Amt der Tiroler Landesregierung Waldschutz – Luftgüte

April 2009

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 3. August 2009

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
\Rightarrow	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3									
Lage der Messstationen und Bestückungsliste										
Kurzübersicht über die Einhaltung von Grenzwerten	5									
Kurzbericht	6									
Stationsvergleich	7									
Monatsauswertung der Stationen										
Höfen – Lärchbichl	10									
Heiterwang – Ort / B179	12									
Imst – Imsterau	15									
Imst – A12	18									
Karwendel West	21									
Innsbruck – Andechsstrasse (Reichenau)	23									
Innsbruck – Fallmerayerstrasse (Zentrum)	26									
Innsbruck – Sadrach	30									
Nordkette	32									
Mutters – Gärberbach A13	35									
Hall in Tirol – Sportplatz	38									
Vomp – Raststätte A12	41									
Vomp – An der Leiten	44									
Zillertaler Alpen	47									
Brixlegg – Innweg	49									
Kramsach – Angerberg	52									
Kundl – A12	55									
Wörgl – Stelzhamerstrasse	58									
Kufstein – Praxmarerstrasse	61									
Kufstein – Festung	63									
Lienz – Amlacherkreuzung	66									
Lienz – Sportzentrum	70									
Beurteilungsunterlagen aus Gesetzen, Verordnungen und Richtlinien	72									
IG-L Überschreitungen										
Auflistung der Überschreitungen nach IG-L	74									

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

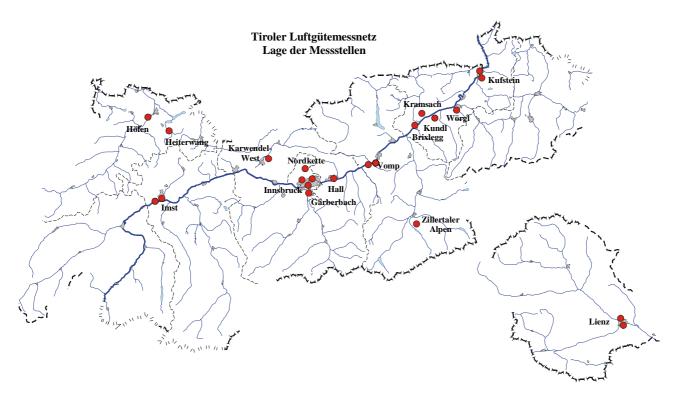
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE												
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО					
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-					
Heiterwang – Ort / B179	985 m	-	•/-	•	•	-	-					
Imst – Imsterau	717 m	-	•/-	•	•	-	-					
Imst – A12	719 m	-	•/-	•	•	-	-					
Karwendel – West	1749 m	-	-/-	-	-	•	-					
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-					
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	-	•					
Innsbruck – Sadrach	678 m	-	-/-	-	-	•	-					
Nordkette	1958 m	-	-/-	•	•	•	-					
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-					
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-					
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-					
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-					
Zillertaler Alpen	1955 m	-	-/-	-	-	•	-					
Brixlegg – Innweg	519 m	•	•/-	-	-	-	-					
Kramsach – Angerberg	602 m	-	•/-	•	•	•	-					
Kundl – A12	507 m	-	-/-	•	•	-	-					
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	-	-					
Kufstein – Praxmarerstrasse	498 m	•	•/-	•	•	-	-					
Kufstein – Festung	550 m	-	-/-	-	-	•	-					
Lienz – Amlacherkreuzung	675 m	•	•/-	•	•	-	•					
Lienz – Sportzentrum	677 m	-	-/-	-	-	•	-					

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten April 2009

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	О3	CO
HÖFEN					ZP	
Lärchbichl		1 1			M	
HEITERWANG				Ö		
Ort / B179						
IM ST				Ö		
Imsterau						
IM ST				Ö		
A12						
KARWENDEL					ZP	
West		1 1			М	
INNSBRUCK				Ö	Р	
Andechsstrasse					М	
INNSBRUCK				Ö	000	
Fallmerayerstrasse						
INNSBRUCK					ΖP	
Sadrach		1			М	
NORDKETTE					ΖP	
					М	
MUTTERS				Ö		
Gärberbach A13						
HALL IN TIROL				Ö		
Sportplatz						
VOMP				Ö		
Raststätte A12						
VOMP				Ö		
An der Leiten						
ZILLERTALER					ΖP	
ALPEN					М	
BRIXLEGG						
Innweg						
KRAMSACH				Ö	ZP	
Angerberg					M	
KUNDL				Ö		
A12						
WÖRGL				Ö		
Stelzhamerstrasse						
KUFSTEIN						
Praxmarerstrasse						
KUFSTEIN					ZP	
Festung					М	
LIENZ				IG Ö		
Amlacherkreuzung				M		
LIENZ				.11	ZP	
					M	
Sportzentrum					IVI	

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
12	Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
	Überschreitung des im IG-L genannten Tageszielwertes von 50µg/m³ für PM10. Der PM10-Tages grenzwert gem.
IP	Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen
	erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
IG	Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der
	Informationsschwelle gemäß Ozongesetz.
,	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle
•	gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A 12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz,
2)	Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den April 2009

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit insgesamt 22 Messstationen. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM10 und PM2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o.a. enthaltenen gesetzlichen Grenz- und Zielwerte österreichischer Gesetze sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie von Staubniederschlagsmessungen sind in den Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Der April 2009 war mit Ausnahme der letzten zwei Tage durchgehend zu warm. Zur Monatshälfte war sogar ein neuer Aprilrekord denkbar, doch die ganz warmen Tage blieben dann doch aus. Somit stand am Monatsende ein Temperaturplus zwischen 2,5 und 4,5 Grad fest, in Osttirol war es sogar "nur" rund 2 Grad zu warm. In Innsbruck wurden satte 22 Tage mit Temperaturen über 20 Grad registriert, Luftfrost gab es im Inntal und Lienzer Becken keinen mehr. Einen massiven Kaltlufteinbruch gab es eigentlich nie, aber auch noch keinen Sommertag (definiert als Tag mit Höchsttemperatur von mindestens 25 Grad). Im Rekordapril 2007 gab es hingegen bereits 12 Tage mit über 25 Grad, und das Monatsmittel lag um noch einmal etwa 1,5 Grad höher.

Der April war deutlich zu trocken. Im Großteil des Landes fielen nur zwischen 25 und 75% der Mengen eines durchschnittlichen Aprils. Nur am Alpenhauptkamm westlich von Brenner und an einzelnen Stationen in Osttirol wurde das Soll erreicht.

In tiefen Lagen gab es keinen Schneefall mehr. In Reutte war es ab 7. April, in Kitzbühel ab dem 8. April aper. In Seefeld und am Brenner war am 14. April Schluss mit der Winterdecke. Danach gab es nur noch zweimal kurzlebige Schneedecken, die aber über 5 cm nicht hinaus kamen.

Der Südwind war stark vertreten. Sechs mal wurden Sturmböen in Innsbruck gemessen.

Es gab überall ein sattes Plus beim Sonnenschein. In Innsbruck gab es in Summe 251 Stunden Sonne, täglich im Schnitt um drei Stunden mehr als normal. Der Rekord aus dem Jahre 2007 mit 304 Stunden blieb aber unangetastet.

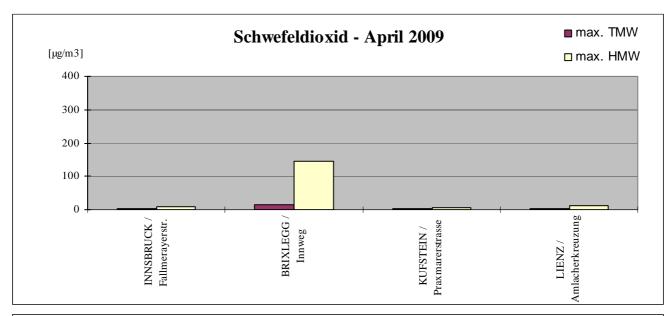
Luftschadstoffübersicht

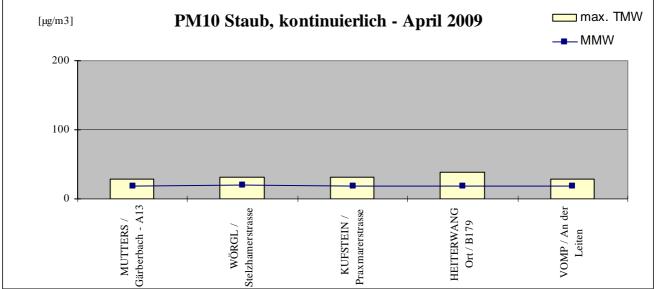
Bei den hauptsächlich im Winter problematischen Schadstoffen PM10 und NO2 hält der fallende Trend weiter an, bei Ozon wurde hingegen ein deutlicher Konzentrationsanstieg festgestellt.

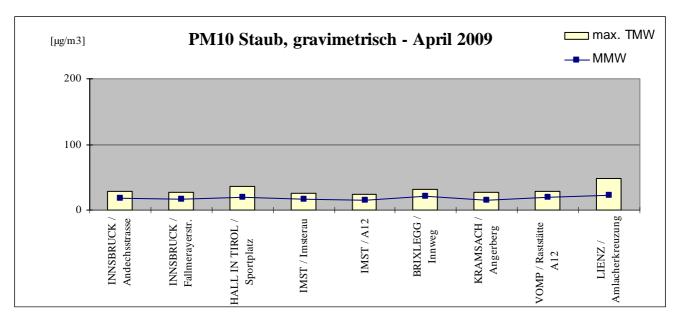
Verantwortlich für den **Ozon**anstieg ist die jahreszeitlich bedingte Zunahme der Sonneneinstrahlung, welche die photochemische Ozonbildung antreibt, aber auch die vermehrte Einmischung von ozonreicherer Luft aus höheren Schichten. Durch das zudem überdurchschnittliche Strahlungsangebot im Berichtsmonat gab es mit Ausnahme der Messstelle INNSBRUCK/Andechsstraße im gesamten Messnetz Zielwertüberschreitungen (120 μ g/m³ als Achtstundenmittelwert gemäß Ozongesetz). An den 3 Bergstationen wurde der Zielwert an 16 – 17 Tagen überschritten. Bei den Talstationen traten lediglich 6 - 10 Überschreitungen auf. Die Auswertung der Messdaten in Hinblick auf die wirkungsbezogenen Immissionsgrenzkonzentrationen zum Schutz des Menschen sowie der Vegetation laut ÖAW (Österreichischen Akademie der Wissenschaften) zeigt an allen 9 Messstellen Überschreitungen.

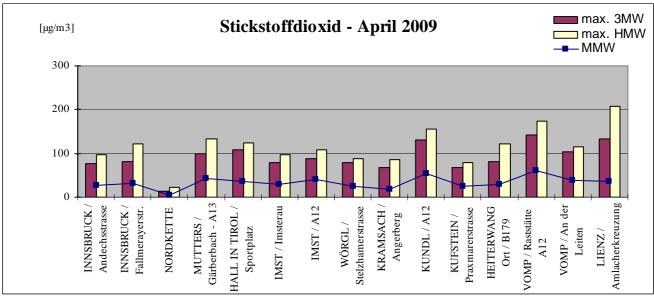
Die **Schwefeldioxid**konzentrationen waren im Berichtsmonat durchgängig gering, nur am Standort BRIXLEGG/Innweg traten einzelne Kurzzeitspitzen auf. Der höchste Halbstundenmittelwert wurde mit 145 μ g/m³ gemessen. Der gesetzliche Grenzwert laut der Zweiten Verordnung gegen forstschädliche Luftverunreinigungen ist mit 0,14 mg/m³ angegeben (einzuhalten von April bis Oktober). Die deswegen notwendige Rundung gem. Ö-NORM A 6403 (Runden von Zahlen; Feb. 1972) ergibt aus dem Messwert von 145 μ g/m³ 0,14 mg/m³; der Grenzwert im Sinne der Verordnung ist somit lediglich erreicht, aber nicht als Überschreitung auszuweisen. Der Grenzwert gemäß IG-L (Immissionsschutzgesetz-Luft) zum Schutz der menschlichen Gesundheit von 200 μ g/m³ wurde jedoch eindeutig eingehalten.

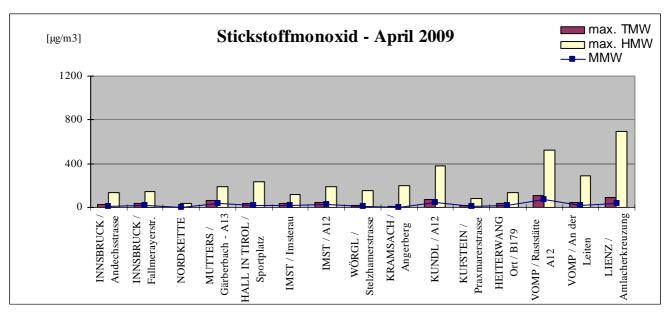
Bei **PM10** wurden keine Grenzwertüberschreitungen des gesetzlichen Tagesgrenzwertes gemäß IG-L (= $50 \,\mu g/m^3$) festgestellt. Die Monatsmittelwerte lagen zwischen $15 \,\mu g/m^3$ (IMST/A12 und KRAMSACH/Angerberg) und $22 \,\mu g/m^3$ (LIENZ/Amlacherkreuzung) auf einem geringen Niveau.

