjahren deutlich eingehalten. Die **Informationsschwelle** (180 μ g O_3/m^3 als diskreter Einstundenmittelwert) wurde 2019 lediglich an der Messstelle KUFSTEIN/Festung an einem Tag überschritten.

Alarm-/Informationsschwelle für Ozon in den Jahren 2015 bis 2019:

		max. MW1 in μg/m³				Tage MW1>180 µg/m³				
	2015	2016	2017	2018	2019	2015	2016	2017	2018	2019
HÖFEN/Lärchbichl	<mark>182</mark>	145	144	180	168	1	0	0	0	0
HEITERWANG/Ort L355	175	147	144	160	167	0	0	0	0	0
INNSBRUCK/Andechsstraße	170	142	144	147	154	0	0	0	0	0
INNSBRUCK/Sadrach	174	145	156	161	173	0	0	0	0	0
INNSBRUCK/Nordkette	179	143	151	167	162	0	0	0	0	0
KRAMSACH/Angerberg	164	170	157	162	176	0	0	0	0	0
WÖRGL/Stelzhamerstraße	161	<mark>182</mark>	154	154	172	0	1	0	0	0
KUFSTEIN/Festung	166	<mark>182</mark>	154	166	<mark>188</mark>	0	1	0	0	1
LIENZ/Tiefbrunnen	147	132	148	142	149	0	0	0	0	0

X Messwert liegt oberhalb der Informationsschwelle.

Die Auswertungen in folgender Tabelle in Bezug auf den Zielwert von 120 µg/m³ als Achtstundenmittelwert ergibt für das Berichtsjahr in Summe eine doch deutliche Abnahme der Zielwertüberschreitungen im Vergleich zum Vorjahr, und das obwohl der Sommer 2019 zwei Plätze vor dem Sommer 2018 als überhaupt zweitwärmster Sommer in Westösterreich in die Messreihe eingeht.

Bei der Überschreitungshäufigkeit ist, wie auch bei den <u>Langzeitverläufen</u> auf Basis von Jahresmittelwerten über die letzten Jahre, keine eindeutige Trendentwicklung ableitbar.

Zielwert für Ozon in den Jahren 2015 bis 2019:

	max. MW8 in μg/m³				Tage MW8>120 µg/m³					
	2015	2016	2017	2018	2019	2015	2016	2017	2018	2019
HÖFEN/Lärchbichl	<mark>171</mark>	<mark>135</mark>	<mark>141</mark>	<mark>162</mark>	<mark>163</mark>	36	10	8	34	24
HEITERWANG/Ort L355	<mark>164</mark>	<mark>132</mark>	<mark>141</mark>	<mark>151</mark>	<mark>162</mark>	31	8	11	30	25
INNSBRUCK/Andechsstraße	<mark>152</mark>	<mark>137</mark>	<mark>135</mark>	<mark>136</mark>	<mark>135</mark>	16	6	7	15	17
INNSBRUCK/Sadrach	<mark>162</mark>	<mark>137</mark>	<mark>152</mark>	<mark>147</mark>	<mark>161</mark>	35	13	18	30	31
INNSBRUCK/Nordkette	<mark>172</mark>	<mark>139</mark>	<mark>145</mark>	<mark>163</mark>	<mark>157</mark>	66	23	39	79	58
KRAMSACH/Angerberg	<mark>154</mark>	<mark>155</mark>	<mark>152</mark>	<mark>151</mark>	<mark>165</mark>	35	11	15	33	22
WÖRGL/Stelzhamerstraße	<mark>143</mark>	<mark>155</mark>	<mark>144</mark>	<mark>150</mark>	<mark>163</mark>	30	8	12	28	17
KUFSTEIN/Festung	<mark>150</mark>	<mark>156</mark>	<mark>146</mark>	<mark>153</mark>	<mark>176</mark>	37	11	11	33	24
LIENZ/Tiefbrunnen	<mark>130</mark>	<mark>121</mark>	<mark>133</mark>	<mark>135</mark>	<mark>133</mark>	6	1	4	10	6

X Messwert liegt oberhalb des Zielwertes.

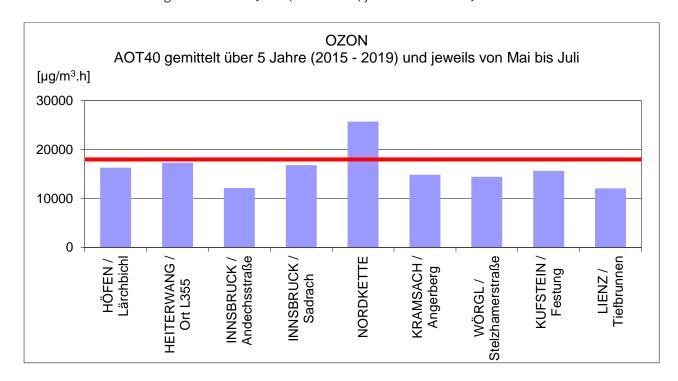

Die Auswertung im Hinblick auf den für Ozon festgelegten Zielwert zum Schutz der menschlichen Gesundheit (= 120 µg/m³ als Achtstundenwert, gemittelt über 3 Kalenderjahre; 25 Überschreitungen zulässig) ergibt, dass die höher gelegene Station INNSBRUCK/Nordkette deutlich über dem Zielkriterium liegt. Zudem wird an der Messstelle INNSBRUCK/Sadrach das Zielwertkriterium knapp überschritten. An den restlichen 7 Tiroler Messstandorten ist dieses Kriterium jedoch eingehalten.

Das <u>langfristige Ziel</u> für den Schutz der menschlichen Gesundheit ab 2020 - ab diesem Zeitpunkt sind keine Zielwertüberschreitungen (8-Stundenmittelwerte > $120\mu g/m^3$) mehr zulässig - ist derzeit allerdings an keinem Standort eingehalten.

Anzahl der über drei Jahre gemittelten Zielwertüberschreitungen:

	Tage MW8>120 μg/m³ gemittelt über 3 Jahre								
	2013- 2014- 2015- 2016-				2017-				
	2015	2016	2017	2018	2019				
HÖFEN/Lärchbichl	19	18	18	17	22				
HEITERWANG/Ort L355	18	15	17	16	22				
INNSBRUCK/Andechsstraße	9	10	10	9	13				
INNSBRUCK/Sadrach	22	20	22	20	<mark>26</mark>				
INNSBRUCK/Nordkette	<mark>47</mark>	<mark>39</mark>	<mark>43</mark>	<mark>47</mark>	<mark>59</mark>				
KRAMSACH/Angerberg	21	18	20	20	23				
WÖRGL/Stelzhamerstraße	18	16	17	16	19				
KUFSTEIN/Festung	25	21	20	18	23				
LIENZ/Tiefbrunnen	4	3	4	5	7				

X oberhalb der zulässigen Anzahl von 25 Zielwertüberschreitungen gemäß Ozongesetz.

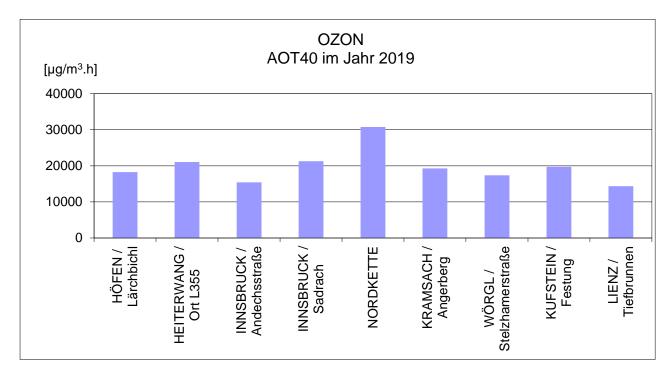


Auswertung hinsichtlich der Vorgaben zum Vegetationsschutz:

Zielwerte für Ozon seit dem Jahr 2010

Der AOT40-Wert von 18000 µg/m³.h für die Monate Mai bis Juli und gemittelt über 5 Jahre gem. Ozongesetz i.d.g.F. ist lediglich am Standort INNSBRUCK/Nordkette als überschritten auszuweisen (siehe nachstehende Grafik und Tabelle).

Grafik und Tabelle: AOT40 gemittelt über 5 Jahre (2015 - 2019) jeweils von Mai bis Juli.



	AOT40 gemittelt über 5 Jahre jeweils von Mai bis Juli (µg/m³.h)								
	2011-	2011- 2012- 2013- 2014-							
	2015	2016	2017	2018	2019				
HÖFEN/Lärchbichl	13561	13368	14028	15244	16323				
HEITERWANG/Ort L355	13982	13691	14609	15966	17337				
INNSBRUCK/Andechsstraße	9210	9261	9814	11162	12157				
INNSBRUCK/Sadrach	14383	14085	14679	15409	16828				
INNSBRUCK/Nordkette	<mark>22935</mark>	<mark>22508</mark>	<mark>22896</mark>	<mark>24098</mark>	<mark>25719</mark>				
KRAMSACH/Angerberg	11607	11344	12404	13461	14878				
WÖRGL/Stelzhamerstraße	11896	11681	12368	13513	14442				
KUFSTEIN/Festung	13756	13418	13757	14569	15654				
LIENZ/Tiefbrunnen	12393	11693	11949	11628	12098				

X oberhalb des zulässigen AOT-Wertes gemäß Ozongesetz.

