Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Jänner 2009

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 27. Mai 2009

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

\Rightarrow	Teletext des ORF	Seite 782, 783
\Rightarrow	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – Imsterau	15
Imst – A12	
Karwendel West	21
Innsbruck – Andechsstrasse (Reichenau)	23
Innsbruck – Fallmerayerstrasse (Zentrum)	27
Innsbruck – Sadrach	31
Nordkette	33
Mutters – Gärberbach A13	36
Hall in Tirol – Sportplatz	39
Vomp – Raststätte A12	42
Vomp – An der Leiten	45
Zillertaler Alpen	48
Brixlegg – Innweg	50
Kramsach – Angerberg	53
Kundl – A12	57
Wörgl – Stelzhamerstrasse	60
Kufstein – Praxmarerstrasse	63
Kufstein – Festung	66
Lienz – Amlacherkreuzung	68
Lienz – Sportzentrum	72
Beurteilungsunterlagen	
aus Gesetzen, Verordnungen und Richtlinien	74
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	76

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter .)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

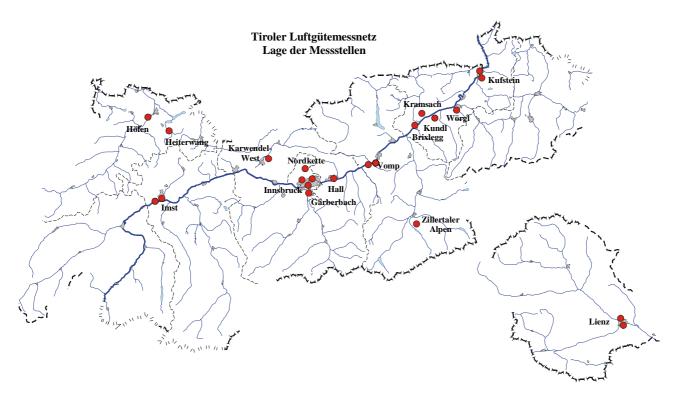
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE												
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО					
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-					
Heiterwang – Ort / B179	985 m	-	•/-	•	•	-	-					
Imst – Imsterau	717 m	-	•/-	•	•	-	-					
Imst – A12	719 m	-	•/-	•	•	-	-					
Karwendel – West	1749 m	-	-/-	-	-	•	-					
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-					
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	-	•					
Innsbruck – Sadrach	678 m	-	-/-	-	-	•	-					
Nordkette	1958 m	-	-/-	•	•	•	-					
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-					
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-					
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-					
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-					
Zillertaler Alpen	1955 m	-	-/-	-	-	•	-					
Brixlegg – Innweg	519 m	•	•/-	-	-	-	-					
Kramsach – Angerberg	602 m	-	•/-	•	•	•	-					
Kundl – A12	507 m	-	-/-	•	•	-	-					
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	-	-					
Kufstein – Praxmarerstrasse	498 m	•	•/-	•	•	-	-					
Kufstein – Festung	550 m	-	-/-	-	-	•	-					
Lienz – Amlacherkreuzung	675 m	•	•/-	•	•	-	•					
Lienz – Sportzentrum	677 m	-	-/-	-	-	•	-					

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten Januar 2009

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	О3	CO
HÖFEN					P	
Lärchbichl						
HEITERWANG				IZ Ö		
Ort / B179				М		
IM ST		IP		IG IZ Ö		
Imsterau				М		
IM ST		IP		IG IZ Ö		
A12				М		
KARWENDEL					P	
West						
INNSBRUCK		IP		IG IZ Ö		
Andechsstrasse				M		
INNSBRUCK		IP		IZ Ö		
Fallmeray erstrasse				М		
INNSBRUCK					P	
Sadrach						
NORDKETTE					P	
NORDKETTE					-	
MUTTERS		IP		IZ Ö		
Gärberbach A13				M		
HALL IN TIROL		IP		IZ Ö		
Sportplatz				M		
VOMP		IP		IG IZ Ö		
Raststätte A12				M		
VOMP		IP		IZ Ö		
An der Leiten				M		
ZILLERTALER					P	
ALPEN					M	
BRIXLEGG		IP				
Innweg						
KRAMSACH		IP		Ö	P	
Angerberg						
KUNDL				IZ Ö		
A12				M		
WÖRGL		IP		Ö		
Stelzhamerstrasse						
KUFSTEIN		IP		Ö		
Praxmarerstrasse						
KUFSTEIN						
Festung						
LIENZ		IP		IG IZ Ö		
Amlacherkreuzung	1			M		
LIENZ						
Sportzentrum						
Sportzentium						

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
ΙΡ	Überschreitung des im IG-L genannten Tages ziel wertes von 50µg/m³ für PM10. Der PM10-Tages grenz wert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen
11	erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
Z	Coordination and Control and Market Plan Members Coordination 141 (2010)
IG	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
1	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle
- 15	gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A 12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A 12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird P M 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Jänner 2009