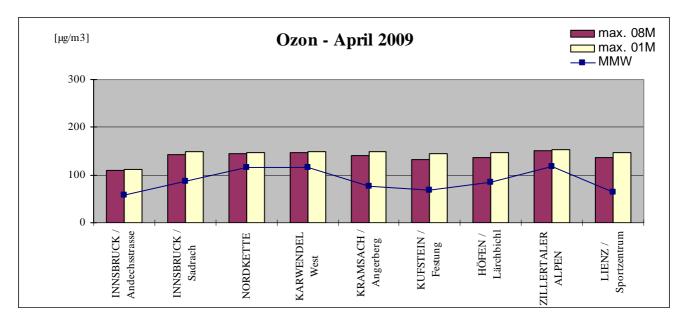

Bei den **Stickoxiden** ergaben sich insgesamt auch nur geringe Belastungen; allerdings führten Straßenarbeiten im Bereich der Amlacherkreuzung in Lienz bei der angrenzenden Messstelle zu hohen Kurzzeitbelastungen.

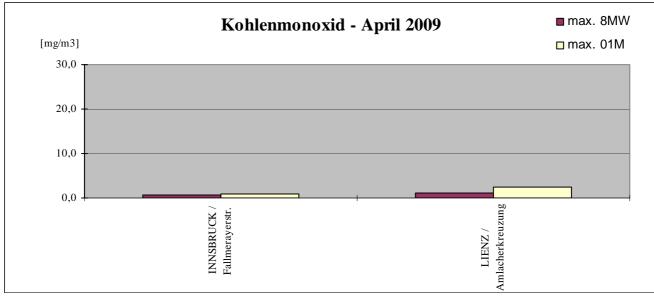

Der höchste Monatsmittelwert bei **Stickstoffmonoxid** wurde an der Messstelle VOMP/Raststätte A12 mit 72 μ g/m³ gemessen. Der höchste Halbstundenmittelwert ergab sich für die Messstelle in Lienz mit 692 μ g/m³ noch deutlich vor VOMP/Raststätte A12 mit 462 μ g/m³. Die Kriterien gemäß VDI-Richtlinie (1000 μ g/m³ als Halbstundenmittelwert sowie 500 μ g/m³ als Tagesmittelwert) wurden jedoch deutlich eingehalten.


Bei **Stickstoffdioxid** kam es am 14.04.09 zu einer Überschreitung des Kurzzeitgrenzwertes gemäß IG-L ($200 \,\mu\text{g/m}^3$ als Halbstundenmittelwert), welche aufgrund der dokumentierten Baustellentätigkeit als eine in absehbarer Zeit nicht wiederkehrende erhöhte Immission einzustufen ist. Der IG-L Zielwert ($80 \,\mu\text{g/m}^3$ als Tagesmittelwert) wurde im gesamten Messnetz eingehalten. Das Luftqualitätskriterium zum Schutz der Vegetation laut ÖAW (Österreichische Akademie der Wissenschaften) wurde an 13 der 15 Messstandorte überschritten, auszuweisen ist jedoch lediglich die Überschreitung an der vegetationsbezogenen Messstelle KRAMSACH/Angerberg.


Bei der Schadstoffkomponente **Kohlenmonoxid** wurden die im IG-L festgesetzten Grenzwerte an den zwei Messstellen deutlich eingehalten.

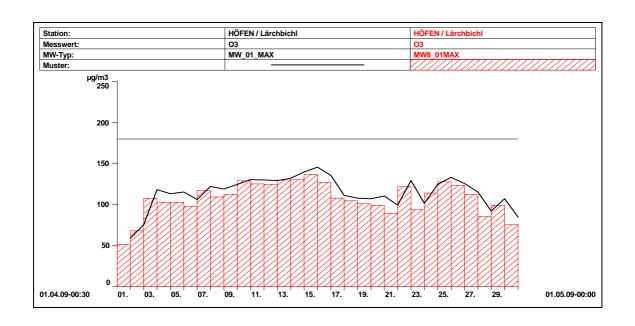

Stationsvergleich





Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu \text{g/m}^3$	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$	$\mu g/m^3$		mg/m³						
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									51	52	59	59	60			
02.									68	68	75	75	76			
03.									108	108	118	118	119			
04.									103	103	113	113	114			
So 05.									103	103	115	115	116			
06.									98	98	106	106	106			
07.									117	117	122	123	123			
08.									109	109	119	119	119			
09.									112	112	125	125	127			
10.									129	129	130	131	131			
11.									125	126	130	130	130			
So 12.									125	125	129	129	129			
13.									130	130	132	135	138			
14.									130	130	140	140	141			
15.									137	141	146	146	146			
16.									127	127	136	136	136			
17.									108	108	111	111	112			
18.									105	105	108	108	108			
So 19.									101	101	107	107	107			
20.									99	99	110	111	112			
21.									89	89	99	99	100			
22.									122	122	129	129	130			
23.									94	94	102	102	102			
24.									114	114	125	125	127			
25.									128	128	133	133	133			
So 26.									123	123	126	126	126			
27.									112	112	115	115	116			
28.									85	85	92	92	94			
29.									99	99	107	107	108			
30.									76	77	85	85	87			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	1.0	1.0	1.6	1.0	1.6	30	8
Verfügbarkeit						97%	
Max.HMW						146	
Max.01-M						146	
Max.3-MW							
Max.08-M							
Max.8-MW						141	
Max.TMW						109	
97,5% Perz.							
MMW						84	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					10	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					21	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: HEITERWANG Ort / B179

	SO2		PM10	PM10	NO		NO2	_			03	_		_	co	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$	μg/m³		mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			19		127	34	59	59								
02.			25		139	42	71	84								
03.			21		62	38	82	98								
04.			35		80	47	89	95								
So 05.			24		31	31	45	58								
06.			22		104	41	57	61								
07.			18		124	41	76	85								
08.			20		93	38	82	84								
09.			26		100	43	75	78								
10.			25		105	45	91	100								
11.			19		86	39	104	122								
So 12.			22		41	32	47	64								
13.			19		35	27	54	56								
14.			38		110	35	76	81								
15.			24		104	32	75	78								
16.			17		46	26	69	78								
17.			6		53	24	60	75								
18.			8		70	21	58	58								
So 19.			10		24	14	23	25								
20.			13		70	19	38	41								
21.			14		92	21	37	41								
22.			21		91	21	54	59								
23.			22		41	34	72	84								
24.			9		55	26	57	59								
25.			10		26	15	33	36								
So 26.			8		15	10	20	22								
27.			11		26	17	29	31								
28.			11		48	22	41	45								
29.			6		56	26	66	67								
30.			6		55	23	48	56								

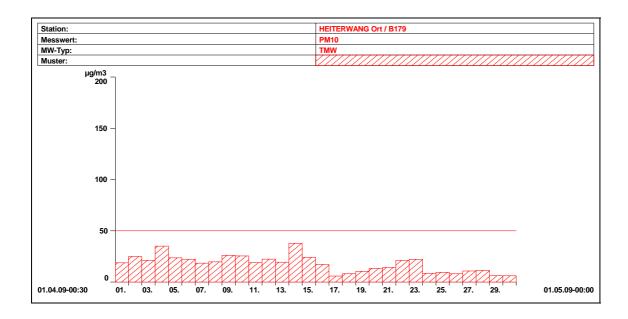
	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		99%		98%	98%		
Max.HMW				139	122		
Max.01-M					104		
Max.3-MW					82		
Max.08-M							
Max.8-MW							
Max.TMW		38		32	47		
97,5% Perz.							
MMW		18		17	29		
Gl.JMW	•				29		

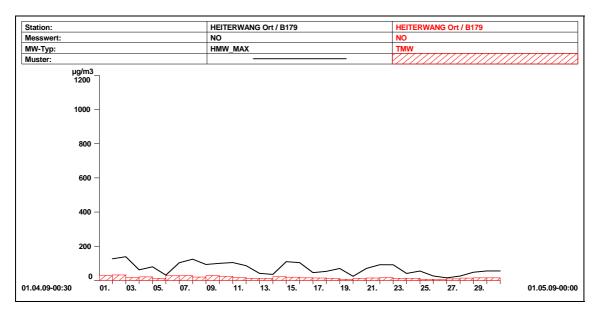
Messstelle: HEITERWANG Ort / B179

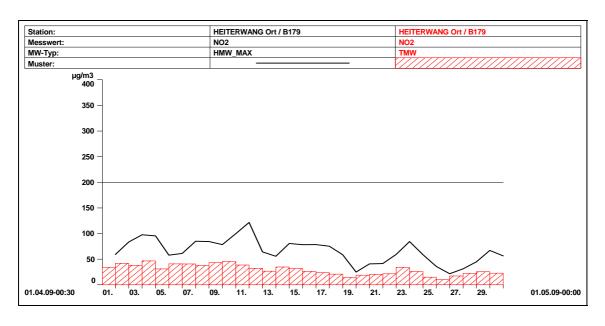
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				11		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		-
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: APRIL 2009 Messstelle: IMST / Imsterau

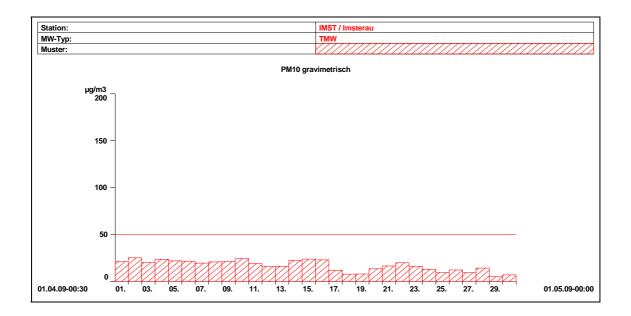
	SC)2	PM10	PM10	NO		NO2		03			СО				
			kont.	grav.	, ,				_						4.0	
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$	l			μg/m³				mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.				21	83	36	64	71								
02.				25	113	39	65	66								
03.				20	92	41	72	76								
04.				24	49	25	55	69								
So 05.				22	28	23	57	64								_
06.				22	96	39	80	96								
07.				20	64	39	68	72								
08.				21	75	41	85	91								
09.				21	92	40	71	72								
10.				24	68	42	61	67								
11.				19	49	29	47	57								
So 12.				16	17	16	52	56								
13.				16	7	14	30	37								
14.				22	49	28	56	63								
15.				24	53	38	64	69								
16.				23	88	39	73	80								
17.				12	54	35	62	69								
18.				8	48	25	50	54								
So 19.				8	14	14	29	37								
20.				13	60	29	49	53								
21.				16	44	21	38	46								
22.				20	61	21	49	54								
23.				16	43	24	49	54								
24.				13	49	30	61	67								
25.				9	32	21	41	44								
So 26.				12	14	22	45	57								
27.				9	66	31	57 67	70								
28. 29.				14	70 54	33		68 63								
30.				5 7	54 76	23	57 65	73								
30.			<u> </u>	1/	76	27	65	/3		<u> </u>	<u> </u>			<u> </u>		

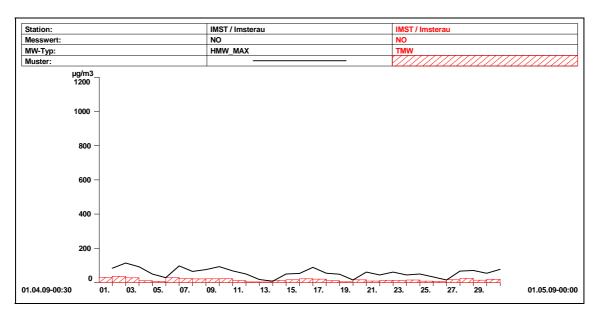
	SO2	PM10	PM10	NO	NO2	03	со
	$\mu g/m^3$	kont. μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
	μg/ПГ	μg/III				μg/III	IIIg/III ^a
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				113	96		
Max.01-M					85		
Max.3-MW					80		
Max.08-M							
Max.8-MW							
Max.TMW			25	35	42		
97,5% Perz.							
MMW		-	17	15	30		
Gl.JMW					37		

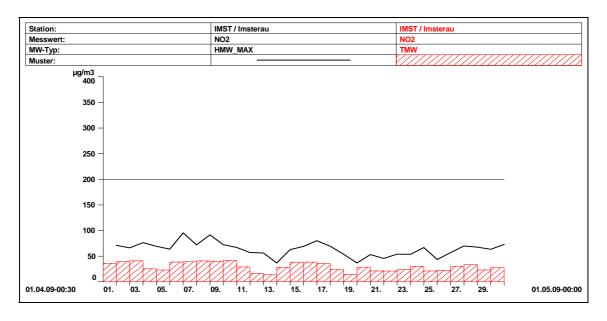
0

Zeitraum: **APRIL 2009** Messstelle: IMST / Imsterau

Anzahl der Tage mit Grenzwertüberschreitungen


		1				
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	О3	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						•
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				4		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

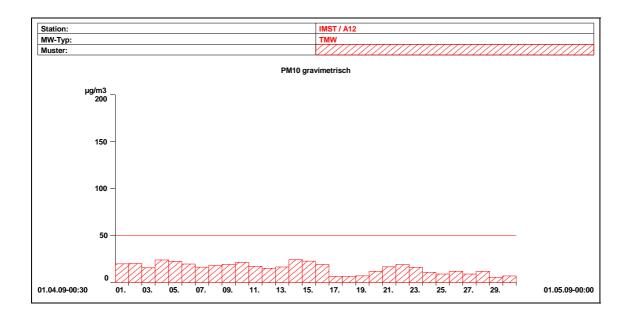
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