Zielwerte für Ozon ab dem Jahr 2020

Als langfristiges Ziel zum Schutz der Vegetation ist ab dem Jahr 2020 ein Dosiswert (= AOT 40-Wert) von 6.000 µg/m³.h festgelegt. Nachstehende Grafik zeigt die diesbezügliche Auswertung für die 9 Tiroler Standorte im Jahr 2019:

Alle Standorte überschreiten dieses – allerdings erst ab dem Jahr 2020 – als Zielwert festgelegte Kriterium gemäß Ozongesetz bis zum 5-fachen des zulässigen Wertes.

Tabelle: AOT40 Jahreswerte (2015 – 2019) jeweils von Mai bis Juli.

	AOT40 jeweils von Mai bis Juli (µg/m³.h)								
	2015	2016	2017	2018	2019				
HÖFEN/Lärchbichl	19380	11394	13525	19058	18257				
HEITERWANG/Ort L355	18563	11704	15064	20317	21039				
INNSBRUCK/Andechsstraße	12089	7065	11211	15002	15418				
INNSBRUCK/Sadrach	17238	10740	15750	19401	21269				
INNSBRUCK/Nordkette	24674	19870	24103	29184	30763				
KRAMSACH/Angerberg	14242	8453	13830	18569	19298				
WÖRGL/Stelzhamerstraße	15188	8874	13047	17728	17371				
KUFSTEIN/Festung	16046	9430	14281	18787	19726				
LIENZ/Tiefbrunnen	11900	7903	13887	12434	14365				

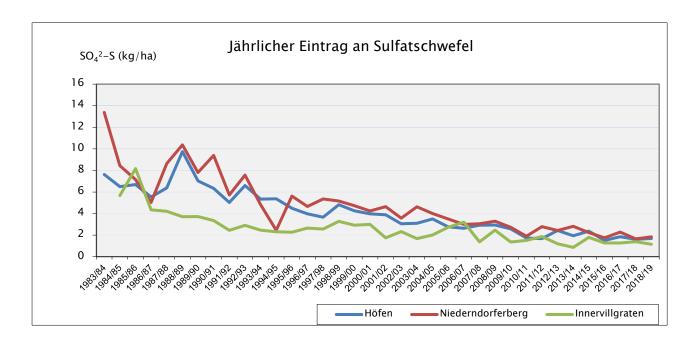
Die Ozonbelastung ist auch 2019 auf einem hohen Niveau, wenngleich in Summe gegenüber dem Jahr 2018 weniger Überschreitungen des Zielwertes zum Schutz der menschlichen Gesundheit festgestellt wurden.

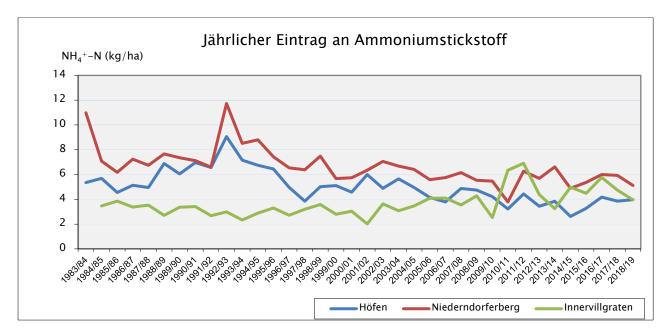
An der Messstelle KUFSTEIN/Festung war eine Überschreitung der Informationsschwelle (= 180 μ g O₃/m³ als Einstundenmittelwert) gemäß Ozongesetz zu verzeichnen, mit 188 μ g/m³ lag der Wert jedoch noch deutlich unterhalb der Alarmschwelle von 240 μ g/m³.

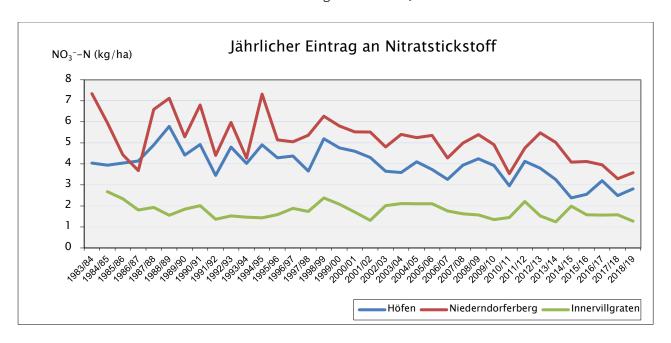
Durch die Verständigung der Überschreitung des Schwellenwertes und die Mitteilung von Verhaltensempfehlungen unter anderen an die Landeswarnzentrale und Medien wurde den gesetzlichen Verpflichtungen der §§ 3, 6, 7, 8, 8a und 10 Ozongesetz entsprochen.

Die seit 2011 geltenden Zielwertkriterien zum Schutz der Vegetation (AOT40) sind an der Messstelle INNSBRUCK/Nordkette sowie jene zum Schutz der menschlichen Gesundheit (gemittelt über 3 Jahre sind 25 Tage mit Zielwertüberschreitung zulässig) an den Innsbrucker Messstellen Nordkette und Sadrach überschritten. An den restlichen 7 Tiroler Standorten sind die Zielvorgaben als eingehalten auszuweisen.

Die für 2020 festgelegten Kriterien zum Schutz der Vegetation sowie die Zielvorgaben zum Schutz der menschlichen Gesundheit werden 2019 allerdings an keiner Messstelle eingehalten.


Eine Feststellung über die Notwendigkeit einer Statuserhebung ist gemäß Ozongesetz nicht vorgesehen.

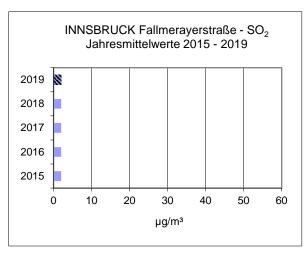

EINTRAGSMESSERGEBNISSE aus NASSER DEPOSITION

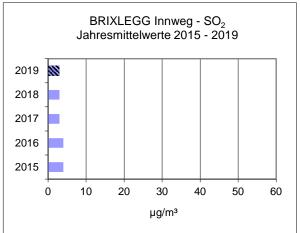

(sog. "critical loads")

Schad- und Nährstoffe gelangen über die trockene und nasse Deposition in terrestrische und aquatische Ökosysteme, wobei der Beitrag der nassen Deposition (i.d.R. Regen und Schnee) deutlich überwiegt. Critical Loads ("kritische Eintragswerte") sind Belastungsgrenzwerte und geben an, welche Menge eines Schadstoffs pro Fläche und Zeitraum in ein Ökosystem eingetragen werden darf, ohne dass nach bisherigem Wissensstand langfristig Schadwirkungen auftreten.

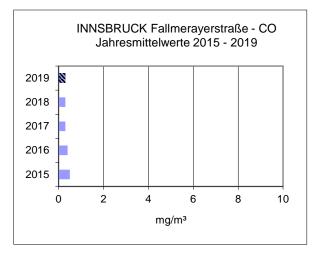
An den Messstellen in Höfen/Bezirk Reutte, Niederndorferberg/Bezirk Kufstein und Innervillgraten/Bezirk Lienz werden tägliche Niederschlagsproben entnommen und analysiert. Die Ergebnisse seit Messbeginn für Sulfatschwefel, Ammoniumstickstoff und Nitratstickstoff sind in den nachfolgenden Abbildungen dargestellt.

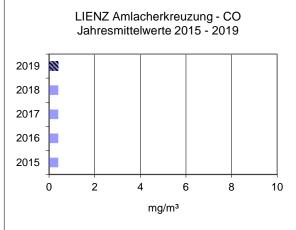
Im Jahr 2019 setzten sich die rückläufigen Trends der letzten Jahre an den drei Messstellen nur vereinzelt fort. Der jährliche **Schwefeleintrag** lag bei maximal 1,8 kg/ha (Niederndorferberg) und daher wieder deutlich unter dem Critical Load-Grenzwert der WHO von 3 kg/ha/Jahr.

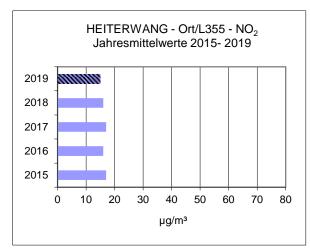

In den letzten 10 Jahren zeigten die drei Messstationen stark schwankende Einträge an Ammoniumstickstoff, während der Eintrag an Nitratstickstoff seit Beginn der Messungen einen leichten Abnahmetrend erkennen lässt. Der jährliche Eintrag an Gesamtstickstoff (Summe aus Ammonium-N und Nitrat-N) lag in Kufstein mit ca. 8,7 kg/ha/Jahr wiederum etwas unter dem Grenzwert für nährstoffarme Ökosysteme von 10,0 kg/ha/Jahr, während die Gesamtstickstoffeinträge in Höfen und Innervillgraten mit jeweils 6,8 und 5,2 kg/ha/Jahr deutlich darunterlagen. Zur Beschreibung der Gesamtdeposition in ein Ökosystem sind neben der nassen Deposition auch die Eintragswege über die trockene Deposition (direkter Eintrag reaktiver Gase bzw. Partikel) und über die okkulte Deposition (Interzeption von Nebelwasser) zu berücksichtigen. Der gesamte Eintrag an eutrophierendem (reaktivem) Stickstoff kann daher besonders in den höhergelegenen Wäldern des Nordalpenraums wesentlich höher sein als hier gemessen, und zu Nährstoffungleichgewichten in diesen Ökosystemen führen. Die in diesem Raum erhöhten Ozonbelastungen verstärken zudem diese Belastungssituation für die Vegetation.