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit insgesamt 22 Messstationen. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM10 und PM2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o.a. enthaltenen gesetzlichen Grenz- und Zielwerte österreichischer Gesetze sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie von Staubniederschlagsmessungen sind in den Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Die Messstelle KRAMSACH/Angerberg wurde um die Komponente PM10 gravimetrisch erweitert, damit wird nunmehr an 14 Standorten PM10 gemessen.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Der Jänner war meist um 1,5 bis 3 Grad kälter als normal, in Reutte und vom mittleren Inntal bis in den Kitzbüheler Raum war es nur um rund 1 Grad zu kalt. Die tiefste Temperatur wurde am 9.1. in St. Jakob im Defereggen mit -23,7 Grad gemessen, am mildesten war es mit 10,8 Grad bei Föhn am 20.1. in Mayrhofen. In Innsbruck gab es 30 Frosttage, um 4 mehr als gewöhnlich. 6 Eistage (ganztägiger Frost) entsprechen hingegen genau dem Mittel. In Landeck gab es aber um 4 mehr, am Brenner und in Galtür mit jeweils satten 26 Eistagen sogar um 11 mehr als im Schnitt.

In Nordtirol fiel dabei meist zu wenig Niederschlag. Vor allem nördlich des Inns kam oftmals weniger als die Hälfte des Solls zusammen, am wenigsten aber war es im Bezirk Kitzbühel mit nicht einmal 25%. Zu feucht war es hingegen in Osttirol. Besonders im Süden fiel bis zum Doppelten des langjährigen Mittels.

Auch wenn es in tiefen Lagen zeitweise regnete, so blieben die Schneehöhen in Osttirol über dem Schnitt. In Nordtirol fiel hingegen weniger Schnee als zu erwarten wäre. Im Inntal von etwa Imst abwärts war es zeitweise aper. Wenig darüber lag durchgehend Schnee, wenn auch meist nicht viel. Die maximale Schneehöhe betrug in St. Anton 73 cm, in Seefeld 55 und in Achenkirch nur 16 cm. Selbst am Patscherkofel kam die maximale Schneehöhe nicht über 50 cm hinaus. Die Neuschneesummen blieben ebenfalls unterdurchschnittlich: Zum Beispiel in Kitzbühel 35 anstatt 43 cm und in St. Anton 45 anstatt 71 cm.

Die Sonne zeigte sich um eine Spur öfter als gewöhnlich, so kamen in Innsbruck 89 Sonnenstunden zusammen, 79 Stunden wären der Jännerschnitt.

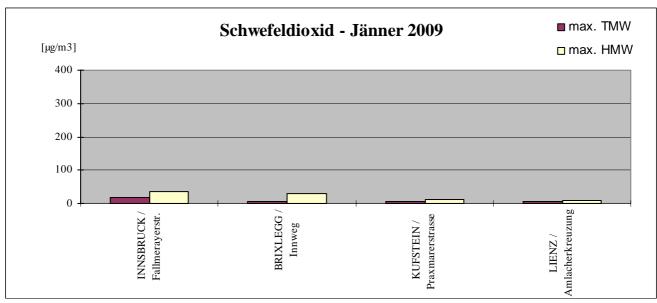
Luftschadstoffübersicht

Das bis zum 20.Jänner überwiegend von Hochdrucklagen dominierte Wetter, mit ungünstigen Ausbreitungsbedingungen (=Inversionen) führte allgemein zu hohen Immissionskonzentrationen.

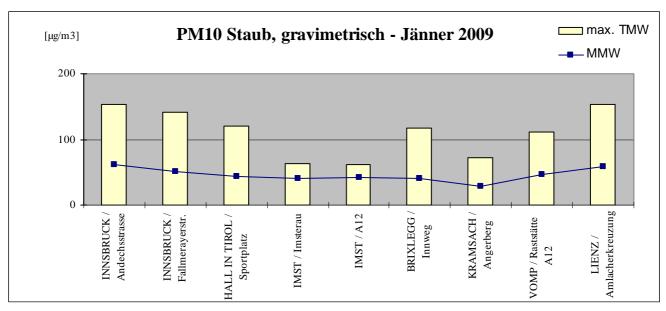
Bei allen PM10-Messstandorten ausgenommen Heiterwang gab es zumindest einen Tagesmittelwert über dem geltenden Grenzwert von 50µg/m³ gemäß IG-L (=Immissionsschutzgesetz-Luft). An den Messstellen KUFSTEIN/Praxmarerstrasse sowie KRAMSACH/Angerberg wurde der Grenzwert lediglich am 1. Jänner auf Grund der Silvesterfeuerwerke nicht eingehalten. Mit jeweils 18 Überschreitungstagen waren die Messstellen LIENZ/Amlacherkreuzung und INNSBRUCK/Andechsstraße vor INNSBRUCK/Fallmerayerstrasse mit 17 und VOMP/Raststätte A12 mit 14 am häufigsten überschreitungshäufigkeit im einstelligen Bereich.