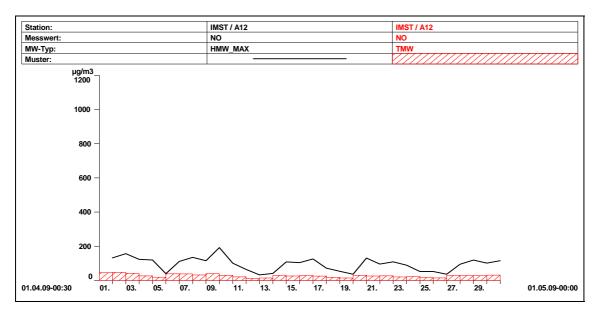
Zeitraum: APRIL 2009 Messstelle: IMST / A12

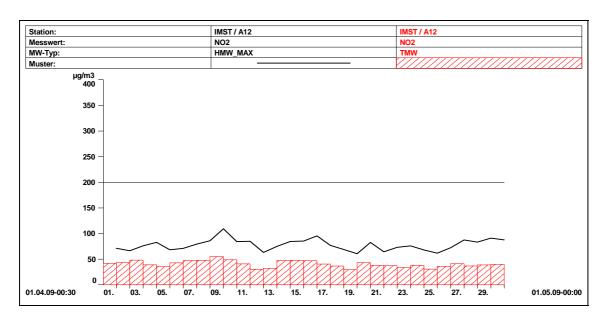
	SC	02	PM10	PM10	NO		NO2				03				CO	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu \text{g/m}^3$	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$				$\mu g/m^3$	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				20	132	42	67	71								
02.				20	156	43	59	66								
03.				16	123	48	68	76								
04.				24	120	39	72	83								
So 05.				23	40	35	63	68								
06.				20	111	43	66	71								
07.				16	135	47	79	79								
08.				18	115	48	84	86								
09.				19	192	55	100	109								
10.				21	101	49	82	84								
11.				17	64	41	78	85								
So 12.				15	32	30	54	63								
13.				16	41	32	68	75								
14.				24	108	47	80	85								
15.				23	104	47	84	85								
16.				19	126	47	91	95								
17.				6	72	40	73	77								
18.				7	54	37	65	69								
So 19.				7	36	29	56	61								
20.				12	131	43	73	83								
21.				17	96	38	62	64								
22.				19	109	37	72	73								
23.				16	89	34	71	76								
24.				11	52	38	62	68								
25.				9	52	31	58	62								
So 26.				12	36	36	57	72								
27.				9	95	41	78	87								
28.				12	119	37	76	83								
29.				5	101	39	87	91								
30.				7	115	40	85	88								

	SO2	PM10 kont.	PM10	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				192	109		
Max.01-M					100		
Max.3-MW					89		
Max.08-M							
Max.8-MW							
Max.TMW			24	47	55		
97,5% Perz.							
MMW			15	27	40		
GLJMW					45		

Zeitraum: APRIL 2009 Messstelle: IMST / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				18		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

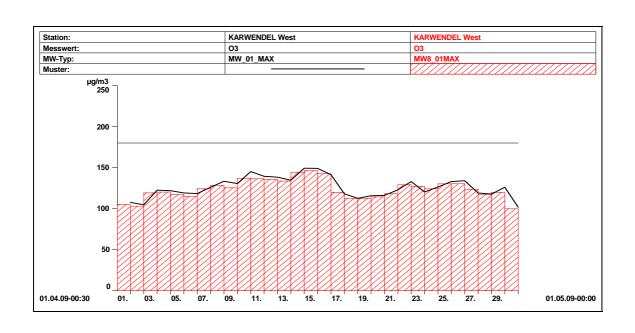
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West

	SC)2	PM10	PM10	NO	_	NO2		_	_	03			_	СО	
	μg	/3	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
	μg		μg/III	μg/III			max	mov	max	mov	max	mov	mov	mov	max	max
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	01-M	max HMW	08-M	max 8-MW	01-M	max 1-MW	max HMW	max 8-MW	01-M	HMW
01.									105	105	108	108	108			
02.									103	103	105	105	105			
03.									119	119	123	123	123			
04.									120	120	122	122	122			
So 05.									117	117	119	119	121			
06.									115	115	118	118	119			
07.									124	124	126	127	127			
08.									128	128	133	133	134			
09.									125	125	131	131	131			
10.									137	137	145	145	150			
11.									136	136	139	139	140			
So 12.									135	135	138	138	139			
13.									134	134	135	135	135			
14.									144	144	149	150	150			
15.									146	146	149	149	149			
16.									142	143	141	142	142			
17.									120	120	118	121	120			
18.									112	112	113	113	113			
So 19.									112	113	116	116	116			
20.									114	114	116	116	117			
21.									118	118	123	123	124			
22.									129	129	133	133	133			
23.									127	128	120	123	123			
24.									124	124	126	127	127			
25.									130	130	133	133	134			
So 26.									130	130	134	134	134			
27.									124	124	119	119	119			
28.									117	117	118	119	119			
29.									120	120	126	126	126			
30.									100	100	102	102	102			

	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						150	
Max.01-M						149	
Max.3-MW							
Max.08-M							
Max.8-MW						146	
Max.TMW						143	
97,5% Perz.							
MMW						116	
Gl.JMW						-	

Messstelle: KARWENDEL West


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					16	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					29	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

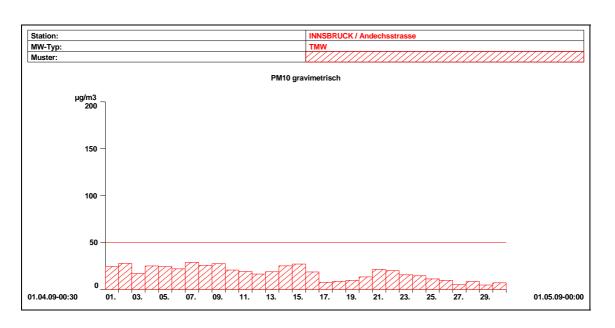
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

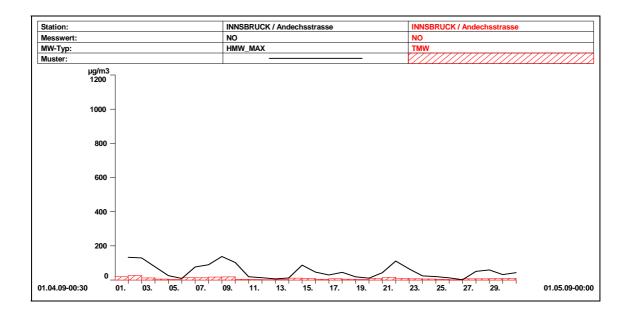
	SC)2	PM10	PM10	NO	_	NO2				03				CO	
			kont.	grav.					_							
	μg/		μg/m³	μg/m³	μg/m³		μg/m³			1	μg/m³				mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	111111	111111	111111	25	133	36	64	66	53	53	75	75	76	0 1/1 //	01 111	111/1//
02.				28	129	44	65	68	48	48	68	68	69			
03.				17	77	32	70	70	79	80	88	88	89			
04.				25	26	34	61	63	80	81	91	91	92			
So 05.				24	9	29	51	54	85	85	91	91	91			
06.				22	76	38	66	66	71	72	81	82	82			
07.				29	90	34	70	71	91	91	96	97	98			
08.				26	138	43	85	88	84	85	95	96	97			
09.				28	103	42	72	73	89	89	98	100	101			
10.				21	19	23	51	58	103	103	105	105	106			
11.				19	14	18	33	35	103	103	107	107	107			
So 12.				16	7	17	30	33	98	98	102	102	103			
13.				19	12	23	43	47	97	97	102	102	104			
14.				25	87	37	80	82	100	100	111	111	111			
15.				27	46	32	81	83	109	110	111	111	111			
16.				19	30	21	80	88	108	108	105	106	106			
17.				8	45	31	79	97	77	79	81	81	81			
18.				9	19	26	44	44	83	83	89	89	92			
So 19.				10	11	22	41	45	79	79	88	88	89			
20.				13	43	31	60	64	76	77	81	81	83			
21.				21	111	34 27	66 61	68	74	74	81	85 98	87 99			
22.				20 16	65 24	34	61	64 64	94 71	94 74	97 75	98 76	77			
23. 24.				15	20	26	40	44	83	83	75 88	88	89			
25.				11	13	26 17	38	44	83 99	99	101	102	102			
So 26.				10	2	6	10	10	105	105	101	110	110			
27.				5	51	18	77	83	91	91	93	93	93			
28.				8	59	23	71	78	92	92	95	95	96			
29.				5	32	29	69	76	65	65	72	73	74			
30.				7	43	32	73	74	53	54	54	55	56			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				138	97	111	
Max.01-M					85	111	
Max.3-MW					77		
Max.08-M							
Max.8-MW						110	
Max.TMW			29	26	44	97	
97,5% Perz.							
MMW			18	9	28	58	
Gl.JMW					38		

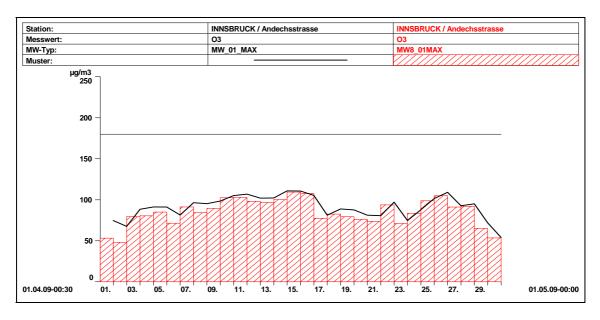

Messstelle: INNSBRUCK / Andechsstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz				
Alarmschwelle			0	
Informationsschwelle			0	
langfristiger Zielwert menschliche Gesundheit			0	
2. VO gegen forstschädliche Luftverunreinigungen				


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				8	27							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	5							
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Fallmerayerstrasse

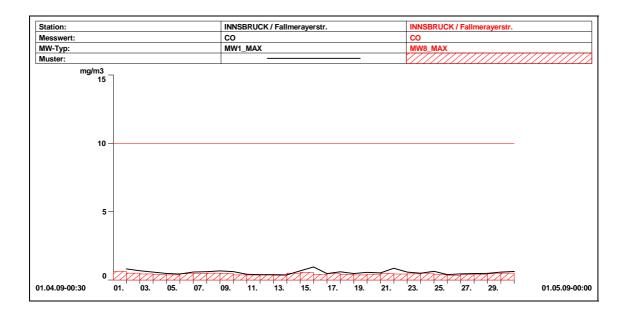
	SC)2	PM10	PM25	NO		NO2		_		03	_			со	
			grav.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	T			$\mu g/m^3$				mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	4	10	24	15	135	42	65	70						0.6	0.8	0.8
02.	3	8	23	10	141	43	72	95						0.5	0.6	0.8
03.	2	3	16	6	54	33	50	62						0.4	0.6	0.9
04.	3	5	24	12	33	34	54	57						0.4	0.5	0.5
So 05.	2	5	21	13	17	23	38	41						0.4	0.4	0.5
06.	2	4	20	12	75	45	67	86						0.5	0.5	0.7
07.	2	5	18	10	91	38	67	70						0.5	0.6	0.7
08.	3	7	23	13	126	52	90	102						0.5	0.6	0.7
09.	2	6	25	14	124	44	93	98						0.5	0.6	0.6
10.	2	3	19	13	24	28	57	62						0.4	0.4	0.5
11.	2	4	18	14	14	19	31	35						0.4	0.4	0.4
So 12.	2	3	16	12	15	15	28	33						0.4	0.4	0.4
13.	2	4	17	11	12	22	34	34						0.3	0.4	0.4
14.	2	5	23	15	82	41	82	88						0.5	0.6	0.7
15.	2	4	27	17	64	40	83	88						0.6	0.9	1.2
16.	2	3	19	11	36	27	68	77						0.4	0.5	0.5
17.	2	4	10	6	103	44	85	122						0.5	0.6	0.7
18.	2	3	7	5	30	24	36	42						0.4	0.5	0.6
So 19.	2	3	7	5	13	21	37	38						0.4	0.5	0.6
20.	2	4	10	5	63	34	59	64						0.4	0.5	0.5
21.	2	4	21	11	64	36	60	67						0.5	0.8	1.0
22.	2	3	22	12	58	36	62	65						0.4	0.5	0.6
23.	2	2	17	11	35	32	58	62						0.4	0.5	0.6
24.	2	3	15	10	79	35	63	76						0.5	0.6	0.7
25.	1	2	9	8	18	16	26	29						0.4	0.4	0.4
So 26.	1	2	8	8	15	8	16	20						0.3	0.4	0.5
27.	1	3	4	3	39	22	75	76						0.4	0.5	0.5
28.	2	2	7	2	37	22	54	68						0.4	0.5	0.5
29.	2	2	5	2	67	33	76	90						0.5	0.5	0.7
30.	2	3	8	4	91	39	73	83						0.5	0.6	0.7

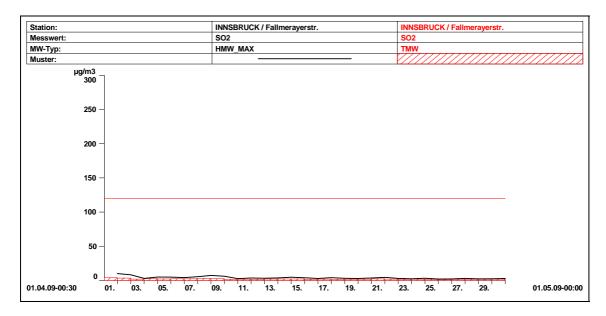
	SO2	PM10	PM25	NO	NO2	03	CO
		grav.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30	30	30	30		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	10			141	122		
Max.01-M					93		0.9
Max.3-MW	8				81		
Max.08-M							
Max.8-MW							0.6
Max.TMW	4	27	17	34	52		
97,5% Perz.	5						
MMW	2	16	10	15	32		0.4
Gl.JMW					43		