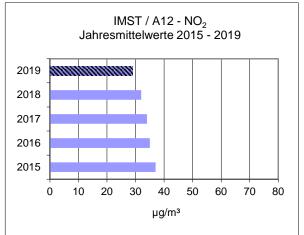

ANHANG 1

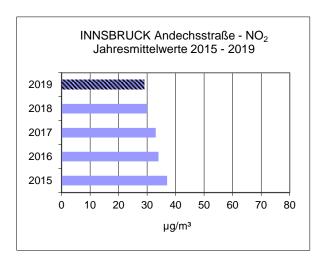
GRAFIKTEIL

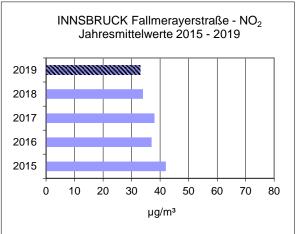

Gemäß IG-L-Messkonzeptverordnung 2012 hat der Jahresbericht Vergleiche mit den Jahreswerten der vorangegangenen Jahre zu enthalten. Dieser Vorgabe wird im Folgenden in grafischer Form entsprochen.

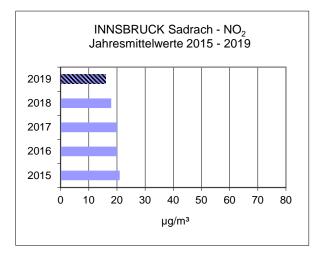

SCHWEFELDIOXID

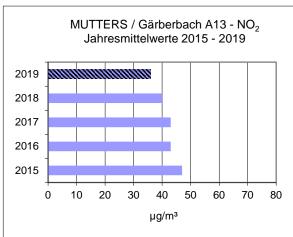


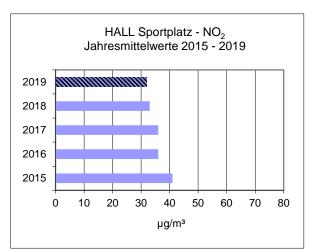

KOHLENMONOXID

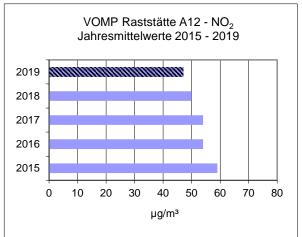


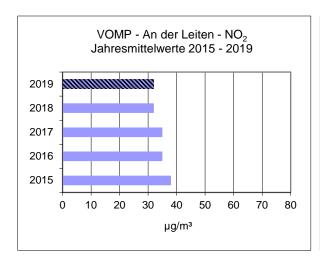


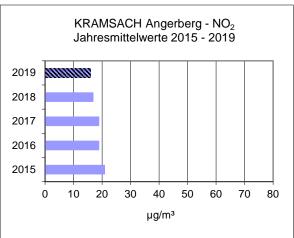

STICKSTOFFDIOXID

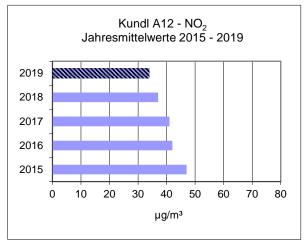


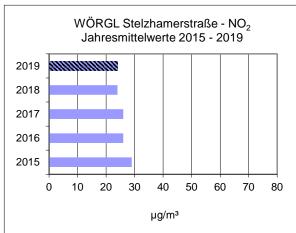


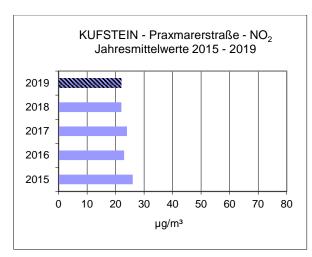


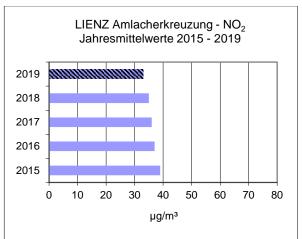


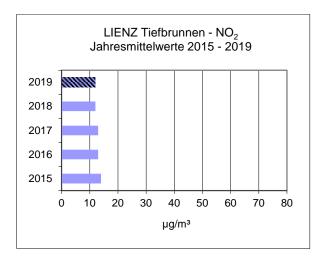


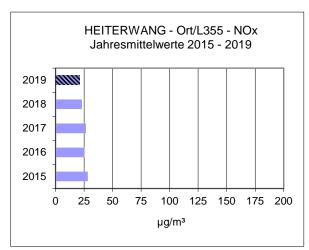


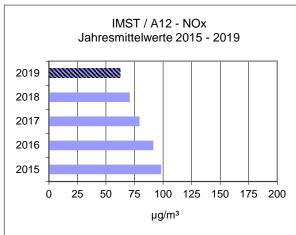


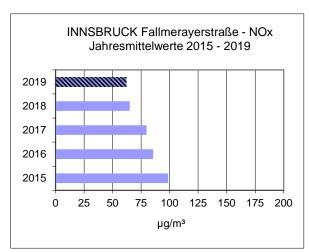


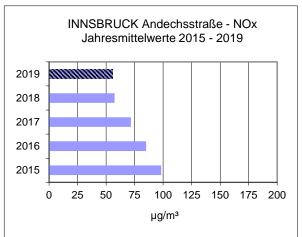


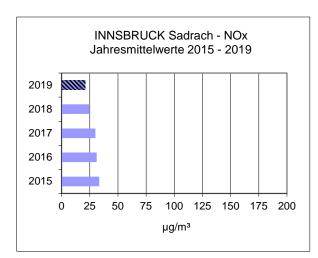


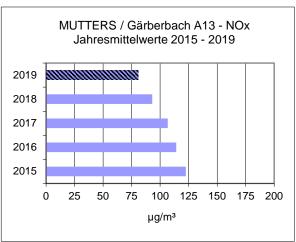


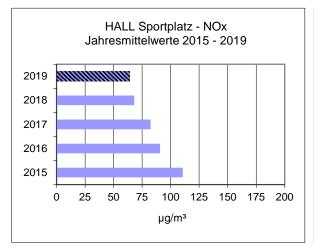


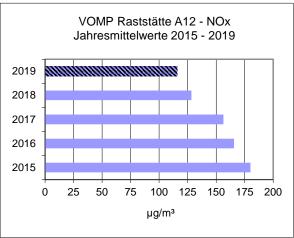


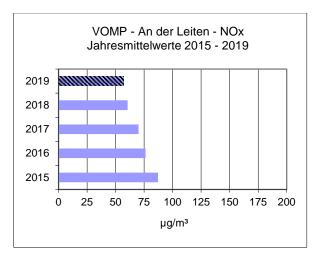