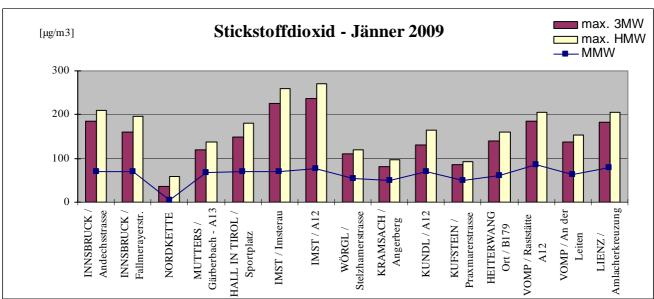
Auch bei den Stickoxiden schlugen sich die ungünstigen meteorologischen Bedingungen mit hohen Immissionskonzentrationen nieder. Dennoch ist bei Stickstoffmonoxid im Vergleich zu den Monatsmittelwerten im Jänner der Vorjahre ein rückläufiger Trend zu beobachten, dies dürfte ein Indiz auf gesunkene Emissionen durch den Verkehrsrückgang sein.

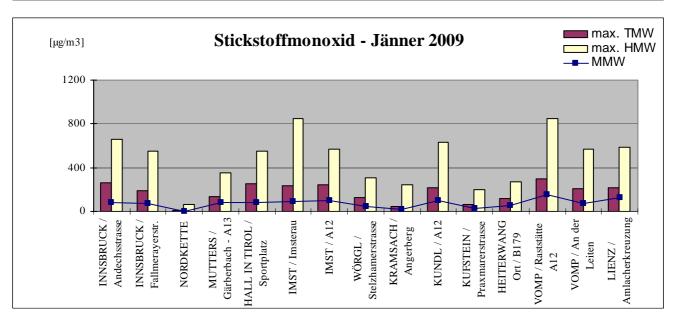
Für **Stickstoffmonoxid** wurde an den Messstellen IMST/A12 und VOMP/Raststätte A12 jeweils ein maximaler Halbstundenwert von $849\mu g/m^3$ gemessen. Der höchste Monatsmittelwert ($150\mu g/m^3$) und Tagesmittelwert ($300\mu g/m^3$) wurde am Standort VOMP/Raststätte A12 ermittelt. Die Grenzwerte laut VDI-Richtlinie sind damit aber noch eingehalten.

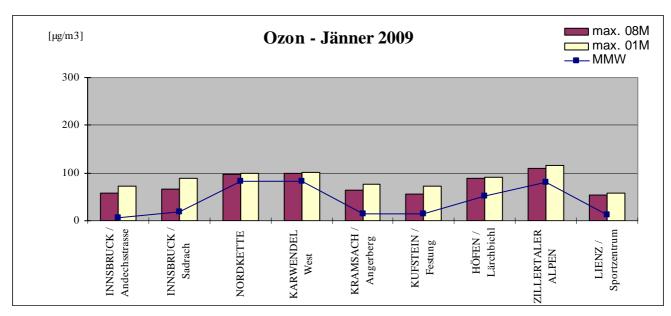

Die **Stickstoffdioxid**belastungsituation war insbesondere in der Periode von 9. – 17. des Monats angespannt. In diesem Zeitraum wurden an den Messstellen IMST/A12 (24), IMST/Imsterau (15), INNSBRUCK/Andechstrasse (3), VOMP/Raststätte A12 (2) sowie LIENZ/Amlacherkreuzung (1) Überschreitungen des Kurzzeitgrenzwertes gemäß IG-L von $200\mu g/m^3$ verzeichnet. Der Zielwert gemäß IG-L von $80\mu g/m^3$ als Tagesmittelwert wurde sogar an 11 der 15 Messstellen überschritten. Mit 21 Überschreitungen im Berichtsmonat war VOMP/Raststätte A12 am häufigsten über dem

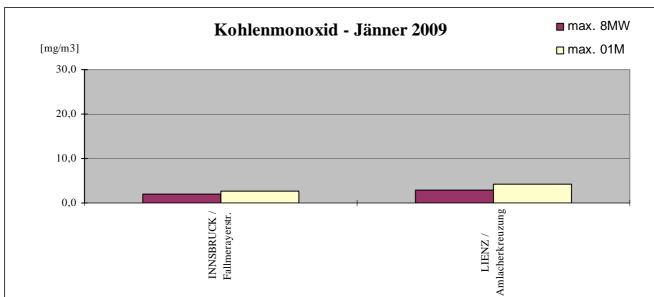

Zielwert. An der vegetationsbezogenen Messstelle KRAMSACH/Angerberg ist zudem eine Überschreitung der wirkungsbezogenen Immissionsgrenzkonzentration zum Schutz der Ökosysteme laut ÖAW (=Österreichische Akademie der Wissenschaften) auszuweisen.


Für **Schwefeldioxid** wie auch für **Kohlenmonoxid** bleiben die Immissionskonzentrationen auf einem winterlichen Niveau. Die gesetzlichen Grenzwerte wurden jedoch bei beiden Komponenten deutlich eingehalten.


Die **Ozon**konzentrationen bleiben auch im Jänner auf einem tiefen Niveau. Der Zielwert gemäß Ozongesetz von $120\mu g/m^3$ als Achtstundenmittelwert wurde überall deutlich eingehalten. Die Auswertung nach der wirkungsbezogenen Immissionsgrenzkonzentration laut ÖAW zum Schutz des Menschen zeigt eine Überschreitung an der Messstelle ZILLERTALER ALPEN an. Das Kriterien laut ÖAW zum Schutz der Vegetation wurde an insgesamt 6 Messstellen nicht eingehalten.