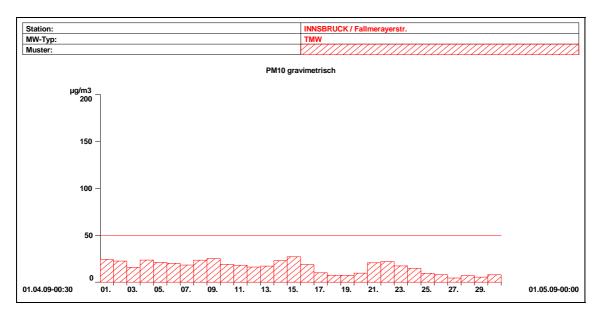
Messstelle: INNSBRUCK / Fallmerayerstrasse

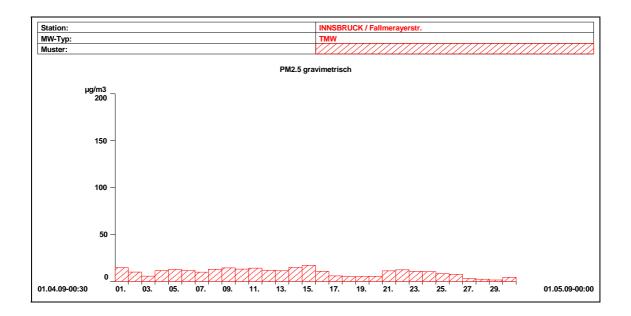
Anzahl der Tage mit Grenzwertüberschreitungen

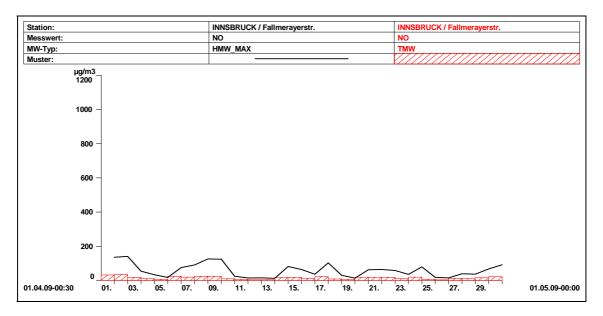
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					

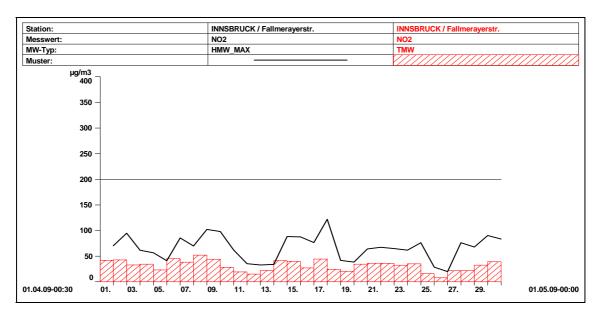

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				10								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1								
ÖAW: SO2-Kriterium für Siedlungsgebiete	0											
VDI-RL 2310: NO-Grenzwert			0									


2. VO gegen forstschädliche Luftverunreinigungen


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

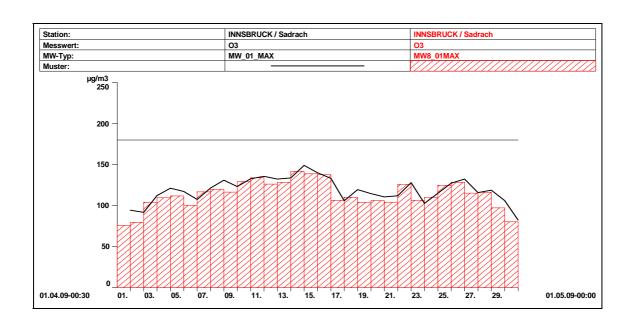

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg/	m³	$\mu g/m^3$	$\mu \text{g/m}^3$	$\mu g/m^3$		$\mu \text{g}/\text{m}^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									76	76	94	95	95			
02.									80	80	92	92	92			
03.									104	104	112	113	113			
04.									110	110	121	121	122			
So 05.									112	112	117	117	118			
06.									100	100	107	107	108			
07.									117	117	121	121	122			
08.									120	120	131	131	131			
09.									116	117	123	124	124			
10.									129	129	133	133	133			
11.									134	134	136	136	136			
So 12.									126	127	132	132	134			
13.									128	128	134	134	134			
14.									142	142	149	149	149			
15.									139	139	140	141	142			
16.									138	138	133	138	137			
17.									106	107	106	108	108			
18.									110	110	119	119	120			
So 19.									104	104	115	115	115			
20.									106	106	111	112	113			
21.									104	105	112	112	115			
22.									126	126	128	129	130			
23.									106	107	103	103	103			
24.									110	110	115	116	117			
25.									125	125	127	127	128			
So 26.									128	128	132	132	134			
27.									115	116	116	116	116			
28.									116	116	119	119	119			
29.									97	98	106	106	106			
30.									80	81	82	82	84			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						149	
Max.01-M						149	
Max.3-MW							
Max.08-M							
Max.8-MW						142	
Max.TMW						120	
97,5% Perz.							
MMW						87	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					10	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					25	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						_

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

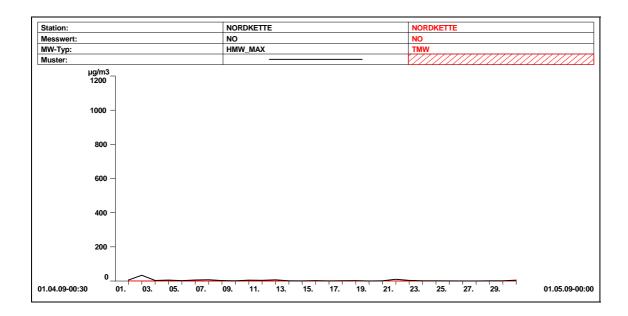
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

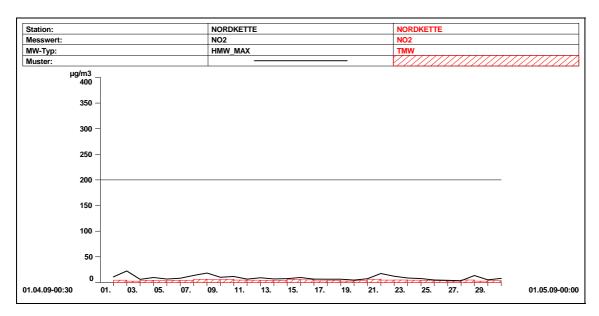
Zeitraum: APRIL 2009 Messstelle: NORDKETTE

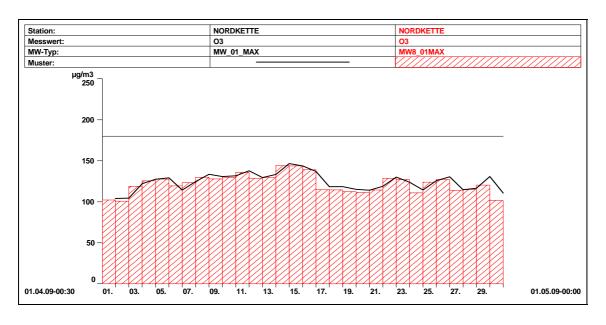
	SC)2	PM10	PM10	NO		NO2			03			_	co	_	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu \text{g/m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					6		8	11	102	102	104	104	104			
02.					34	4	14	22	101	101	104	105	105			
03.					3	3	6	6	119	119	122	122	122			
04.					6	4	9	10	125	125	127	127	128			
So 05.					3	3	5	7	128	127	129	129	130			
06.					6	4	7	8	119	119	114	118	121			
07.					8	4	9	14	123	123	125	125	125			
08.					3	6	15	18	130	130	133	133	134			
09.					2	5	9	10	128	128	131	131	131			
10.					5	6	9	12	130	130	132	132	132			
11.					5	5	6	6	136	136	138	138	138			
So 12.					7	4	8	9	129	129	130	130	130			
13.					2	4	6	7	130	130	133	133	133			
14.					1	4	7	7	144	144	147	147	147			
15.					2	6	9	10	144	144	144	144	144			
16.					1	5	6	6	139	139	137	138	137			
17.					2	3	6	6	115	115	118	118	119			
18.					3	4	6	6	114	114	119	119	119			
So 19.					1	3	4	5	112	112	115	115	115			
20.					1	3	6	7	111	111	114	115	116			
21.					10	6	16	17	114	114	119	119	119			
22.					4	5	9	12	129	129	130	130	130			
23.					2	5	7	9	127	127	124	124	125			
24.					1	4	7	7	111	111	114	114	115			
25.					1	4	5	5	124	124	126	126	126			
So 26.					1	4	4	4	127	127	130	130	131			
27.					1	3	3	3	114	114	115	115	115			
28.					2	5	13	13	115	115	117	117	117			
29.					1	3	5	5	120	121	131	131	132			
30.					6	4	7	8	102	102	111	111	115			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				29	29	30	
Verfügbarkeit				98%	98%	98%	
Max.HMW				34	22	147	
Max.01-M					16	147	
Max.3-MW					14		
Max.08-M							
Max.8-MW						144	
Max.TMW				2	6	140	
97,5% Perz.							
MMW				1	4	116	
GLJMW					4		

Zeitraum: APRIL 2009 Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					16	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	30	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

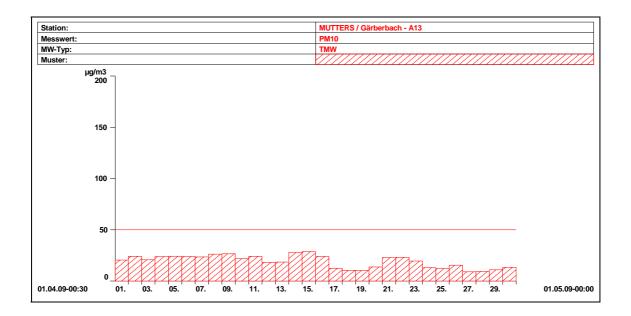
Messstelle: MUTTERS / Gärberbach - A13

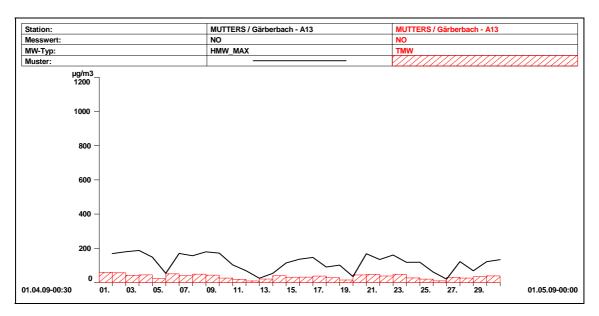
	SC)2	PM10	PM10	NO		NO2		_		03			_	со	_
	μg	/m³	kont. μg/m³	grav. μg/m³	μg/m³	_	μg/m³		-		μg/m³				mg/m³	_
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			20		169	45	100	107								
02.			24		180	45	75	79								
03.			21		187	50	90	94								
04.			24		148	58	105	107								
So 05.			24		53	44	87	94								_
06.			24		170	47	105	108								
07.			24		156	45	79	80								
08.			26		179	57	117	129								
09.			27		171	57	86	91								
10.			22		103	46	106	107								
11.			24		68	34	77	87								
So 12.			18		25	24	40	48								
13.			19		53	40	87	93								
14.			28		114	56	116	124								
15.			29		136	45	93	99								
16.			24		146	44	120	132								
17.			12		90	50	87	91								
18.			10		101	36	56	62								
So 19.			10		34	29	48	54								
20.			14		168	44	97	106								
21.			23		134	53	99	105								
22.			23		160	41	72	73								
23.			20		118	61	97	112								
24.			13		118	40	81	86								
25.			12		61	30	70	74								
So 26.			16		19	17	24	27								
27.			9		122	34	88	100								
28.			9		68	34	63	68								
29.			11		121	45	87	89								
30.			13		133	49	104	111								

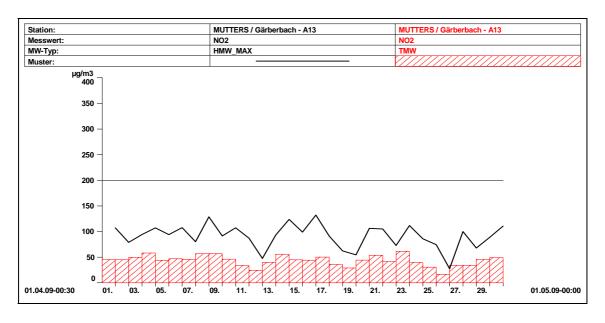
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				187	132		
Max.01-M					120		
Max.3-MW					100		
Max.08-M							
Max.8-MW							
Max.TMW		29		59	61		
97,5% Perz.							
MMW		19		34	43		
GLJMW					49		

Messstelle: MUTTERS / Gärberbach - A13

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		


Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)							
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				24			
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1			
ÖAW: SO2-Kriterium für Siedlungsgebiete							
VDI-RL 2310: NO-Grenzwert			0				