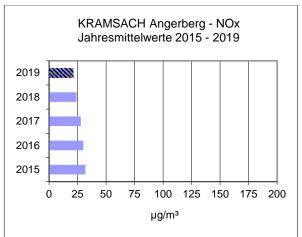

STICKOXIDE



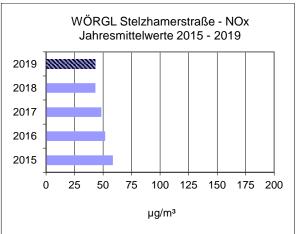


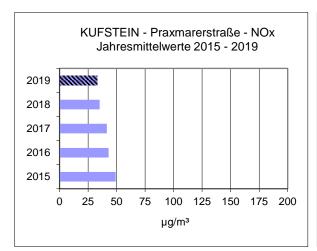


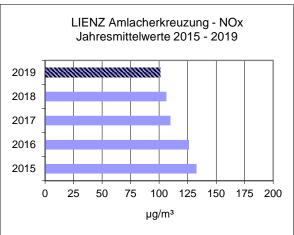


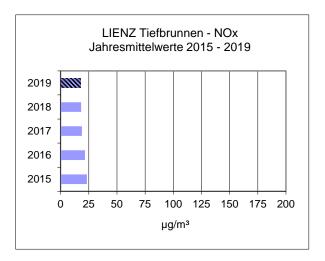


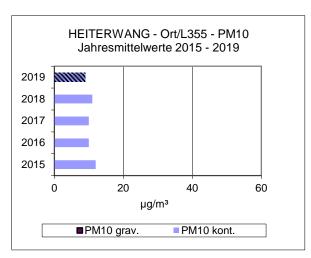


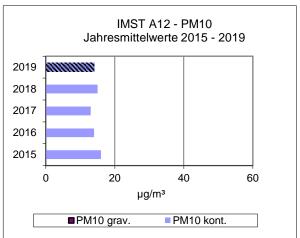


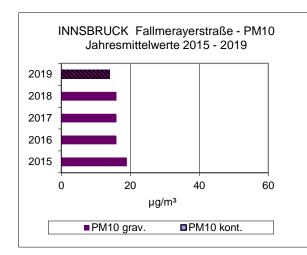


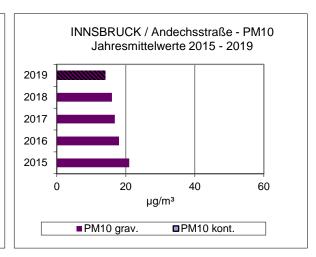


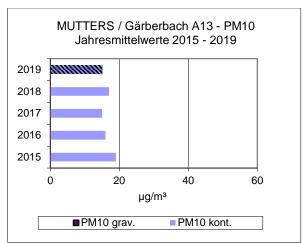


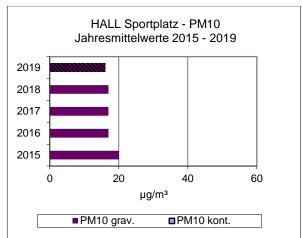


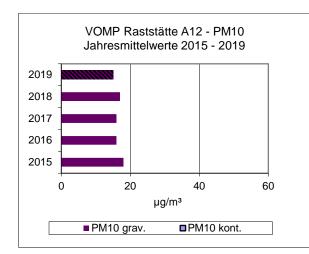


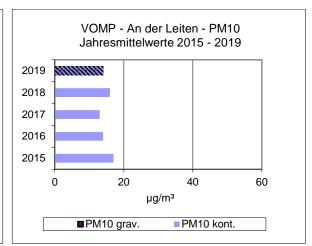


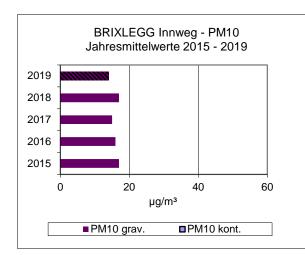


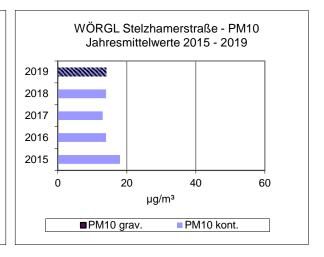

PM10 STAUB

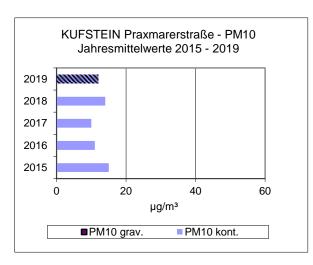


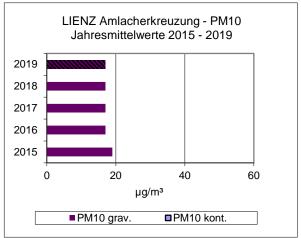


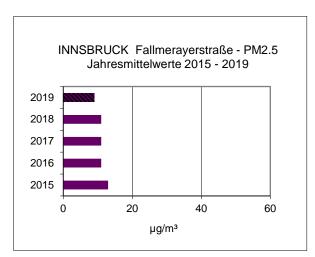


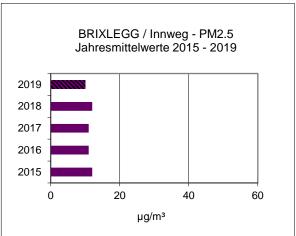


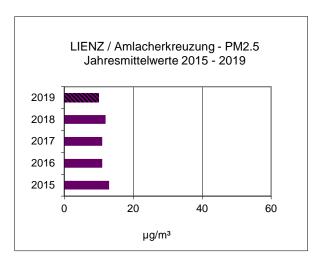


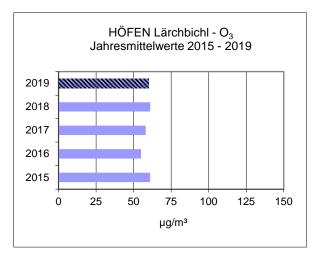


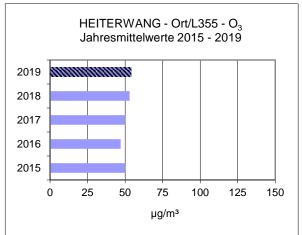


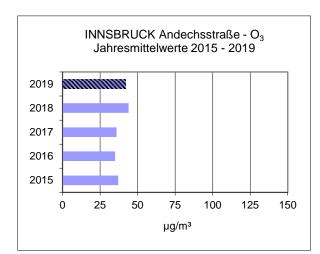


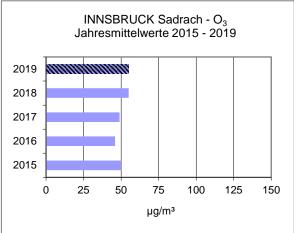


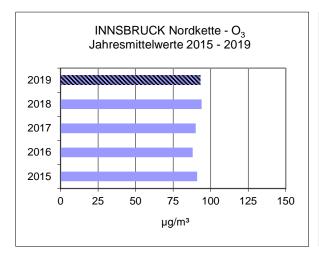


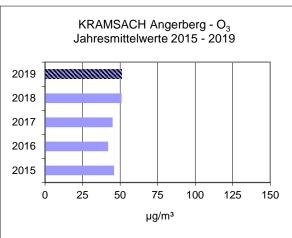

PM2.5 STAUB

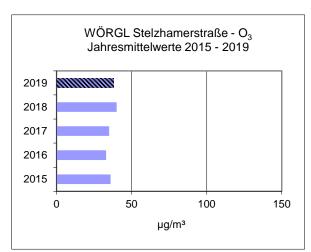


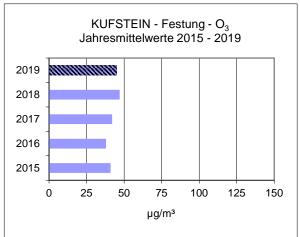


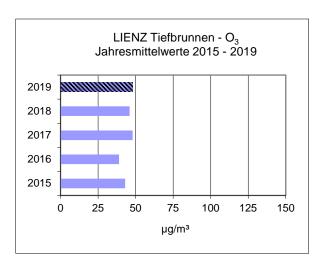