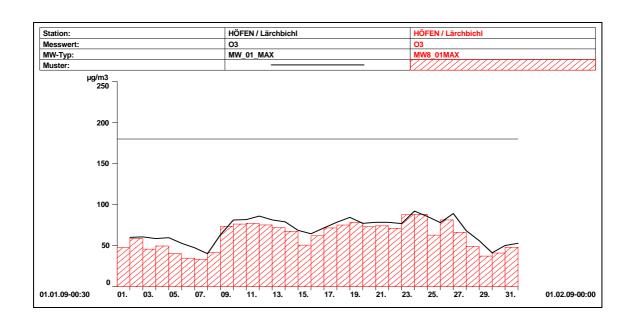

Stationsvergleich





Zeitraum: JÄNNER 2009 Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2			03						
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$				$\mu g/m^3$		m		mg/m³	ng/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									48	48	60	60	62			
02.									59	58	61	61	62			
03.									46	46	59	59	59			
So 04.									49	50	60	60	61			
05.									40	40	53	53	53			
06.									35	35	47	47	48			
07.									33	34	40	40	41			
08.									41	43	63	63	65			
09.									73	73	81	82	83			
10.									76	76	82	82	82			
So 11.									77	77	86	86	87			
12.									75	75	81	82	83			
13.									72	72	79	79	79			
14.									67	67	69	69	71			
15.									51	50	64	64	65			
16.									62	62	72	72	73			
17.									72	72	78	79	80			
So 18.									75	75	84	84	85			
19.									78	78	77	80	82			
20.									73	73	78	79	80			
21.									74	74	78	78	78			
22.									71	71	77	77	77			
23.									88	88	92	92	93			
24.									88	88	85	86	87			
So 25.									63	64	78	80	81			
26.									81	81	89	89	90			
27.									66	66	68	68	70			
28.									49	49	56	56	57			
29.									37	37	41	41	42			
30.									41	41	50	50	51			
31.									48	48	53	53	53			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						93	
Max.01-M						92	
Max.3-MW							
Max.08-M							
Max.8-MW						88	
Max.TMW						85	
97,5% Perz.							
MMW						51	
Gl.JMW							

Zeitraum: JÄNNER 2009 Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					18	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

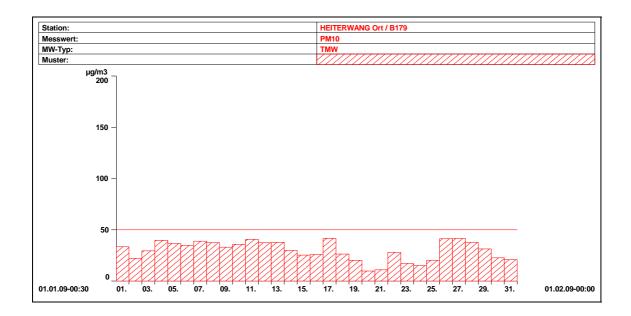
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

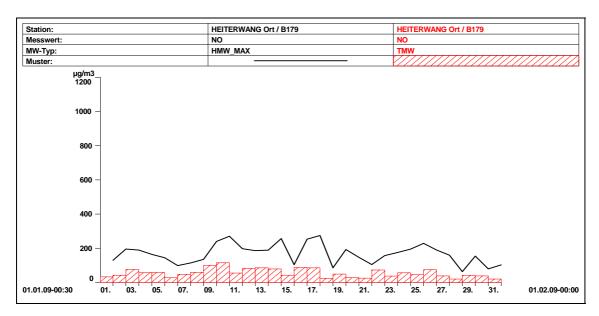
Messstelle: HEITERWANG Ort / B179

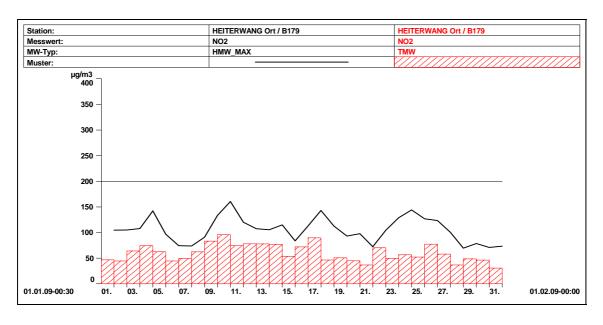
	SO)2	PM10	PM10	NO		NO2			03				СО		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			33		129	47	97	105								
02.			22		196	45	100	105								
03.			29		189	64	99	108								
So 04.			40		164	74	131	142								
05.			37		144	62	95	97								
06.			35		99	45	74	74								
07.			39		114	49	74	74								
08.			37		135	62	85	91								
09.			33		240	83	121	133								
10.			36		270	96	150	161								
So 11.			41		197	74	111	120								
12.			37		186	78	104	107								
13.			38		189	78	103	105								
14.			30		257	77	114	115								
15.			25		104	54	76	84								
16.			26		253	72	109	113								
17.			42		275	90	131	143								
So 18.			26		85	46	103	113								
19.			20		192	51	89	93								
20.			10		147	45	87	98								
21.			11		105	37	66	72								
22.			28		157	70	100	104								
23.			17		175	50	122	129								
24.			15		195	57	124	144								
So 25.			20		229	52	113	127								
26.			41		190	77	111	123								
27.			41		159	58	96	100								
28.			38		63	37	65	70								
29.			31		154	49	76	79								
30.			23		79	46	68	71								1
31.			21		103	31	68	73								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				275	161		
Max.01-M					150		
Max.3-MW					140		
Max.08-M							
Max.8-MW							
Max.TMW		42		115	96		
97,5% Perz.							
MMW		30		55	60		
Gl.JMW					29		

Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		3		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: JÄNNER 2009 Messstelle: IMST / Imsterau

	SO)2	PM10 kont.	PM10	NO		NO2		03				_	СО		
	μg	/m³	μg/m ³	grav. μg/m³	$\mu g/m^3$		$\mu g/m^3$		$\mu g/m^3$					mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				63	148	53	76	82								
02.				31	371	71	149	173								
03.				32	186	49	90	101								
So 04.				42	150	52	96	106								
05.				51	292	67	117	121								
06.				50	103	51	62	72								
07.				54	447	70	153	170								
08.				52	286	67	112	123								
09.				57	695	94	227	242								
10.				53	620	101	229	232								
So 11.				38	373	80	173	200								
12.				51	849	112	239	260								
13.				52	645	109	195	206								
14.				46	288	79	129	138								
15.				44	224	58	87	99								
16.				45	589	87	191	195								
17.				42	351	78	157	159								
So 18.				41	146	63	107	111								
19.				31	174	62	92	99								
20.				29	298	68	109	117								
21.				31	173	60	79	88								
22.				16	193	65	95	106								
23.				21	172	73	117	126								
24.				24	104	64	88	92								
So 25.				33	119	59	95	103								
26.				38	233	76	118	130								
27.				33	181	74	116	127								
28.				42	87	58	73	74								
29.				37	89	53	63	64								
30.				33	123	50	72	77								
31.				28	82	51	67	74								

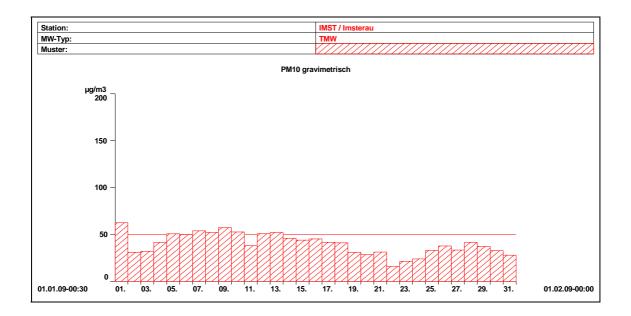
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				849	260		
Max.01-M					239		
Max.3-MW					226		
Max.08-M							
Max.8-MW							
Max.TMW			63	238	112		
97,5% Perz.							
MMW			40	86	69		
Gl.JMW					37		

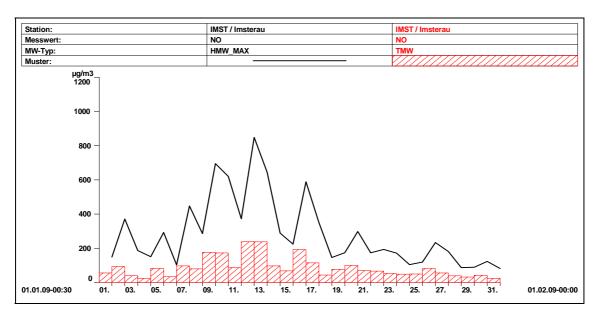
0

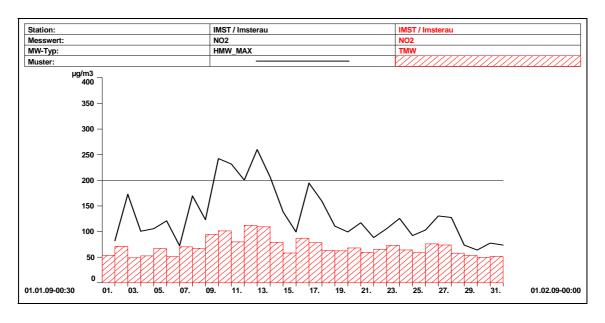
Zeitraum: JÄNNER 2009 Messstelle: IMST / Imsterau