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

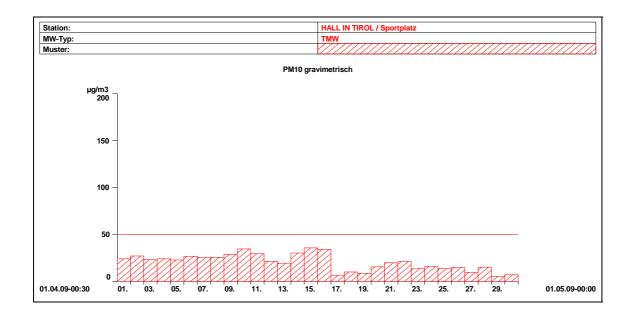
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

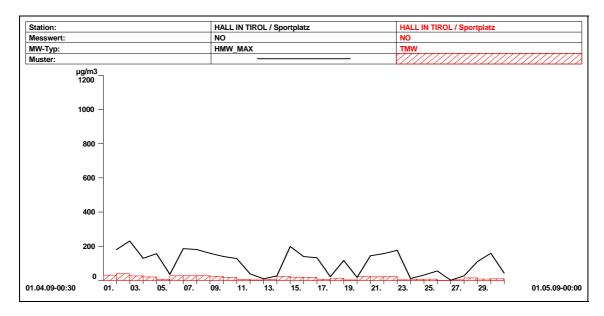
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad HALL\ IN\ TIROL\ /\ Sportplatz$

	SC)2	PM10	PM10	NO		NO2	_	-		03	_		_	co	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				24	180	36	60	64								
02.				27	231	45	78	82								
03.				23	129	50	76	78								
04.				24	157	41	74	78								
So 05.				23	36	34	58	64								
06.				27	186	47	73	82								
07.				26	181	51	100	101								
08.				26	159	49	91	101								
09.				29	140	50	90	97								
10.				35	128	43	89	93								
11.				30	39	33	90	101								
So 12.				22	10	35	70	81								
13.				19	26	36	93	95								
14.				30	199	46	92	92								
15.				36	140	42	92	97								
16.				34	133	38	117	123								
17.				7	22	32	70	76								
18.				10	117	27	49	54								
So 19.				9	18	20	57	61								
20.				16	145	41	85	93								
21.				20	157	34	62	66								
22.				21	176	35	71	72								
23.				14	11	30	61	69								
24.				16	32	30	64	73								
25.				14	55	34	63	67								
So 26.				15	1	10	27	36								
27.				10	27	24	55	82								
28.				15	110	32	88	88								
29.				6	159	30	70	78								
30.				7	43	31	62	65								

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				231	123		
Max.01-M					117		
Max.3-MW					108		
Max.08-M							
Max.8-MW							
Max.TMW			36	39	51		
97,5% Perz.		•				·	
MMW		•	20	16	36		
Gl.JMW		•			42		


Messstelle: HALL IN TIROL / Sportplatz


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	le)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				17		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

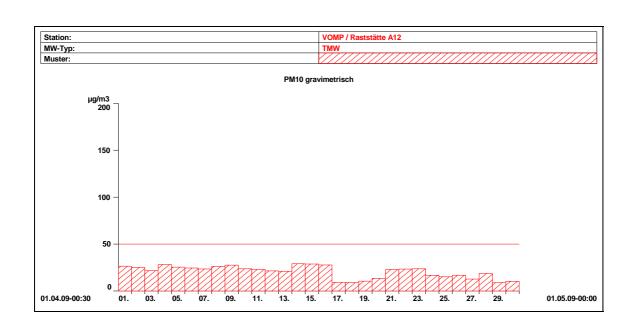
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

	SO)2	PM10 kont.	PM10	NO	_	NO2				03		_		со	
	μg	/m³	μg/m ³	grav. μg/m³	μg/m³	_	$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				26	352	55	96	109								
02.				25	526	61	123	148								
03.				22	326	65	105	111								
04.				28	399	66	117	137								
So 05.				25	82	47	77	85								
06.				25	425	60	119	128								
07.				23	456	68	130	141								
08.				26	490	70	144	160								
09.				28	444	74	153	155								
10.				24	200	73	118	124								
11.				23	244	61	133	141								
So 12.				21	62	47	83	92								
13.				21	87	59	118	130								
14.				29	395	77	155	164								
15.				29	380	80	145	149								
16.				28	361	69	146	157								
17.				9	277	64	137	161								
18.				9	293	43	74	114								
So 19.				11	81	41	99	101								
20.				13	379	56	115	120								
21.				23	454	71	129	132								
22.				23	426	69	138	155								
23.				24	235	76	130	138								
24.				17	309	58	135	157								
25.				15	337	55	101	107								
So 26.				17	109	39	108	110								
27.				13	304	52	143	156								
28.				19	475	61	168	174								
29.				9	289	67	127	131								
30.				10	400	70	126	127								

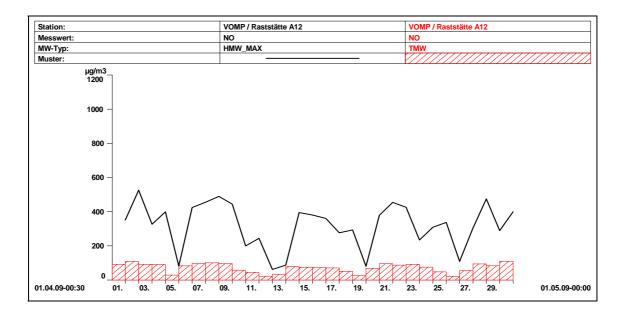
	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.		/ 2		/ 2
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				526	174		
Max.01-M					168		
Max.3-MW					143		
Max.08-M							
Max.8-MW							
Max.TMW			29	110	80		
97,5% Perz.	•						
MMW			20	72	62		·
GLJMW					67		

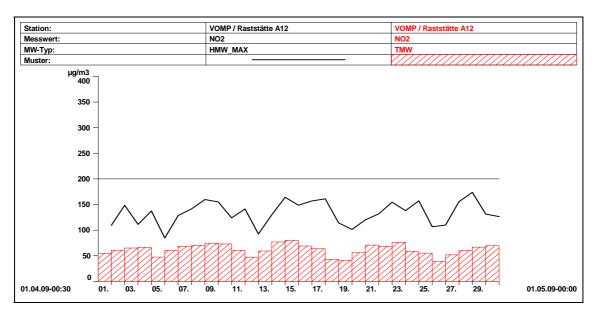
APRIL 2009 Zeitraum:


Messstelle: VOMP / Raststätte A12

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz												
Alarmschwelle												
Informationsschwelle												
langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen												


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1									
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert			0										


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

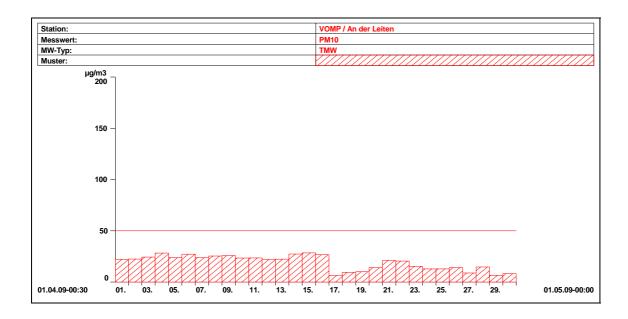
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

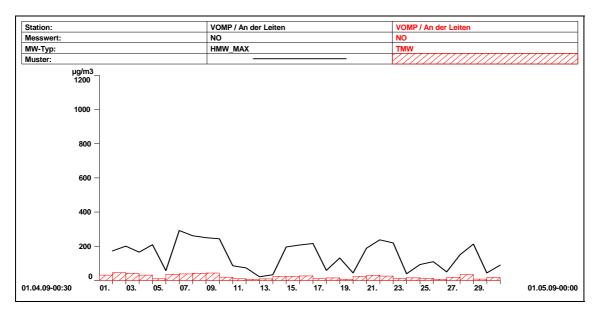
Messstelle: VOMP / An der Leiten

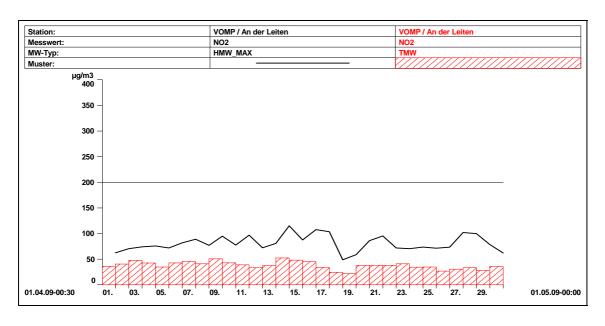
	SC)2	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.												
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.			22		173	36	56	62								
02.			22		200	41	66	70								
03.			24		166	48	70	74								
04.			28		209	42	70	76								
So 05.			24		58	35	68	72								
06.			27		292	43	71	82								
07.			24		261	45	89	89								
08.			25		250	41	75	77								
09.			26		244	51	91	95								
10.			23		86	43	70	77								
11.			24		73	39	93	97								
So 12.			22		21	33	66	72								
13.			22		33	37	79	81								
14.			27		196	52	108	115								
15.			28		207	48	81	88								
16.			27		216	45	100	108								
17.			6		59	34	81	103								
18.			9		131	24	43	49								
So 19.			10		44	22	58	59								
20.			14		188	38	70	86								
21.			21		237	38	73	95								
22.			20		219	38	64	72								
23.			15		39	41	66	70								
24.			13		93	34	66	74								
25.			13		110	35	67	71								
So 26.			14		50	27	70	73								
27.			9		150	30	97	102								
28.			15		213	33	97	100								
29.			7		44	28	77	79								
30.			8		90	36	61	62]				

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				292	115		
Max.01-M					108		
Max.3-MW					103		
Max.08-M							
Max.8-MW							
Max.TMW		28		45	52		
97,5% Perz.							
MMW		19		22	38		
Gl.JMW					43		

Messstelle: VOMP / An der Leiten


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				19		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

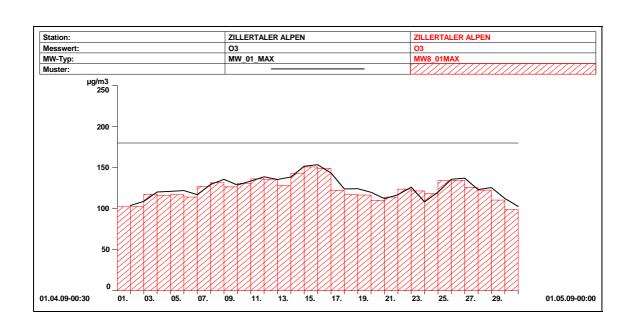
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN

	SC)2	PM10	PM10	NO		NO2		_		03				CO	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³		μg/m³			I			mg/m³	I
T	TMANA	max	TMANA	TMANA	max	TMAXI	max	max	max	max	max	max	max HMW	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW		8-MW	01-M	HMW
01.									102	102	104	104	104			
02. 03.									102 117	102 117	109 120	109 120	109 120			
04.									117	117	120	120	120			
So 05.									117	117	121	121	123			
06.									114	114	117	117	118			
07.									127	127	129	129	130			
08.									132	132	136	137	138			
09.									126	127	129	129	129			
10.									131	131	134	134	134			
11.									136	136	139	139	139			
So 12.									136	136	136	136	136			
13.									128	128	139	139	139			
14.									143	143	152	152	153			
15.									151	151	154	154	154			
16.									149	150	143	145	144			
17.									122	123	124	125	126			
18.									117	117	124	124	124			
So 19.									117	117	120	120	121			
20.									110	110	112	112	113			
21.									114	114	117	117	118			
22.									124	124	126	129	130			
23.									122	123	108	113	112			
24.									118	118	120	120	120			
25.									134	134	136	136	136			
So 26.									135	135	137	137	138			
27.									126	126	123	124	124			
28.									123	123	126	126	126			
29.									110	110	112	114	114			
30.									99	99	103	103	103			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						154	
Max.01-M						154	
Max.3-MW							
Max.08-M							
Max.8-MW						151	
Max.TMW						150	
97,5% Perz.							
MMW						117	
GLJMW							

Messstelle: ZILLERTALER ALPEN


Anzahl der Tage mit Grenzwertüberschreitungen

	200	77.540 1)		2704		~~
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz				_		
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					17	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					29	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
		1		1		

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

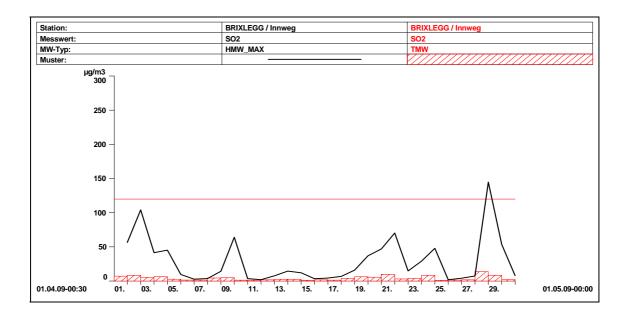
Messstelle: BRIXLEGG / Innweg

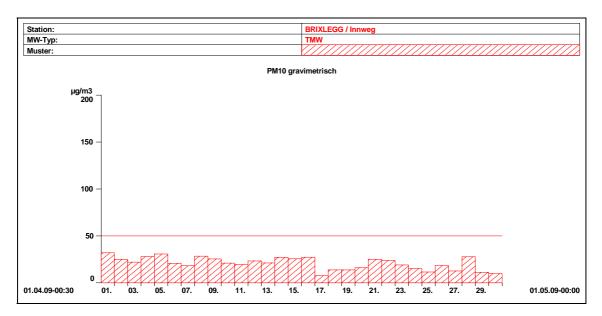
	SC)2	PM10	PM10	NO	_	NO2		_		03	_			СО	
	_		kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				μg/m³	I			mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	7	57		32												
02.	8	104		25												
03.	5	41		22												
04.	6	45		28												
So 05.	3	10		31							_					
06.	1	3		21												
07.	1	4		18												
08.	4	14		28												
09.	5	64		25												
10.	1	4		21												
11.	1	2		19												
So 12.	2	8		23												
13.	3	15		21												
14.	2	12		27												
15.	1	3		26												
16.	2	4		27												
17.	1	7		8												
18.	4	16		14												
So 19.	6	37		14												
20.	6	47		16												
21.	10	70		25												
22.	3	15		24												
23.	4	29		19												
24.	8	48		15												
25.	1	2		12												
So 26.	1	4		18												
27.	2	7		13												
28.	14	145		28												
29.	8	54		11												
30.	2	8		10												