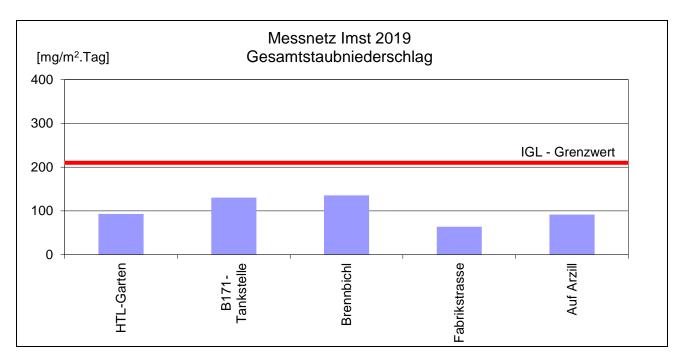

OZON

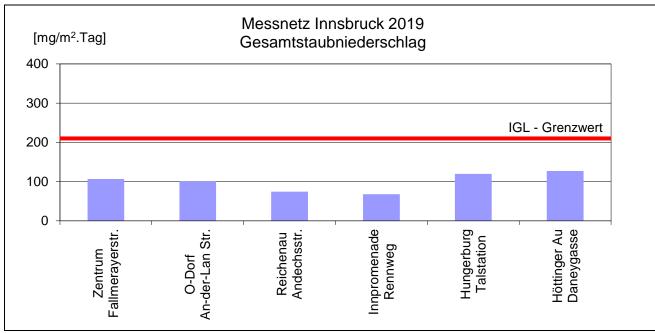


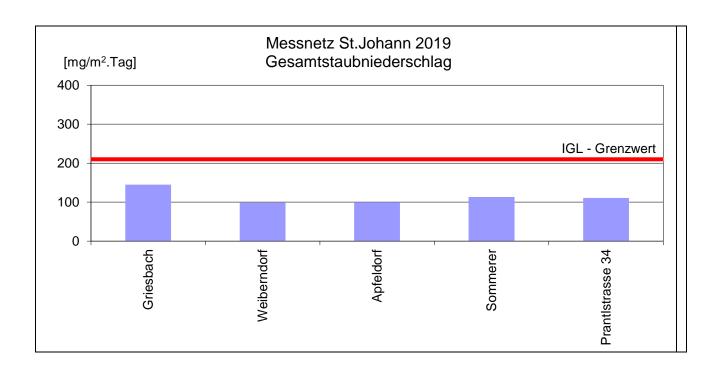


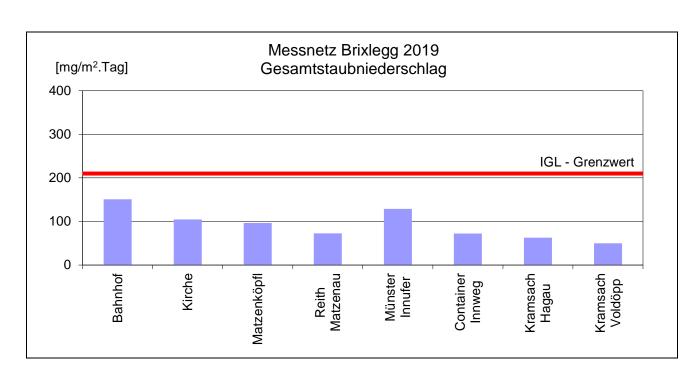


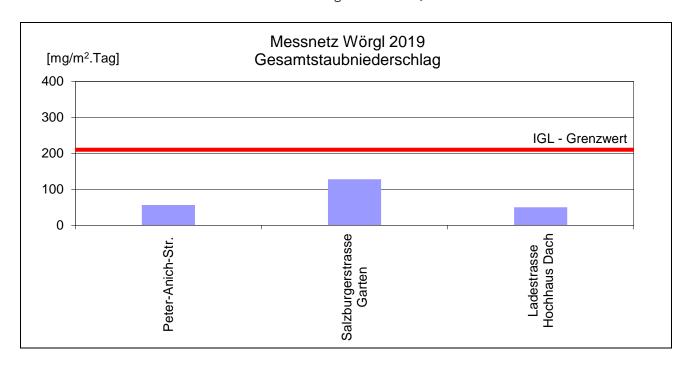


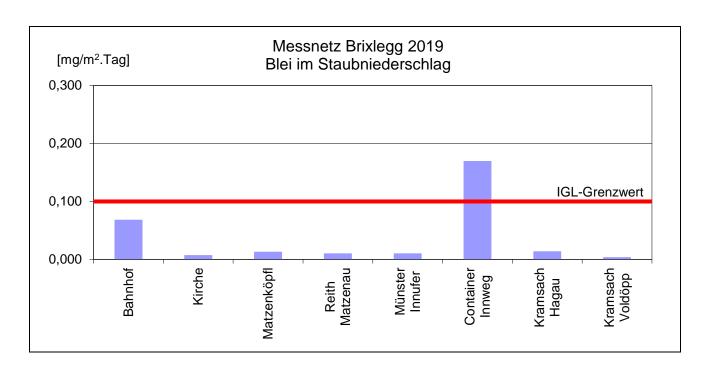


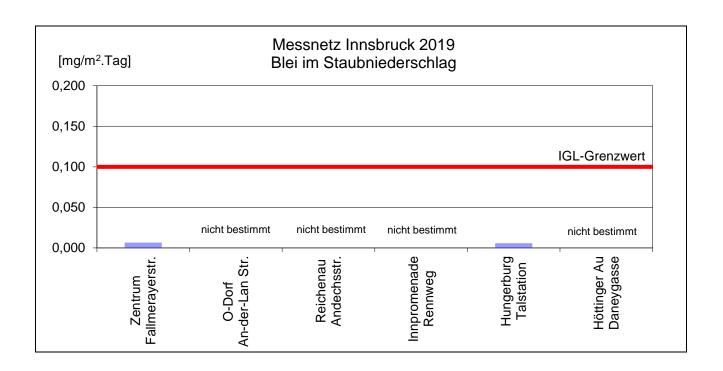


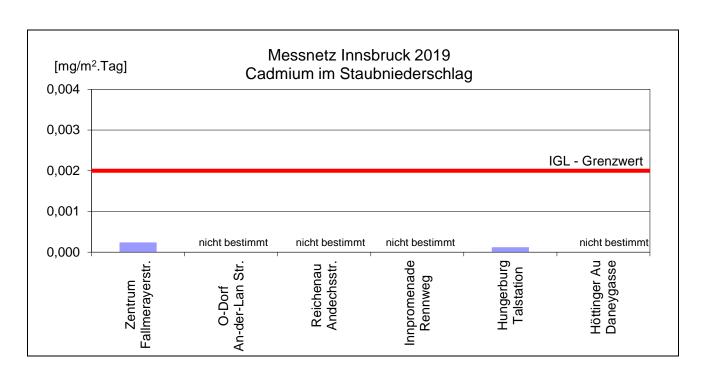


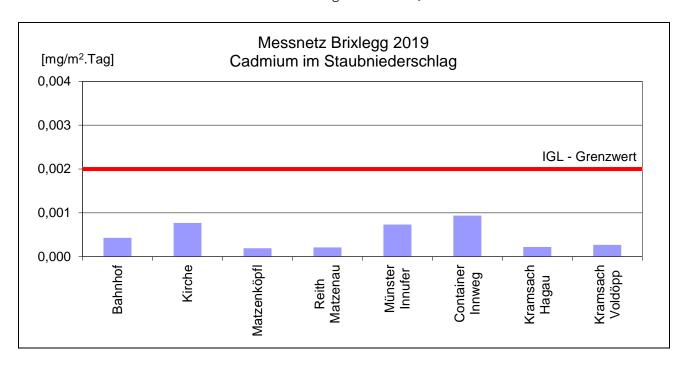


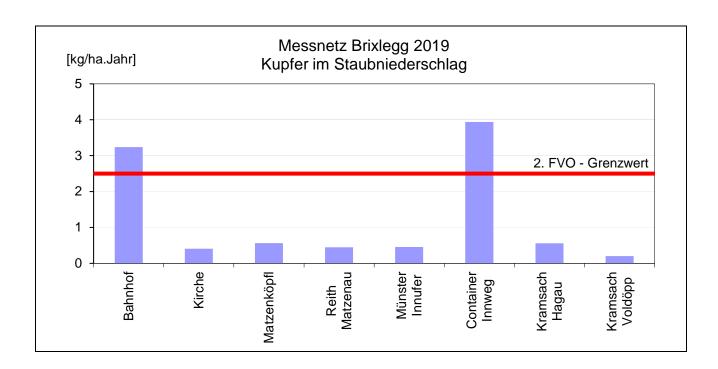

STAUBNIEDERSCHLAG

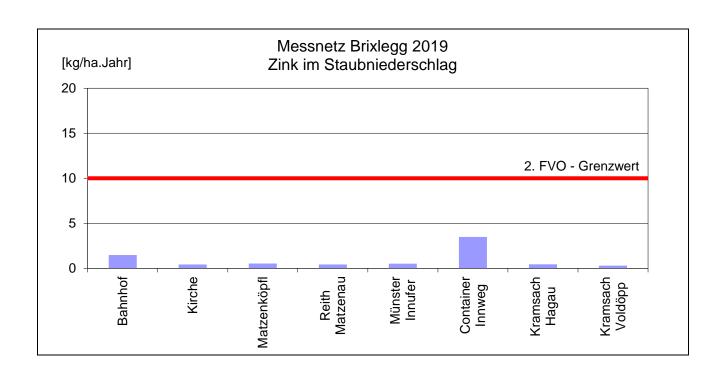


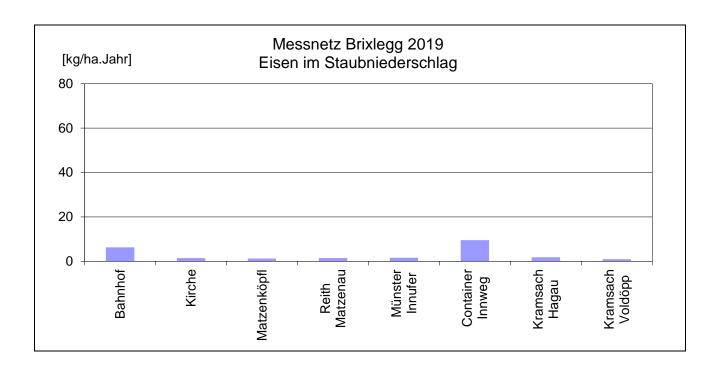


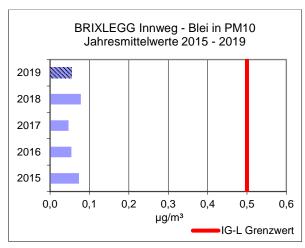


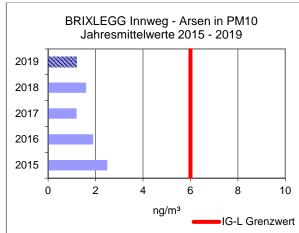


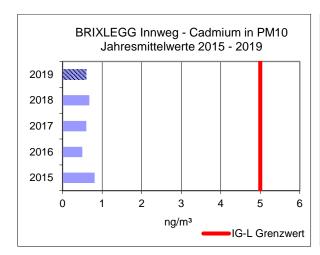


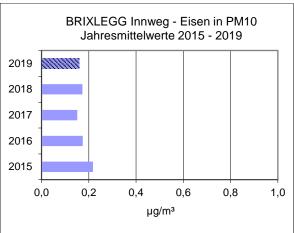


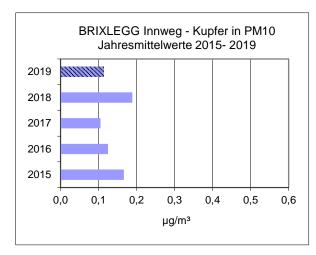


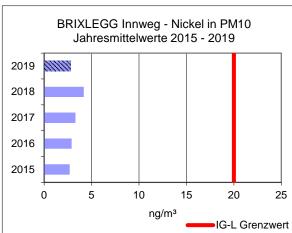

Weitere Schwermetalle sowie Eisen im Staubniederschlag

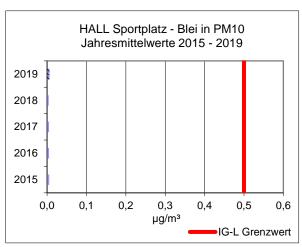


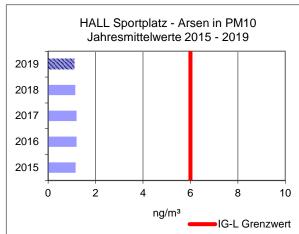


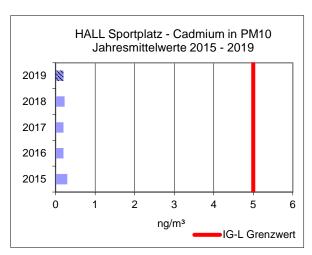


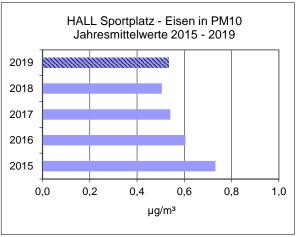

PM10 Schwermetallanalysen

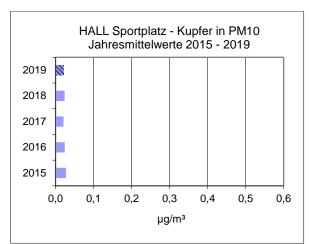


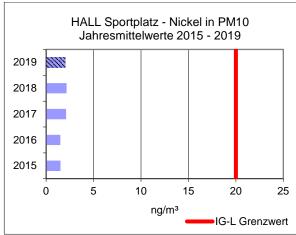












ANHANG 2

Liste mit Überschreitungen von gesetzlichen Grenz-, Alarm- und Zielwerten bzw. von Informations- und Warnwerten