Anzahl der Tage mit Grenzwertüberschreitungen

	~~~	<b>77.540</b> 1)		7704		~~
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	О3	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		8		4		
Zielwerte menschliche Gesundheit		8		5		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				5		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


 $[\]ddot{\text{U}}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.





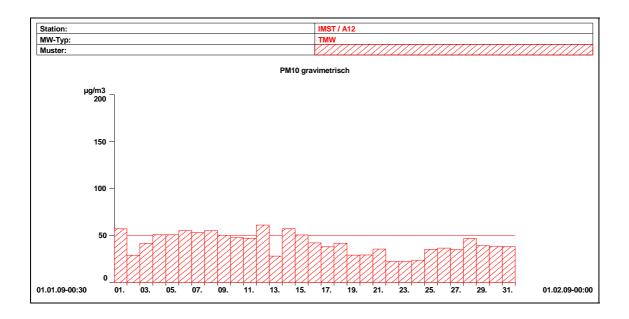


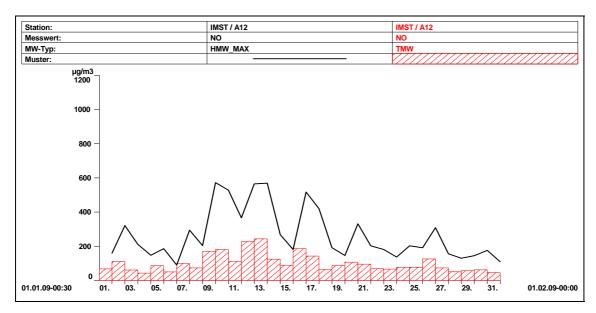
Zeitraum: JÄNNER 2009 Messstelle: IMST / A12

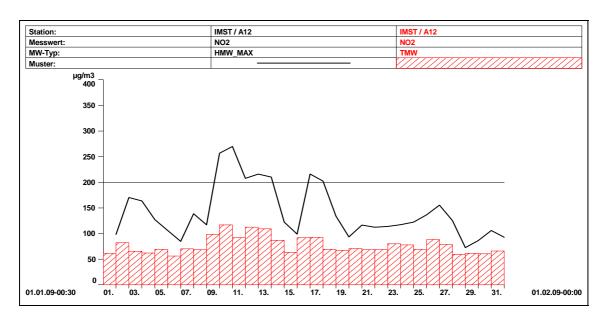
	SC	)2	PM10	PM10	NO		NO2			03			со			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				57	160	61	97	98								
02.				29	321	82	166	170								
03.				42	211	65	157	164								
So 04.				51	147	62	117	127								
05.				51	186	69	103	106								
06.				55	90	56	78	85								
07.				53	294	70	137	139								
08.				55	204	68	114	117								
09.				50	572	99	242	257								
10.				48	528	117	261	270								
So 11.				47	367	92	201	208								
12.				61	565	112	207	216								
13.				28	569	109	197	210								
14.				57	268	87	120	122								
15.				51	181	63	91	99								
16.				42	517	92	208	216								
17.				38	420	92	199	202								
So 18.				42	192	69	125	134								
19.				29	146	67	91	93								
20.				29	331	71	109	116								
21.				36	202	69	105	112								
22.				22	181	69	110	114								
23.				22	137	80	116	117								
24.				24	202	78	117	122								
So 25.				35	191	69	136	136								
26.				37	309	88	148	155								
27.				35	155	79	116	125								
28.				47	130	59	71	73								
29.				39	145	61	85	86								
30.				39	176	60	93	106								
31.				38	109	66	92	93								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				572	270		
Max.01-M					261		
Max.3-MW					237		
Max.08-M							
Max.8-MW							
Max.TMW			61	243	117		
97,5% Perz.							
MMW			42	101	77		
Gl.JMW					46		

Zeitraum: JÄNNER 2009 Messstelle: IMST / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		9		7		
Zielwerte menschliche Gesundheit		9		10		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				10		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$   $\ddot{\text{U}}\text{berschreitung}$  des NO2-Grenzwertes gemäß  $\ddot{\text{O}}\text{AW}$  nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

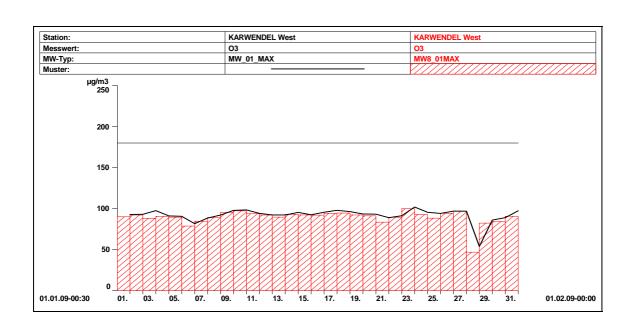






Zeitraum: JÄNNER 2009 Messstelle: KARWENDEL West

	SO	)2	PM10	PM10	NO	_	NO2		_		03	_		_	со	_
		/3	kont.	grav.					_							
	μg		μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$	I			μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.									90	90	93	93	93			
02.									92	92	93	93	94			
03.									88	88	98	98	98			