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage	30		30				
Verfügbarkeit	98%		100%				
Max.HMW	145						
Max.01-M							
Max.3-MW	54						
Max.08-M							
Max.8-MW							
Max.TMW	14		32				
97,5% Perz.	26						
MMW	4		21		·		·
Gl.JMW							

Messstelle: BRIXLEGG / Innweg

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	0				
Zielwerte menschliche Gesundheit		0				
Zielwerte Ökosysteme, Vegetation	0					
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				


(OAW = Osterreichische Akademie der Wissenschaften, VDI R	achuimi	e)		
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				
ÖAW: SO2-Kriterium für Siedlungsgebiete	0			
VDI-RL 2310: NO-Grenzwert				


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

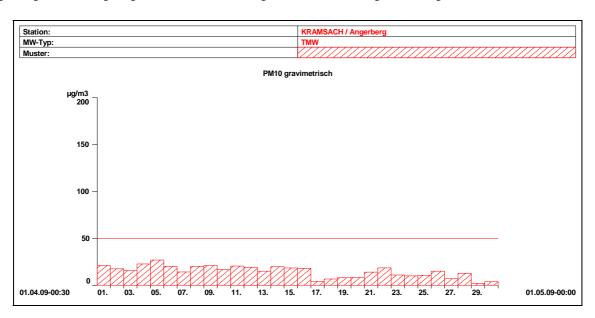
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KRAMSACH / Angerberg

	SC	02	PM10	PM10	NO		NO2		-		03				co	
			kont.	grav.	/ 2		, 2				, 2				/ 2	
	μg	I	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	l			mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.				21	46	27	34	37	51	51	53	56	56			
02.				18	81	21	42	46	81	81	91	91	92			
03.				16	52	22	50	52	102	102	116	116	116			
04.				23	47	25	56	58	102	102	113	114	114			
So 05.				27	10	16	28	31	111	111	119	119	119			
06.				20	23	21	40	41	92	92	105	107	109			
07.				14	23	18	42	44	116	116	125	125	126			
08.				20	194	24	79	85	107	108	119	119	120			
09.				21	70	23	55	61	117	117	125	125	125			
10.				17	90	20	66	72	128	129	133	133	133			
11.				20	13	13	28	33	133	134	135	135	135			
So 12.				19	5	10	23	24	126	127	129	129	132			
13.				15	6	10	25	34	128	129	133	133	134			
14.				20	17	15	45	52	138	139	143	143	144			
15.				18	10	16	38	39	141	141	149	149	149			
16.				18	104	19	84	85	125	127	132	133	133			
17.				4	8	13	28	31	100	101	97	98	102			
18.				7	24	14	35	36	101	101	111	111	111			
So 19.				8	20	11	22	27	99	99	103	104	104			
20.				8	34	14	46	48	101	101	106	107	108			
21.				14	81	18	53	53	101	101	113	114	115			
22.				18	31	17	43	43	112	112	119	120	123			
23.				11	2	14	25	32	106	107	94	95	98			
24.				10	11	16	34	37	92	92	99	99	100			
25.				11	9	10	27	30	129	129	133	133	134			
So 26.				15	12	11	27	31	123	123	127	128	128			
27.				7	55 27	15	62 44	68	113	113	110	110	110			
28.				13	27	17		51	96	96	81	91	89			
29.				2	5	11	35	36	84	84	92	92	93			
30.]	4	5	15	25	32	68	71	70	70	72			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				194	85	149	
Max.01-M					84	149	
Max.3-MW					67		
Max.08-M							
Max.8-MW						141	
Max.TMW			27	11	27	106	
97,5% Perz.							
MMW			15	4	17	77	
Gl.JMW					25		

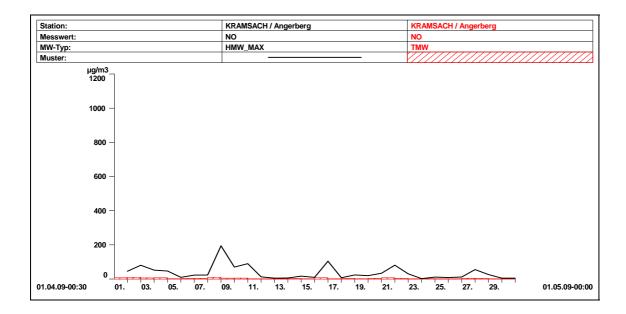
Messstelle: KRAMSACH / Angerberg

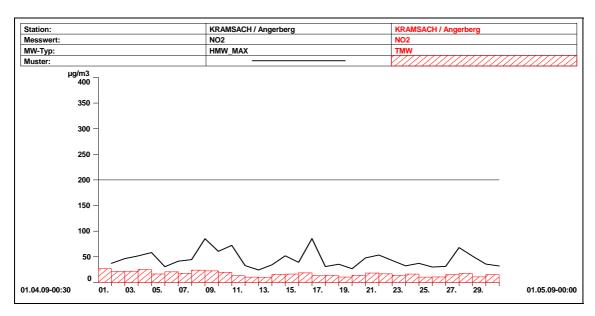

Anzahl der Tage mit Grenzwertüberschreitungen

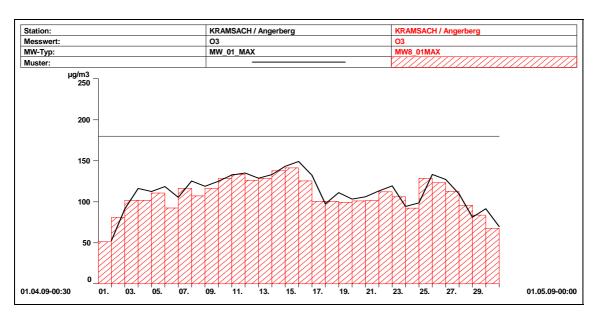
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					9	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2	29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	22	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert


0




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

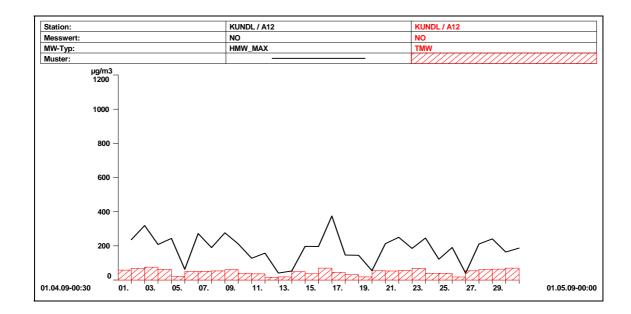
Zeitraum: APRIL 2009 Messstelle: KUNDL / A12

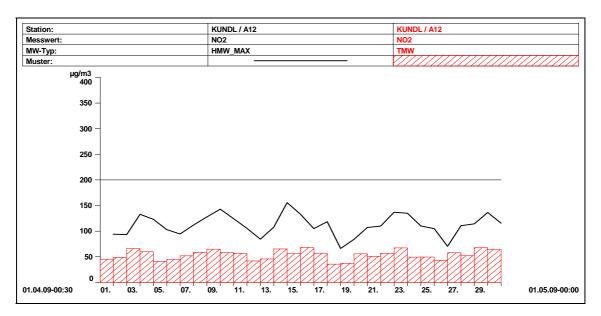
	SC)2	PM10	PM10	NO		NO2				03				СО	
		, ,	kont.	grav.	/ 2	_	, 2								/ 2	
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$	l			μg/m³				mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.					236	45	88	94								
02.					319	49	83	93								
03.					208	66	119	133								
04.					244	60	109	123								
So 05.					63	41	93	103								
06.					272	45	93	94								
07.					190	52	108	112								
08.					277	59	127	128								
09.					211	65	134	143								
10.					127	58	124	124								
11.					157	57	105	105								
So 12.					41	42	78	84								
13.					53	46	85	108								
14.					197	65	143	156								
15.					196	56	113	133								
16.					375	68	103	105								
17.					146	57	110	119								
18.					145	36	64	66								
So 19.					55	37	77	84								
20.					213	56	97	107								
21.					250	51	102	110								
22.					185	57	120	137								
23.					246	67	111	135								
24.					122	49	104	110								
25.					191	49	94	105								
So 26.					40	43	59	70								
27.					211	58	110	111								
28.					241	52	109	114								
29.					164	68	119	136								
30.					187	64	97	116								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30		
Verfügbarkeit				98%	98%		
Max.HMW				375	156		
Max.01-M					143		
Max.3-MW					130		
Max.08-M							
Max.8-MW							
Max.TMW				75	68		
97,5% Perz.							
MMW			-	48	54		
Gl.JMW					57		

Zeitraum: **APRIL 2009** Messstelle: KUNDL / A12

Anzahl der Tage mit Grenzwertüberschreitungen


D (1)	COC	D3 (40 1)	NO	NOC	0.2	GO.
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

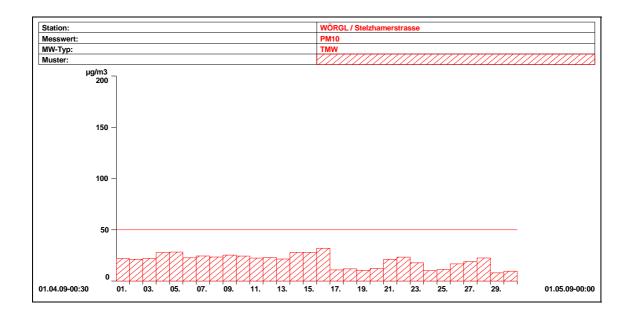
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

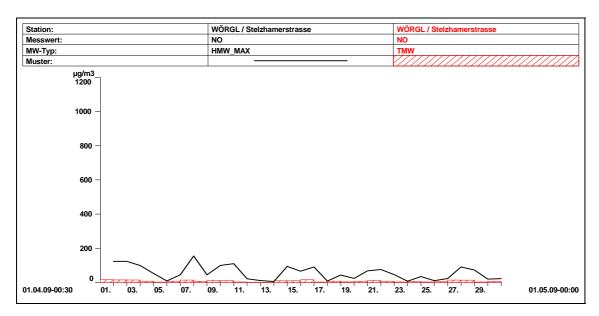
Messstelle: WÖRGL / Stelzhamerstrasse

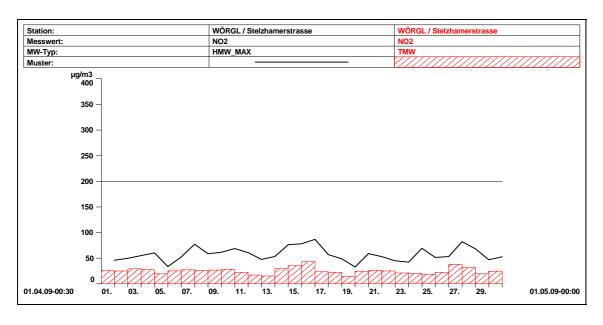
	SC)2	PM10	PM10	NO		NO2		-		03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$				$\mu g/m^3$				mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			22		123	26	43	46								
02.			21		123	25	49	50								
03.			22		99	29	55	55								
04.			28		52	28	58	60								
So 05.			28	_	8	19	31	34	_					_		
06.			23		45	25	52	52								
07.			24		155	27	70	77								
08.			23		45	26	57	59								
09.			25		100	27	59	62								
10.			24		110	28	67	69								
11.			22		21	22	56	61								
So 12.			23		11	17	41	48								
13.			21		5	15	41	53								
14.			28		94	29	76	76								
15.			28		66	35	77	78								
16.			32		91	43	82	87								
17.			11		8	24	52	57								
18.			12		43	22	45	49								
So 19.			10		23	14	31	33								
20.			12		67	25	56	59								
21.			21		76	26	52	53								
22.			23		45	25	43	45								
23.			18		7	21	37	42								
24.			10		34	20	59	69								
25.			11		11	19	45	51								
So 26.			17		23	22	50	53								
27.			19		90	38	80	82								
28.			22		72	32	68	68								
29.			8		19	20	39	47								
30.			10		22	25	47	53								

	002	D3/10	D3/10	NO	NOA	02	CO
	SO2	PM10	PM10	NO	NO2	О3	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				155	87		
Max.01-M					82		
Max.3-MW					79		
Max.08-M							
Max.8-MW							
Max.TMW		32		16	43		
97,5% Perz.	•						
MMW		20		8	25		
GLIMW					32		

Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

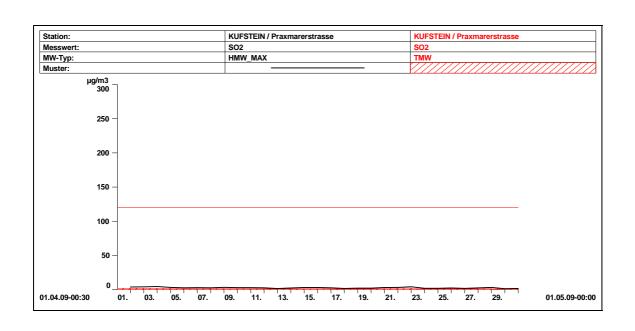
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KUFSTEIN / Praxmarerstrasse

Tag Max Max		SC)2	PM10	PM10	NO		NO2		03					со			
Tag			, ,	kont.	grav.	/ 2	_	/ 2								/ 2		
Tag		μg		μg/m³	μg/m³							1						
01. 2 4 22 74 26 39 43 02. 2 4 22 85 32 48 51 03. 2 5 19 71 28 66 69 04. 2 3 31 43 26 60 60 So 05. 1 3 24 13 18 27 31 06. 1 3 21 44 28 55 57 07. 1 3 22 51 31 62 64 08. 2 3 23 47 24 58 60 09. 1 3 22 43 24 50 54 10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 14 26 32 14. 1 3 23	Tag	TMW		TMW	TMW		TMW											
02. 2 4 22 85 32 48 51 03. 2 5 19 71 28 66 69 04. 2 3 31 43 26 60 60 80.05. 1 3 24 113 18 27 31 06. 1 3 21 44 28 55 57 07. 1 3 22 51 31 62 64 08. 2 3 23 47 24 58 60 10. 1 3 22 43 24 50 54 11. 1 3 22 43 24 50 54 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 14 26 32 14. 1 3 23 39 34 70 72 17. 1 2 6		2	4	22		74	26	39	43									
04. 2 3 31 43 26 60 60 So 05. 1 3 24 13 18 27 31 06. 1 3 21 44 28 55 57 07. 1 3 22 51 31 62 64 08. 2 3 23 347 24 58 60 09. 1 3 22 43 24 50 54 10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 23 39 34 70 72 17. 1 2 6			4					48										
So 05. 1 3 24 13 18 27 31 06. 1 3 21 44 28 55 57 07. 1 3 22 51 31 62 64 08. 2 3 23 47 24 58 60 09. 1 3 22 43 24 50 54 10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 </td <td>03.</td> <td>2</td> <td>5</td> <td>19</td> <td></td> <td>71</td> <td>28</td> <td>66</td> <td>69</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	03.	2	5	19		71	28	66	69									
06. 1 3 21 44 28 55 57 07. 1 3 22 51 31 62 64 08. 2 3 23 47 24 58 60 09. 1 3 221 56 33 58 69 11. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 <t< td=""><td>04.</td><td>2</td><td>3</td><td>31</td><td></td><td>43</td><td>26</td><td>60</td><td>60</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	04.	2	3	31		43	26	60	60									
07. 1 3 22 51 31 62 64 08. 2 3 23 47 24 58 60 09. 1 3 22 43 24 50 54 10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 22 12 22 34 20. 1 3 12 <td< td=""><td>So 05.</td><td>1</td><td>3</td><td>24</td><td></td><td>13</td><td>18</td><td>27</td><td>31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	So 05.	1	3	24		13	18	27	31									
08. 2 3 23 47 24 58 60 09. 1 3 22 43 24 50 54 10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 21. 2 3 19 <	06.	1	3	21		44	28	55	57									
09. 1 3 22 43 24 50 54 10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 21. 2 3 19 <		1	3	22		51	31	62	64									
10. 1 3 21 56 33 58 69 11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 <	08.	2	3	23		47	24	58	60									
11. 1 3 20 58 24 63 66 So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 23. 1 2 11 20 27 47 50 24. 1 2 14 33 29 46 49 So 26. 1 2 14 </td <td></td> <td>1</td> <td>3</td> <td>22</td> <td></td> <td>43</td> <td>24</td> <td></td>		1	3	22		43	24											
So 12. 1 2 21 13 16 24 30 13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 23. 1 2 11 20 27 47 50 24. 1 2 14 33 <		1																
13. 1 2 22 13 14 26 32 14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 14 33 29 46 49 So 26. 1 2 14 <																		
14. 1 3 24 46 26 62 64 15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 28. 1 3 14 <		1	2															
15. 1 3 25 58 33 71 78 16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 16 20 36 37 27. 1 3 12 33 33 33 71 78 28. 1 3																		
16. 1 3 23 39 34 70 72 17. 1 2 6 26 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18																		
17. 1 2 6 19 48 56 18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
18. 1 2 9 32 16 36 38 So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 16 20 36 37 So 26. 1 2 14 16 20 36 37 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
So 19. 1 2 9 22 12 22 34 20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
20. 1 3 12 42 19 48 52 21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
21. 2 3 19 55 30 53 63 22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
22. 2 4 23 52 25 52 52 23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
23. 1 2 11 20 27 47 50 24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
24. 1 2 12 40 25 46 48 25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41							_											
25. 1 2 14 33 29 46 49 So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
So 26. 1 2 14 16 20 36 37 27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
27. 1 3 12 33 33 71 78 28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
28. 1 3 14 42 25 71 76 29. 1 1 4 9 18 38 41																		
29. 1 1 4 9 18 38 41																		
	30.	1	2	8		23	27	56 54	60									

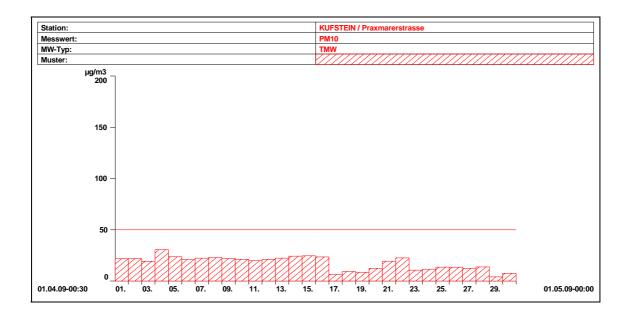
	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30		30	30		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	5			85	78		
Max.01-M					71		
Max.3-MW	4				68		
Max.08-M							
Max.8-MW							
Max.TMW	2	31		20	34		
97,5% Perz.	3						
MMW	1	18		8	25		
Gl.JMW					30		

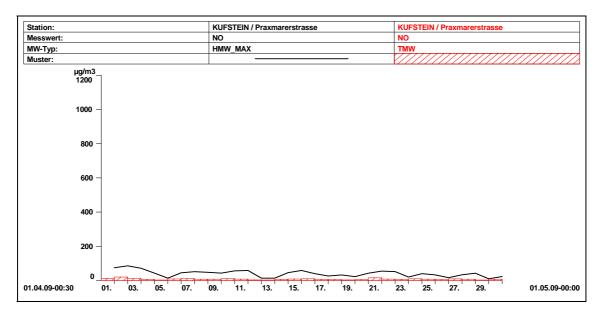
Messstelle: KUFSTEIN / Praxmarerstrasse

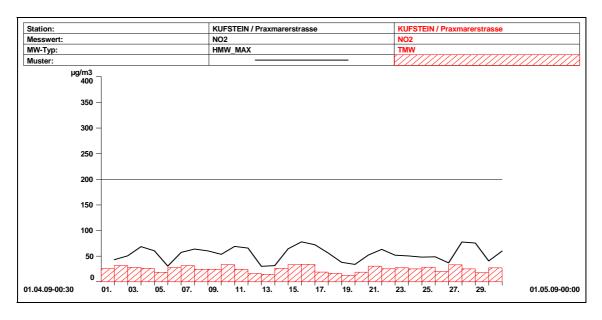

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

Ozongesetz													
Alarmschwelle													
Informationsschwelle													
langfristiger Zielwert menschliche Gesundheit													
2. VO gegen forstschädliche Luftverunreinigungen	0/0												

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0									
ÖAW: SO2-Kriterium für Siedlungsgebiete	0												
VDI-RL 2310: NO-Grenzwert			0			_							


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

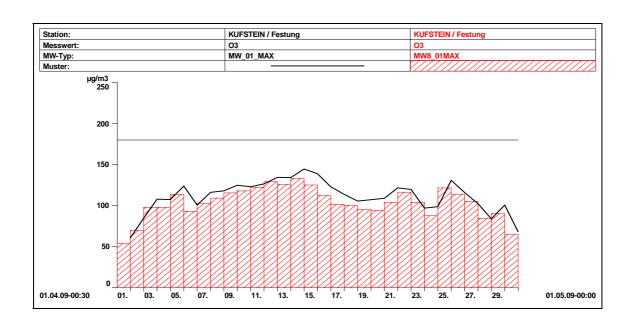


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KUFSTEIN / Festung

	SC)2	PM10	PM10	NO		NO2				03	_			CO	
		_	kont.	grav.												
	μg/	m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									54	54	61	62	64			
02.									70	70	85	86	87			
03.									98	99	108	108	108			
04.									98	99	107	109	110			
So 05.									114	114	124	124	124			
06.									93	97	101	104	105			
07.									103	103	116	117	119			
08.									109	109	118	118	118			
09.									115	115	125	125	126			
10.									118	118	123	123	124			
11.									122	123	126	127	127			
So 12.									129	129	134	136	136			
13.									126	125	134	134	135			
14.									133	133	145	145	145			
15.									125	125	139	139	139			
16.									112	112	123	123	123			
17.									101	101	114	114	115			
18.									100	100	106	106	106			
So 19.									95	95	107	107	108			
20.									94	94	109	110	110			
21.									104	104	122	122	124			
22.									116	116	120	121	123			
23.									104	105	97	98	100			
24.									88	88	99	99	99			
25.									121	122	131	131	132			
So 26.									114	114	116	117	118			
27.									105	106	102	103	104			
28.									85	83	84	84	84			
29.									90	90	101	101	101			
30.									65	66	68	68	70			


	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						145	
Max.01-M						145	
Max.3-MW							
Max.08-M							
Max.8-MW						133	
Max.TMW						93	
97,5% Perz.							
MMW		-	, in the second			68	
Gl.JMW	_						

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					6	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					18	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SO)2	PM10	PM10	NO		NO2	_	_	_	03			_	CO	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	3		23	234	31	67	83						0.8	1.1	1.3
02.	2	4		20	263	44	71	78						1.0	1.2	1.3
03.	1	3		30	228	35	64	77						0.8	1.1	1.3
04.	1	2		27	79	28	51	53						0.6	0.9	1.0
So 05.	1	1		20	47	24	45	51						0.6	0.7	0.7
06.	1	3		29	109	38	71	73						0.6	0.8	0.9
07.	1	3		29	79	38	76	78						0.7	0.8	0.9
08.	1	2		29	95	35	62	66						0.6	0.7	0.7
09.	1	3		25	135	39	69	77						0.6	0.7	0.8
10.	1	2		26	105	37	64	65						0.7	0.8	1.0
11.	1	2		21	53	28	56	72						0.6	0.9	1.2
So 12.	1	1		20	32	20	38	52						0.6	0.6	0.6
13.	1	1		22	30	21	46	53						0.6	0.6	0.7
14.	1	5		32	340	57	198	208						0.7	0.9	0.9
15.	1	3		35	152	45	93	116						0.8	1.2	1.8
16.	1	3		48	160	50	102	110						0.8	1.4	1.9
17.	1	2		23	131	35	66	79						0.6	0.9	0.9
18.	1	1		15	51	25	38	40						0.6	0.6	0.7
So 19.	1	2		11	55	25	59	61						0.7	0.8	0.9
20.	1	2		21	161	38	75	78						0.7	0.8	0.9
21.	1	3		23	149	33	54	56						0.8	1.1	1.3
22.		2		16	94		71	76						0.6	0.8	0.9
23.	1	2		12	85	29	67	72						0.5	0.6	0.7
24.	1	2		17	153	41	80	91						0.7	0.8	0.9
25.	1	1		14	37	24	42	42						0.7	0.6	0.6
So 26.	1	1		11	24	16	26	35						0.5	0.6	0.7
27.	1	6		16	429	53	115	149						1.1	1.9	2.4
28.	1	3		14	155	37	96	98						1.0	2.5	4.3
29.	1	5		8	314	38	117	138						0.7	0.9	1.1
30.	1	13		25	692	46	121	185						1.0	1.5	2.3

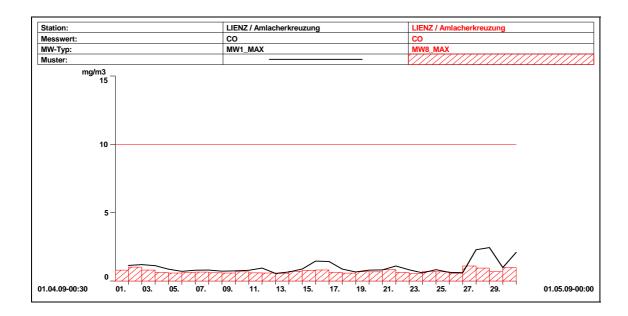
	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	29		30	29	29		
Verfügbarkeit	97%		100%	97%	97%		99%
Max.HMW	13			692	208		
Max.01-M					198		2.5
Max.3-MW	4				132		
Max.08-M							
Max.8-MW							1.1
Max.TMW	2		48	94	57		
97,5% Perz.	3						
MMW	1		22	38	35		0.6
Gl.JMW					44		