SCHWEFELDIOXID

IG-L Alarmwertüberschreitungen im Zeitraum 1.1.2019 - 31.12.2019 Dreistundenmittelwert > 500µg/m³

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.2019 - 31.12.2019 Halbstundenmittelwert > 200µg/m3

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME/VEGETATION Zielwertüberschreitungen im Zeitraum 1.1.2019 – 31.12.2019 Tagesmittelwert $> 50 \mu g / m^3$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2019 - 31.12.2019 Achtstundenmittelwert > 10mg/m³

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID (NO₂)

IG-L Alarmwertüberschreitungen im Zeitraum 1.1.2019 – 31.12.2019 Dreistundenmittelwert > $400 \mu g/m^3$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2019 – 31.12.2019 Halbstundenmittelwert > 200µg/m³

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 1.1.2019- 31.12.2019 Tagesmittelwert > 80µg/m³

MESSSTELLE

IVILJJJTLLLL	Datum	WERT[µg/III]
INNSBRUCK / Andechsstraße	07.02.2019	87
Anzahl: 1		
INNSBRUCK / Fallmerayerstr.	07.02.2019	94
Anzahl: 1		
HALLIN TIPOL / Sportplatz	22.01.2019	0.4
HALL IN TIROL / Sportplatz		84
HALL IN TIROL / Sportplatz	07.02.2019	81
Anzahl: 2		
VOMP / Raststätte A12	04.01.2019	85
VOMP / Raststätte A12	05.01.2019	84
VOMP / Raststätte A12	12.01.2019	82
VOMP / Raststätte A12	15.01.2019	89
VOMP / Raststätte A12	16.01.2019	93
VOMP / Raststätte A12	17.01.2019	91
VOMP / Raststätte A12	19.01.2019	94
VOMP / Raststätte A12	20.01.2019	87
VOMP / Raststätte A12	21.01.2019	87
VOMP / Raststätte A12	22.01.2019	93
VOMP / Raststätte A12	23.01.2019	93
VOMP / Raststätte A12	26.01.2019	86
VOMP / Raststätte A12	28.01.2019	96
VOMP / Raststätte A12	30.01.2019	92
VOMP / Raststätte A12	01.02.2019	85
VOMP / Raststätte A12	07.02.2019	82
VOMP / Raststätte A12	08.02.2019	82
VOMP / Raststätte A12	11.02.2019	81
VOMP / Raststätte A12	15.02.2019	88
VOMP / Raststätte A12	18.02.2019	81
VOMP / Raststätte A12	19.02.2019	93
VOMP / Raststätte A12	20.02.2019	84
VOMP / Raststätte A12	22.02.2019	82
VOMP / Raststätte A12	01.03.2019	81
Anzahl: 24		1
I/INDL / A12	01 02 2010	06
KUNDL / A12 Anzahl: 1	01.02.2019	86

Datum

 $WERT[\mu g/m^3]$

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2019 - 31.12.2019

Tagesmittelwerte > 50µg/m³

VOMP / An der Leiten	01.01.2019	61
Anzahl: 1		
WÖRGL / Stelzhamerstraße	01.01.2019	70
Anzahl: 1		
KUFSTEIN / Praxmarerstraße	01.01.2019	65
A 11.4		

Anzahl: 1

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 1.1.2019 - 31.12.2019

Tagesmittelwerte > 50µg/m³

M	Fς	C	C	ΓF	П	П	E
IVI	Г.Э	١.	`	ΙГ	ш	ш	г

INNSBRUCK / Andechsstraße	01.01.2019	58
Anzahl: 1	·	
INNSBRUCK / Fallmerayerstr.	01.01.2019	52
Anzahl: 1	· ·	
HALL IN TIROL / Sportplatz	01.01.2019	53
Anzahl: 1	· ·	
LIENZ / Amlacherkreuzung	30.01.2019	56
LIENZ / Amlacherkreuzung	20.02.2019	67
LIENZ / Amlacherkreuzung	21.02.2019	52
LIENZ / Amlacherkreuzung	04.12.2019	54
LIENZ / Amlacherkreuzung	11.12.2019	54
LIENZ / Amlacherkreuzung	12.12.2019	59
LIENZ / Amlacherkreuzung	28.12.2019	58
LIENZ / Amlacherkreuzung	30.12.2019	54

OZON

Überschreitungen der Alarmschwelle gemäß Ozongesetz im Zeitraum 1.1.2019 - 31.12.2019 Einstundenmittelwert > 240µg/m³

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle gemäß Ozongesetz im Zeitraum 1.1.2019 – 31.12.2019 Einstundenmittelwert $> 180 \mu g/m^3$

MESSSTELLE	Datum	WERT[µg/m³]
KUFSTEIN / Festung	27.06.2019-15:00	184
KUFSTEIN / Festung	27.06.2019-16:00	186
KUFSTEIN / Festung	27.06.2019-17:00	185
KUFSTEIN / Festung	27.06.2019-18:00	188

Anzahl: 4

Zielwert überschreitungen gemäß Ozongesetz im Zeitraum 1.1.2019 – 31.12.2019 Achtstundenmittelwert > $120\mu g/m^3$

MESSSTELLE	Datum	WERT[µg/m³]
HÖFEN / Lärchbichl	24.03.2019	128
HÖFEN / Lärchbichl	18.04.2019	122
HÖFEN / Lärchbichl	19.04.2019	133
HÖFEN / Lärchbichl	20.04.2019	123
HÖFEN / Lärchbichl	02.05.2019	121
HÖFEN / Lärchbichl	24.05.2019	124
HÖFEN / Lärchbichl	03.06.2019	131
HÖFEN / Lärchbichl	05.06.2019	122
HÖFEN / Lärchbichl	14.06.2019	132
HÖFEN / Lärchbichl	19.06.2019	127
HÖFEN / Lärchbichl	25.06.2019	125
HÖFEN / Lärchbichl	27.06.2019	163
HÖFEN / Lärchbichl	28.06.2019	147
HÖFEN / Lärchbichl	29.06.2019	132
HÖFEN / Lärchbichl	30.06.2019	141
HÖFEN / Lärchbichl	04.07.2019	130
HÖFEN / Lärchbichl	05.07.2019	132
HÖFEN / Lärchbichl	06.07.2019	130
HÖFEN / Lärchbichl	17.07.2019	123
HÖFEN / Lärchbichl	18.07.2019	121
HÖFEN / Lärchbichl	19.07.2019	127
HÖFEN / Lärchbichl	24.07.2019	135
HÖFEN / Lärchbichl	25.07.2019	149
HÖFEN / Lärchbichl	26.07.2019	123

HEITERWANG Ort / L355	18.04.2019	126
HEITERWANG Ort / L355	19.04.2019	132

HEITERWANG Ort / L355	20.04.2019	124
HEITERWANG Ort / L355	02.05.2019	121
HEITERWANG Ort / L355	24.05.2019	127
HEITERWANG Ort / L355	25.05.2019	125
HEITERWANG Ort / L355	03.06.2019	131
HEITERWANG Ort / L355	05.06.2019	121
HEITERWANG Ort / L355	14.06.2019	129
HEITERWANG Ort / L355	19.06.2019	125
HEITERWANG Ort / L355	25.06.2019	132
HEITERWANG Ort / L355	27.06.2019	162
HEITERWANG Ort / L355	28.06.2019	148
HEITERWANG Ort / L355	29.06.2019	135
HEITERWANG Ort / L355	30.06.2019	143
HEITERWANG Ort / L355	03.07.2019	126
HEITERWANG Ort / L355	04.07.2019	136
HEITERWANG Ort / L355	05.07.2019	133
HEITERWANG Ort / L355	06.07.2019	131
HEITERWANG Ort / L355	17.07.2019	125
HEITERWANG Ort / L355	18.07.2019	123
HEITERWANG Ort / L355	19.07.2019	128
HEITERWANG Ort / L355	24.07.2019	141
HEITERWANG Ort / L355	25.07.2019	148
HEITERWANG Ort / L355	26.07.2019	124
Anzahl: 25	10.04.2010	105
INNSBRUCK / Andechsstraße	18.04.2019	125
INNSBRUCK / Andechsstraße	19.04.2019	125
INNSBRUCK / Andechsstraße	22.04.2019	123
INNSBRUCK / Andechsstraße	23.04.2019	123
INNSBRUCK / Andechsstraße	05.06.2019	124
INNSBRUCK / Andechsstraße	06.06.2019	127
INNSBRUCK / Andechsstraße	13.06.2019	125
INNSBRUCK / Andechsstraße	25.06.2019	128
INNSBRUCK / Andechastraße	27.06.2019 28.06.2019	133 132
INNSBRUCK / Andechsstraße INNSBRUCK / Andechsstraße		
INNSBRUCK / Andechsstraße	29.06.2019 30.06.2019	135 128
INNSBRUCK / Andechsstraße	04.07.2019	128
INNSBRUCK / Andechsstraße	04.07.2019	128
INNSBRUCK / Andechsstraße	*****	
INNSBRUCK / Andechsstraße	06.07.2019 24.07.2019	124 125
INNSBRUCK / Andechsstraße	25.07.2019	132
Anzahl: 17	23.07.2019	132
INNSBRUCK / Sadrach	17.04.2019	127
INNSBRUCK / Sadrach	18.04.2019	131
INNSBRUCK / Sadrach	19.04.2019	132
INNSBRUCK / Sadrach	20.04.2019	122