So 04.									90	90	91	91	91			
05.									90	90	91	91	91			
06.									79	79	82	82	82			
07.									85	85	88	88	89			
08.									89	89	92	92	93			
09.									95	95	98	98	98			
10.									97	97	98	99	99			
So 11.									94	94	94	94	94			
12.									92	92	92	93	93			
13.									90	90	92	92	92			
14.									93	93	95	95	95			
15.									92	92	92	92	93			
16.									92	92	96	96	96			
17.									94	95	98	98	98			
So 18.									95	95	96	96	97			
19.									92	92	93	93	94			
20.									91	91	93	94	94			
21.									84	84	89	89	90			
22.									89	89	91	91	92			
23.									100	100	102	102	103			
24.									93	93	96	96	96			
So 25.									88	88	94	94	94			
26.									94	94	97	97	97			
27.									97	97	97	97	97			
28.									47	47	54	54	66			
29.									82	82	86	86	86			
30.									84	84	89	89	90			
31.									91	91	97	97	97			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						103	
Max.01-M						102	
Max.3-MW							
Max.08-M							
Max.8-MW						100	
Max.TMW						95	
97,5% Perz.							
MMW						82	
Gl.JMW							

Zeitraum: JÄNNER 2009 Messstelle: KARWENDEL West

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

	SC	02	PM10	PM10	NO	_	NO2	_			03	_			СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³			l	μg/m³				mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				154	147	62	76	78	6	8	9	10	10			
02.				31	117	45	81	82	22	22	42	42	43			
03.				48	70	45	79	83	24	24	30	32	34			
So 04.				51	120	60	98	99	21	21	37	37	42			
05.				62	153	68	85	88	11	11	21	21	24			
06.				66	67	54	66	67	10	10	16	16	17			
07.				75	283	60	87	97	6	6	10	10	11			
08.				75	141	63	87	93	7	7	13	14	14			
09.				87	404	95	163	165	9	9	18	18	19			
10.				86	303	99	142	144	12	12	20	21	23			
So 11.				92	292	92	133	139	18	18	33	33	34			
12.				109	658	120	192	203	8	8	19	19	20			
13.				103	627	111	208	210	7	7	22	22	28			
14.				75	327	93	125	130	5	5	11	11	12			
15.				61	187	75	100	110	5	5	11	11	12			
16.				67	372	79	130	133	12	12	24	24	26			
17.				69	264	78	114	118	16	16	31	34	36			
So 18.				45	147	52	88	90	44	44	59	68	70			
19.				27	128	44	83	85	57	57	73	73	73			
20.				42	364	82	131	139	52	52	21	53	43			
21.				48	178	77	96	101	4	4	7	7	8			
22.				34	171	70	94	96	15	15	30	31	32			
23.				27	78	59	91	112	50	51	72	73	75			
24.				34	147	74	111	121	16	18	27	30	31			
So 25.				46	79	67	88	89	14	14	27	27	28			
26.				39	337	81	133	145	25	25	38	38	38			
27.				49	185	77	102	106	6	6	12	12	15			
28.				56	103	61	92	96	10	10	15	15	16			
29.				56	101	57	71	72	11	11	18	19	20			
30.				52	104	59	69	71	7	7	11	13	13			
31.				37	58	55	71	73	14	14	19	19	20			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				658	210	75	
Max.01-M					208	73	
Max.3-MW					185		
Max.08-M							
Max.8-MW						57	