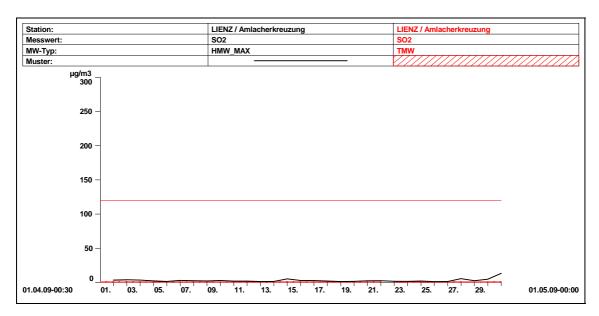
Messstelle: LIENZ / Amlacherkreuzung

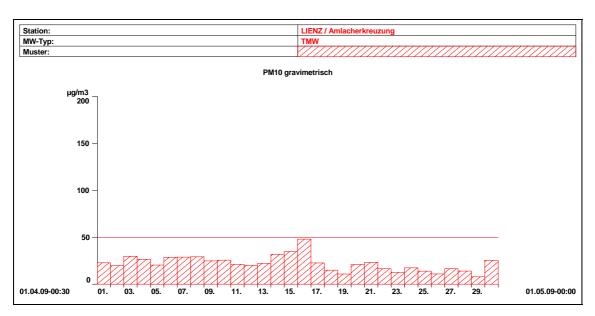
Anzahl der Tage mit Grenzwertüberschreitungen

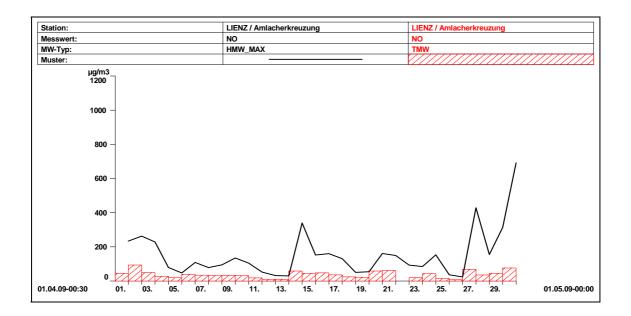
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		1		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI l	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				10		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					

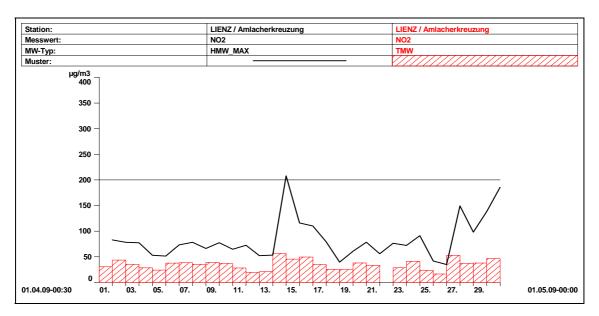
 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

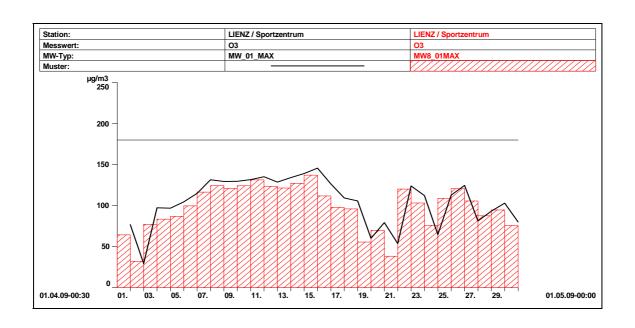

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad LIENZ \, / \, Sportzentrum$

	SC)2	PM10	PM10	NO		NO2				03				CO	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									64	73	77	77	77			
02.									32	35	29	29	33			
03.									77	77	97	97	98			
04.									84	84	97	97	99			
So 05.									87	87	104	105	105			
06.									100	100	115	115	115			
07.									116	116	131	131	132			
08.									124	124	129	129	130			
09.									121	121	130	130	130			
10.									124	124	132	132	132			
11.									131	131	135	135	136			
So 12.									123	123	129	129	130			
13.									121	121	134	134	135			
14.									127	128	139	141	142			
15.									137	137	146	147	147			
16.									112	115	126	126	128			
17.									98	98	109	110	115			
18.									96	96	106	106	106			
So 19.									56	56	60	61	62			
20.									70	70	79	80	82			
21.									38	38	54	54	54			
22.									120	120	124	124	124			
23.									103	103	112	112	113			
24.									76	79	65	65	67			
25.									109	109	113	113	113			
So 26.									121	121	125	125	125			
27.									106	106	81	81	82			
28.									88	88	93	94	95			
29.									95	95	103	103	103			
30.									76	78	80	80	81			

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						147	
Max.01-M						146	
Max.3-MW							
Max.08-M							
Max.8-MW						137	
Max.TMW						97	
97,5% Perz.							
MMW						65	
Gl.JMW	•						


Zeitraum: MAI 2009

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					9	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					27	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					15	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Gi	Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)							
Luftschadstoff	HMW	MW3	MW8	TMW	JMW			
Schwefeldioxid	200 *)			120				
Kohlenmonoxid			10					
Stickstoffdioxid	200				30 **)			
PM_{10}				50 ***)	40			
	Aları	nwerte in μg/m³						
Schwefeldioxid		500						
Stickstoffdioxid		400						
	Ziel	werte in μg/m³						
Stickstoffdioxid				80				
PM_{10}				50	20			

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³							
Luftschadstoff	HMW	MW3	MW8	TMW	JMW		
Schwefeldioxid					201)		
Stickstoffoxide					30		
	Ziel	werte in μg/m³					
Schwefeldioxid				50			
Stickstoffdioxid				80			
1) für das Kalenderjahr und Winterhalbjahr (1.0	Oktober bis 31.März	2)					

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)				
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)				
Zielwert 120 µg/m³ als Achtstundenmittelwert *)					
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.					

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 $\mu g/m^3$ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)							
	April - Oktober	November - März					
97,5 Perzentil für den Halbstundenmittelwert 0,07 mg/m³ 0,15 mg/m³ (HMW) in den Monaten							
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.							
Tagesmittelwert (TMW)	0,05 mg/m³	0,10 mg/m³					
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³					

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)			August 1989: Luftqualitätskriterien Ozon (O ₃)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in $\mathrm{mg/m^3}$			Wirkungsbezogene Immissionsgrenzkonzentrationen für O_3 in $\mathrm{mg/m^3}$				en	
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme 0,080 0,040 0,010								
*) als Mittelwert der Siebe	*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode							

Die höchstzulässige Konzentration von Schwefeldioxid (SO_2) in der freien Luft beträgt								
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten					
		Schwefeldioxid	in mg/m³ Luft					
	April - Oktober November – März							
Tagesmittelwert	0,05	0,10	0,20					
Halbstundenmittelwert	0,07	0,15	0,20					
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.					

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)					
Tagesmittelwert	500 μg/m³				
Halbstundenmittelwert	$1000~\mu\text{g/m}^3$				

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00
Halbstundenmittelwert > 200µg/m3

 ${\tt MESSSTELLE} \qquad {\tt Datum} \qquad {\tt WERT[\mu g/m3]}$

LIENZ / Amlacherkreuzung 14.04.2009-14:00 208

Anzahl: 1

IG-L Alarmwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00 Dreistundenmittelwert > $400 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

. ------

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00 Tagesmittelwert > 80µg/m3

 ${\tt MESSSTELLE} \qquad \qquad {\tt Datum} \qquad {\tt WERT[\mu g/m3]}$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00 Tagesmittelwert > $120\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.09-00:30 - 01.05.09-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.04.09-00:30 - 01.05.09-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.04.09-00:30 - 01.05.09-00:00

Einstundenmittelwert > $180\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.04.09-00:30 - 01.05.09-00:00

Achtstundenmittelwert > $120\mu g/m3$

MESSSTELLE	Datum	WERT[µg/	m3]
HÖFEN / Lärchbichl	10.04.20	09-24:00	129
HÖFEN / Lärchbichl		09-24:00	125
HÖFEN / Lärchbichl		09-24:00	125
HÖFEN / Lärchbichl	13.04.20	09-24:00	130
HÖFEN / Lärchbichl	14.04.20	09-24:00	130
HÖFEN / Lärchbichl	15.04.20	09-24:00	137
HÖFEN / Lärchbichl	16.04.20	09-24:00	127
HÖFEN / Lärchbichl	22.04.20	09-24:00	122
HÖFEN / Lärchbichl		09-24:00	128
HÖFEN / Lärchbichl	26.04.20	09-24:00	123
Anzahl: 10			
KARWENDEL West	07.04.20	09-24:00	124
KARWENDEL West	08.04.20	09-24:00	128
KARWENDEL West	09.04.20	09-24:00	125
KARWENDEL West	10.04.20	09-24:00	137
KARWENDEL West	11.04.20	09-24:00	136
KARWENDEL West	12.04.20	09-24:00	135
KARWENDEL West	13.04.20	09-24:00	134
KARWENDEL West	14.04.20	09-24:00	144
KARWENDEL West	15.04.20	09-24:00	146
KARWENDEL West	16.04.20	09-24:00	142
KARWENDEL West	22.04.20	09-24:00	129
KARWENDEL West	23.04.20	09-24:00	127
KARWENDEL West	24.04.20	09-24:00	124
KARWENDEL West	25.04.20	09-24:00	130
KARWENDEL West	26.04.20	09-24:00	130
KARWENDEL West	27.04.20	09-24:00	124
Anzahl: 16			
INNSBRUCK / Sadrach	10.04.20	09-24:00	129
INNSBRUCK / Sadrach		09-24:00	134
INNSBRUCK / Sadrach		09-24:00	126
INNSBRUCK / Sadrach		09-24:00	128
INNSBRUCK / Sadrach		09-24:00	142
INNSBRUCK / Sadrach	15.04.20	09-24:00	139
INNSBRUCK / Sadrach	16.04.20	09-24:00	138
INNSBRUCK / Sadrach		09-24:00	126
INNSBRUCK / Sadrach	25.04.20	09-24:00	125
INNSBRUCK / Sadrach	26.04.20	09-24:00	128
Anzahl: 10			
NORDKETTE	04.04.20	09-24:00	125
NORDKETTE		09-24:00	128
NORDKETTE		09-24:00	123
NORDKETTE		09-24:00	130
NORDKETTE		09-24:00	128
NORDKETTE		09-24:00	130
NORDKETTE		09-24:00	136
NORDKETTE		09-24:00	129
NORDKETTE		09-24:00	130
NORDKETTE		09-24:00	144
NORDKETTE		09-24:00	144
NORDKETTE	16.04.20	09-24:00	139
NORDKETTE	22.04.20	09-24:00	129
NORDKETTE	23.04.20	09-24:00	127
NORDKETTE	25.04.20	09-24:00	124
NORDKETTE	26.04.20	09-24:00	127
Anzahl: 16			

ZILLERTALER ALPEN	07.04.2009-24:00	127
ZILLERTALER ALPEN	08.04.2009-24:00	132
ZILLERTALER ALPEN	09.04.2009-24:00	126
ZILLERTALER ALPEN	10.04.2009-24:00	131
ZILLERTALER ALPEN	11.04.2009-24:00	136
ZILLERTALER ALPEN	12.04.2009-24:00	136
ZILLERTALER ALPEN	13.04.2009-24:00	128
ZILLERTALER ALPEN	14.04.2009-24:00	143
ZILLERTALER ALPEN	15.04.2009-24:00	151
ZILLERTALER ALPEN	16.04.2009-24:00	149
ZILLERTALER ALPEN	17.04.2009-24:00	122
ZILLERTALER ALPEN	22.04.2009-24:00	124
ZILLERTALER ALPEN	23.04.2009-24:00	122
ZILLERTALER ALPEN	25.04.2009-24:00	134
ZILLERTALER ALPEN	26.04.2009-24:00	135
ZILLERTALER ALPEN	27.04.2009-24:00	126
ZILLERTALER ALPEN	28.04.2009-24:00	123
Anzahl: 17		
KRAMSACH / Angerberg	10.04.2009-24:00	128
KRAMSACH / Angerberg	11.04.2009-24:00	133
KRAMSACH / Angerberg	12.04.2009-24:00	126
KRAMSACH / Angerberg	13.04.2009-24:00	128
KRAMSACH / Angerberg	14.04.2009-24:00	138
KRAMSACH / Angerberg	15.04.2009-24:00	141
KRAMSACH / Angerberg	16.04.2009-24:00	125
KRAMSACH / Angerberg	25.04.2009-24:00	129
KRAMSACH / Angerberg	26.04.2009-24:00	123
Anzahl: 9		
		100
KUFSTEIN / Festung	11.04.2009-24:00	122
KUFSTEIN / Festung	12.04.2009-24:00	129
KUFSTEIN / Festung	13.04.2009-24:00	126
KUFSTEIN / Festung	14.04.2009-24:00	133
KUFSTEIN / Festung	15.04.2009-24:00	125
KUFSTEIN / Festung	25.04.2009-24:00	121
Anzahl: 6		
I TENZ / Chort control	00 04 2000 24.00	104
LIENZ / Sportzentrum	08.04.2009-24:00 09.04.2009-24:00	124
LIENZ / Sportzentrum	10.04.2009-24:00	121
LIENZ / Sportzentrum	11.04.2009-24:00	124
LIENZ / Sportzentrum		131
LIENZ / Sportzentrum LIENZ / Sportzentrum	12.04.2009-24:00 13.04.2009-24:00	123
· •	14.04.2009-24:00	121
LIENZ / Sportzentrum	15.04.2009-24:00	127 127
LIENZ / Sportzentrum LIENZ / Sportzentrum	26.04.2009-24:00	137
· •	20.04.2009-24.00	121
Anzahl: 9		