INNSBRUCK / Sadrach	21.04.2019	121
INNSBRUCK / Sadrach	22.04.2019	123
INNSBRUCK / Sadrach	23.04.2019	123
INNSBRUCK / Sadrach	01.05.2019	123
INNSBRUCK / Sadrach	02.05.2019	124
INNSBRUCK / Sadrach	24.05.2019	124
INNSBRUCK / Sadrach	03.06.2019	125
INNSBRUCK / Sadrach	04.06.2019	128
INNSBRUCK / Sadrach	05.06.2019	129
INNSBRUCK / Sadrach	06.06.2019	131
INNSBRUCK / Sadrach	08.06.2019	121
INNSBRUCK / Sadrach	13.06.2019	126
INNSBRUCK / Sadrach	18.06.2019	121
INNSBRUCK / Sadrach	19.06.2019	122
INNSBRUCK / Sadrach	25.06.2019	138
INNSBRUCK / Sadrach	26.06.2019	132
INNSBRUCK / Sadrach	27.06.2019	158
INNSBRUCK / Sadrach	28.06.2019	160
INNSBRUCK / Sadrach	29.06.2019	145
INNSBRUCK / Sadrach	30.06.2019	133
INNSBRUCK / Sadrach	04.07.2019	141
INNSBRUCK / Sadrach	05.07.2019	139
INNSBRUCK / Sadrach	06.07.2019	130
INNSBRUCK / Sadrach	18.07.2019	123
INNSBRUCK / Sadrach	19.07.2019	128
INNSBRUCK / Sadrach	24.07.2019	138
INNSBRUCK / Sadrach	25.07.2019	147
Anzahl. 21		

NORDKETTE	23.03.2019	127
NORDKETTE	24.03.2019	133
NORDKETTE	25.03.2019	133
NORDKETTE	31.03.2019	128
NORDKETTE	01.04.2019	128
NORDKETTE	02.04.2019	129
NORDKETTE	03.04.2019	124
NORDKETTE	16.04.2019	125
NORDKETTE	17.04.2019	135
NORDKETTE	18.04.2019	136
NORDKETTE	19.04.2019	138
NORDKETTE	20.04.2019	135
NORDKETTE	21.04.2019	128
NORDKETTE	22.04.2019	131
NORDKETTE	23.04.2019	125
NORDKETTE	01.05.2019	126
NORDKETTE	02.05.2019	130
NORDKETTE	03.05.2019	128
NORDKETTE	20.05.2019	122
NORDKETTE	24.05.2019	127
NORDKETTE	25.05.2019	128

NORDKETTE	26.05.2019	130
NORDKETTE	03.06.2019	134
NORDKETTE	04.06.2019	136
NORDKETTE	05.06.2019	134
NORDKETTE	06.06.2019	134
NORDKETTE	07.06.2019	122
NORDKETTE	08.06.2019	122
NORDKETTE	09.06.2019	133
NORDKETTE	13.06.2019	140
NORDKETTE	14.06.2019	140
NORDKETTE	15.06.2019	123
NORDKETTE	18.06.2019	124
NORDKETTE	19.06.2019	126
NORDKETTE	20.06.2019	122
NORDKETTE	25.06.2019	132
NORDKETTE	26.06.2019	125
NORDKETTE	27.06.2019	153
NORDKETTE	28.06.2019	155
NORDKETTE	29.06.2019	142
NORDKETTE	30.06.2019	142
NORDKETTE	01.07.2019	142
NORDKETTE	02.07.2019	126
NORDKETTE	04.07.2019	135
NORDKETTE	05.07.2019	140
NORDKETTE	06.07.2019	140
NORDKETTE	07.07.2019	137
NORDKETTE	08.07.2019	121
NORDKETTE	17.07.2019	128
NORDKETTE	18.07.2019	131
NORDKETTE	19.07.2019	127
NORDKETTE	20.07.2019	128
NORDKETTE	21.07.2019	124
NORDKETTE	24.07.2019	149
NORDKETTE	25.07.2019	157
NORDKETTE	26.07.2019	132
NORDKETTE	28.07.2019	130
NORDKETTE	26.08.2019	125
Anzahl: 58		
KRAMSACH / Angerberg	24.03.2019	124
KRAMSACH / Angerberg	17.04.2019	123
KRAMSACH / Angerberg	18.04.2019	124
KRAMSACH / Angerberg	19.04.2019	127
KRAMSACH / Angerberg	05.06.2019	126
KRAMSACH / Angerberg	18.06.2019	121
KRAMSACH / Angerberg	25.06.2019	144
KRAMSACH / Angerberg	26.06.2019	131
KRAMSACH / Angerberg	27.06.2019	165

KRAMSACH / Angerberg	28.06.2019	153
KRAMSACH / Angerberg	29.06.2019	143
KRAMSACH / Angerberg	30.06.2019	141
KRAMSACH / Angerberg	01.07.2019	127
KRAMSACH / Angerberg	03.07.2019	125
KRAMSACH / Angerberg	04.07.2019	149
KRAMSACH / Angerberg	05.07.2019	148
KRAMSACH / Angerberg	06.07.2019	133
KRAMSACH / Angerberg	17.07.2019	121
KRAMSACH / Angerberg	19.07.2019	133
KRAMSACH / Angerberg	20.07.2019	123
KRAMSACH / Angerberg	24.07.2019	144
KRAMSACH / Angerberg	25.07.2019	145
Anzahl: 22		<u> </u>
WÖRGL / Stelzhamerstraße	19.04.2019	122
WÖRGL / Stelzhamerstraße	25.05.2019	126
WÖRGL / Stelzhamerstraße	05.06.2019	124
WÖRGL / Stelzhamerstraße	25.06.2019	137
WÖRGL / Stelzhamerstraße	26.06.2019	123
WÖRGL / Stelzhamerstraße	27.06.2019	163
WÖRGL / Stelzhamerstraße	28.06.2019	141
WÖRGL / Stelzhamerstraße	29.06.2019	130
WÖRGL / Stelzhamerstraße	30.06.2019	139
WÖRGL / Stelzhamerstraße	03.07.2019	128
WÖRGL / Stelzhamerstraße	04.07.2019	144
WÖRGL / Stelzhamerstraße	05.07.2019	143
WÖRGL / Stelzhamerstraße	19.07.2019	128
WÖRGL / Stelzhamerstraße	20.07.2019	122
WÖRGL / Stelzhamerstraße	24.07.2019	137
WÖRGL / Stelzhamerstraße	25.07.2019	142
WÖRGL / Stelzhamerstraße	26.07.2019	122
Anzahl: 17		
KUFSTEIN / Festung	19.04.2019	124
KUFSTEIN / Festung	24.05.2019	121
KUFSTEIN / Festung	25.05.2019	125
KUFSTEIN / Festung	05.06.2019	125
KUFSTEIN / Festung	14.06.2019	123
KUFSTEIN / Festung	18.06.2019	124
KUFSTEIN / Festung	25.06.2019	141
KUFSTEIN / Festung	26.06.2019	130
KUFSTEIN / Festung	27.06.2019	176
KUFSTEIN / Festung	28.06.2019	147
KUFSTEIN / Festung	29.06.2019	147
KUFSTEIN / Festung	30.06.2019	140
KUFSTEIN / Festung	03.07.2019	140
	03.07.2019	129
KUFSTEIN / Festung	04.07.2019	146
KIIENIEINI / EOCTIIDO	05.07.7000	1 /1 /

05.07.2019

06.07.2019

KUFSTEIN / Festung

KUFSTEIN / Festung

147

131

KUFSTEIN / Festung	17.07.2019	124
KUFSTEIN / Festung	19.07.2019	127
KUFSTEIN / Festung	20.07.2019	128
KUFSTEIN / Festung	23.07.2019	122
KUFSTEIN / Festung	24.07.2019	144
KUFSTEIN / Festung	25.07.2019	142
KUFSTEIN / Festung	26.07.2019	132
KUFSTEIN / Festung	27.07.2019	123

Anzahl: 24

LIENZ / Tiefbrunnen	01.05.2019	121
LIENZ / Tiefbrunnen	13.06.2019	125
LIENZ / Tiefbrunnen	14.06.2019	122
LIENZ / Tiefbrunnen	29.06.2019	123
LIENZ / Tiefbrunnen	30.06.2019	129
LIENZ / Tiefbrunnen	06.07.2019	133

Anzahl: 6

ANHANG 3

LAGE DER STANDORTE:

1. Standorte mit dauerregistrierenden Messgeräten

Standort	geo. Länge	geo. Breite
Höfen-Lärchbichl	10° 40' 56,22"	47° 28' 11,41"
Heiterwang – Ort/L355	10° 44' 38,82"	47° 26' 51,35"
lmst - A12	10° 44' 08,58"	47° 13' 01,01"
Innsbruck-Andechsstraße	11° 25' 01,00"	47° 16' 16,64"
Innsbruck-Fallmerayerstraße	11° 23' 32,50"	47° 15' 45,43"
Innsbruck-Sadrach	11° 22' 28,78"	47° 16' 11,65"
Innsbruck-Nordkette	11° 22' 33,59"	47° 18' 20,24"
Vill – Zenzenhof A13	11° 23' 31,60"	47° 13' 32,24"
Mutters-Gärberbach/A13	11° 23′ 26,35″	47° 14' 22,39"
Hall-Sportplatz	11° 30' 44,99"	47° 16' 41,04"
Vomp-Raststätte A12	11° 41' 31,30"	47° 20' 55,59"
Vomp-An der Leiten	11° 41' 40,35"	47° 20' 59,97"
Brixlegg-Innweg	11° 52' 18,49"	47° 25' 42,79"
Kramsach-Angerberg	11° 54' 35,82"	47° 27' 31,38"
Kundl A12	11° 57' 28,93"	47° 28' 08,20"
Wörgl-Stelzhamerstraße	12° 03' 59,88"	47° 29' 18,81"
Kufstein-Praxmarerstraße	12° 10' 20,68"	47° 34' 54,51"
Kufstein-Festung	12° 10' 09,28"	47° 34' 56,04"
Lienz-Amlacherkreuzung	12° 45' 56,24"	46° 49' 39,84"
Lienz-Tiefbrunnen	12° 45' 56,57''	46° 49' 08,98''

Die nähere Charakterisierung (Karte, Ansicht, etc.) kann unter http://www.tirol.gv.at/luft eingesehen werden.

2. Staubniederschlagsstandorte in Tirol

Bezeichnung	geogr. Länge	geogr. Breite		
lmst				
HTL-Garten	10° 44' 48,84"	47° 13' 28,62"		
B 171-Tankstelle	10° 44' 48,97"	47° 13' 37,27"		
Brennbichl	10° 44' 49,87"	47° 13' 24,93"		
Fabrikstraße	10° 44' 58,89"	47° 14' 05,74"		
Auf Arzill	10° 44' 49,26"	47° 13' 53,82"		
Innsbruck				
Zentrum (Fallmerayerstraße)	11° 23' 32,45"	47° 15' 45,45"		
O-Dorf (An der Lan Str.)	11° 26′ 30,90″	47° 16' 20,70"		
Reichenau (Andechsstraße)	11° 25' 01,01"	47° 16' 16,60"		
Innpromenade-Rennweg	11° 24' 07,57"	47° 16' 44,58"		
Hungerburg-Talstation	11° 24' 12,98"	47° 16' 44,22"		
Höttinger Au (Daneygasse)	11° 21' 59,82"	47° 15' 40,56"		
Brixlegg u. Umgebung				
Brixlegg-Bahnhof	11° 52' 44,10"	47° 25' 59,08"		
Brixlegg-Kirche	11° 52' 44,21"	47° 25' 41,83"		
Reith-Matzenköpfl	11° 51' 59,44"	47° 25' 26,85"		
Reith-Matzenau	11° 51' 49,01"	47° 25' 24,53"		
Münster-Innufer	11° 51' 57,00"	47° 25' 39,00"		
Brixlegg-Container	11° 52' 18,42"	47° 25' 42,79"		
Kramsach-Hagau	11° 52' 16,08"	47° 25' 54,66"		
Kramsach-Voldöpp	11° 53' 30,36"	47° 26' 48,06"		
Wörgl				
Peter-Anich-Straße	12° 04' 08,80"	47° 29' 36,70"		
Salzburgerstraße-Garten	12° 04' 19,76"	47° 29' 28,23"		
Ladestraße-Hochhaus Dach	12° 04' 18,35"	47° 29' 27,50"		
St. Johann i.T. und Umgebung				
Griesbach	12° 23' 47,44"	47° 30' 05,68"		
Weiberndorf	12° 24' 22,82"	47° 30' 36,24"		
Apfeldorf	12° 24' 53,22"	47° 30' 52,94"		
•				
Prantlstraße 34	12° 25' 10,26"	47° 31' 08,34"		

3. WADOS - Standorte in Tirol:

Bezeichnung	geogr. Länge	geogr. Breite
Höfen	10° 40' 51"	47° 28' 15"
Niederndorferberg	12° 13' 37"	47° 39' 44"
Innervillgraten	12° 21' 06"	46° 49' 05"

ANHANG 4

MESSERGEBNISSE von Vorerkundungsmessungen 2019 (inkl. Verfügbarkeiten der Messdaten)

Gemäß § 35 Abs. 1 Messkonzeptverordnung sind auch Ergebnisse von Vorerkundungsmessungen in den Jahresbericht mitaufzunehmen. Dem folgend werden nachstehend die bisherigen Messergebnisse der Messstelle VILL - Zenzenhof A13 angeführt. Grund für die Vorerkundungsmessungen ist die notwendige Verlegung der Messstelle MUTTERS - Gärberbach A13 auf Grund des geplanten Neubaus der Anschlussstelle Innsbruck Süd. An der Messstelle werden PM10 gravimetrisch mit einem DHA 80 und Stickoxide mit einem APNA 370 gemessen. Die Qualitätssicherung erfolgt analog zum routinemäßigen Messnetz und die Vorgaben bezüglich Datenqualitätsziele werden eingehalten.

VILL - Zenzenhof A13

Seehöhe: 731 m

gemessene Luftschadstoffe: Stickstoffdioxid (NO₂), Stickstoffmonoxid (NO),

Feinstaub (PM10)

Messziel: Autobahnverkehr

(Messstelle, ländlicher Hintergrund)

Schadstoff	Verf. %	PMW	MW 9-16 Veg.P.	max. TMW	max. 8MW	max. 8MW EU	max. 3MW	max. 1MW	max. HMW
PM10 g. (μg/m³)	44	13 <mark>*</mark>		28					
NO (μg/m³)	44	47 <mark>*</mark>		128					288
NO ₂ (μg/m³)	44	39 <mark>*</mark>		90			141		147

^{*-} Periodenmittelwert für den Zeitraum vom 23.07.2019 – 31.12.2019

Über den Messzeitraum wurden bisher keine Alarm- beziehungsweise Grenzwertüberschreitungen gemäß IG-L zum Schutz der menschlichen Gesundheit verzeichnet. Lediglich der Zielwert zum Schutz der menschlichen Gesundheit für NO_2 (Tagesmittelwert von 80 μ g/m³) wurde an den nachfolgenden Tagen überschritten.

IG-L Zielwertüberschreitungen im Zeitraum 23.07.2019 - 31.12.2019

Tagesmittelwert > 80µg/m³

MESSSTELLE	Datum	WERT [µg/m³]
VILL/ Zenzenhof A13	5.12.2019	83
VILL/ Zenzenhof A13	6.12.2019	90

ANHANG 5

ABKÜRZUNGEN	Erläuterungen über die Bedeutung der verwendeten Symbole
SO ₂	Schwefeldioxid
NO	Stickstoffmonoxid
NO_2	Stickstoffdioxid
NO _x	Stickstoffoxide im Sinne dieser Verordnung (BGBl. II Nr. 298/2001) sind die Summe von Stickstoffmonoxid und Stickstoffdioxid, ermittelt durch die Addition als Teile auf eine Milliarde Teile und ausgedrückt als Stickstoffdioxid in µg/m³. Ozon
O₃ CO	Kohlenmonoxid
PM10	Feinstaub gemäß IG-L – diese Staubfraktion enthält 50% der Teilchen mit einem Durchmesser von 10 µm, einen höheren Anteil kleinerer Teilchen und einen niedrigeren Anteil größerer Teilchen.
PM2.5	Feinstaub gemäß IG-L – diese Staubfraktion enthält 50% der Teilchen mit einem Durchmesser von 2,5 µm, einen höheren Anteil kleinerer Teilchen und einen niedrigeren Anteil größerer Teilchen.
JMW	Jahresmittelwert
MMW	Monatsmittelwert
MW8	Achtstundenmittelwert (gleitend)
MW1	Einstundenmittelwert
WinterHJ	Winterhalbjahr 1.Oktober des Vorjahres bis 31. März des Berichtsjahres
TMW	Tagesmittelwert
IGL8-MW	Maximaler Achtstundenmittelwert laut Immissionsschutzgesetz Luft
Max 8-MW	Maximaler Achtstundenmittelwert (gleitend)
Max 3-MW	Maximaler Dreistundenmittelwert (gleitend)
Max 1-MW	Maximaler Einstundenmittelwert
Max HMW	Maximaler Halbstundenmittelwert
mg/m³	Milligramm pro Kubikmeter
μg/m³	Mikrogramm pro Kubikmeter
%	Prozent = Anzahl Teile in hundert Teilen
%0	Promille = Anzahl Teile in tausend Teilen
Ver.	Verfügbarkeit der Messwerte (Anteil gültiger Messwerte zu theoretischer Anzahl an Messwerten; Angaben in Prozent)
IG-L	Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/97, i.d.g.F.)
IG-L-MKV 2012	Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft (BGBl. II Nr. 127/2012, i.d.g.F.)
2.FVO	Zweite Verordnung gegen forstschädliche Luftverschmutzungen (BGBl. Nr. 199/1984)
CTUA	Chemisch Technische Umweltschutzanstalt beim Amt der Tiroler Landesregierung
GUM	Guide to the expression of uncertainty in measurement", ISO 13005
ENV DTV	ENV 1305: ÖNORM 1305 - Leitfaden zur Angabe der Messunsicherheit beim Messen Durchschnittliche tägliche Verkehrsstärke
AEI	Average Exposure Indicator, Indikator für die durchschnittliche Exposition
AOT40	bedeutet die Summe der Differenzen zwischen den Konzentrationen über 80 μg/m³ als Einstundenmittelwerte und 80 μg/m³ unter ausschließlicher Verwendung der Einstundenmittelwerte zwischen 8 und 20 Uhr MEZ