Max.TMW			154	258	120	28	
97,5% Perz.							
MMW			61	82	71	7	
Gl.JMW					39		

8

0

0

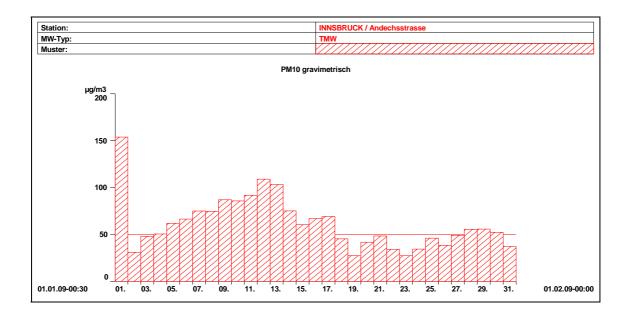
Zeitraum: JÄNNER 2009

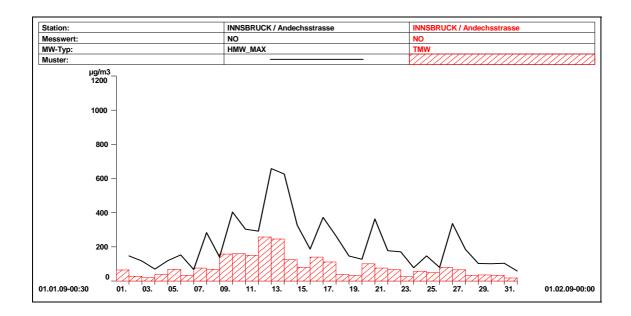
Messstelle: INNSBRUCK / Andechsstrasse

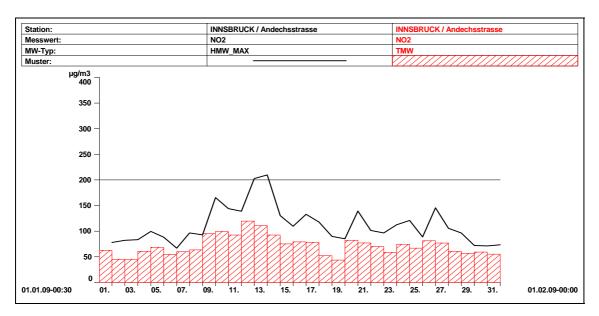
### Anzahl der Tage mit Grenzwertüberschreitungen

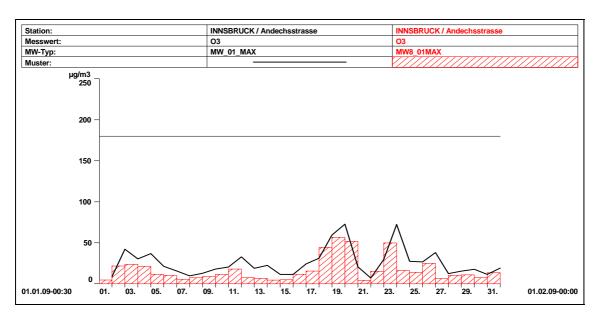
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		18		2		
Zielwerte menschliche Gesundheit		18		8		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31	0	

ÖAW: Richtwerte Mensch, Vegetation (nur NO2)
ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{\text{U}}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.









Messstelle: INNSBRUCK / Fallmerayerstrasse

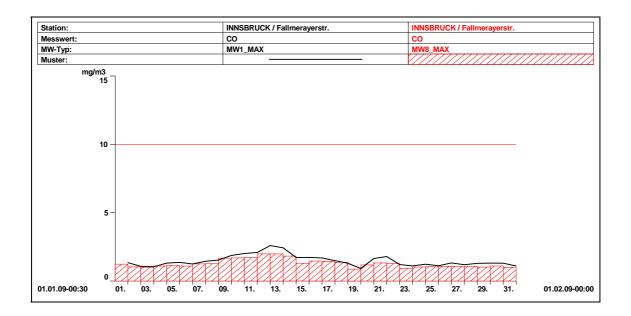
	SO	02	PM10	PM25	NO		NO2		03			CO				
			grav.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	13	20	141	111	135	68	86	86						1.2	1.3	1.4
02.	6	12	30	22	151	51	95	98						1.0	1.1	1.1
03.	6	10	50	29	90	50	95	95						1.0	1.0	1.1
So 04.	8	15	55	30	105	62	101	102						1.1	1.3	1.4
05.	9	15	58	35	169	73	96	100						1.1	1.3	1.4
06.	7	10	52	39	77	57	68	71						1.1	1.1	1.3
07.	8	13	71	51	190	62	80	83						1.3	1.4	1.6
08.	6	10	70	42	186	69	103	103						1.3	1.5	1.6
09.	12	20	76	43	289	91	150	154						1.7	1.9	2.1
10.	13	26	69	40	188	92	138	139						1.7	2.0	2.1
So 11.	13	25	66	39	160	82	123	129			_			1.7	2.1	2.4
12.	19	36	79	46	495	109	182	197						2.0	2.6	2.7
13.	18	37	70	40	546	104	174	196						2.0	2.4	2.5
14.	12	25	53	33	194	86	103	115						1.8	1.7	1.7
15.	7	10	51	45	234	78	122	137						1.3	1.7	2.3
16.	9	14	44	34	239	76	132	139						1.5	1.7	1.8
17.	10	18	53	33	133	75	122	122						1.4	1.5	1.5
So 18.	6	12	35	24	76	55	78	79						1.4	1.3	1.3
19.	5	9	22	16	103	48	81	82						0.9	0.9	0.9
20.	5	14	26	23	317	79	116	124						1.2	1.6	1.7
21.	8	12	42	34	269	80	124	125						1.3	1.8	1.8
22.	7	16	25	20	116	69	100	118						1.3	1.2	1.3
23.	4	6	15	10	54	52	81	83						0.9	1.1	1.2
24.	6	11	24	19	91	70	92	96						1.0	1.2	1.2
So 25.	6	9	38	32	70	63	85	88						1.0	1.1	1.1
26.	6	15	24	20	197	73	112	126						1.1	1.3	1.5
27.	9	18	42	32	226	76	103	112						1.1	1.2	1.4
28.	8	15	51	47	144	65	94	101						1.1	1.2	1.3
29.	8	13	57	53	166	59	80	96						1.0	1.2	1.6
30.	7	12	57	53	179	63	83	91						1.1	1.3	1.4
31.	4	6	39	37	93	58	78	83						1.0	1.0	1.1

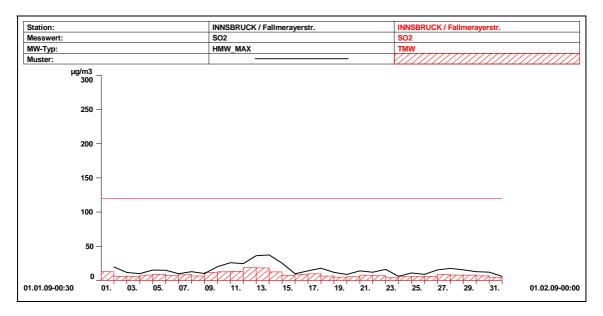
	SO2	PM10	PM25	NO	NO2	03	со
	μg/m³	<b>grav.</b> μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31	1.5	
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	37			546	197		
Max.01-M					182		2.6
Max.3-MW	33				161		
Max.08-M							
Max.8-MW							2.0
Max.TMW	19	141	111	191	109		
97,5% Perz.	22						
MMW	8	51	36	70	71		1.0
Gl.JMW					45		

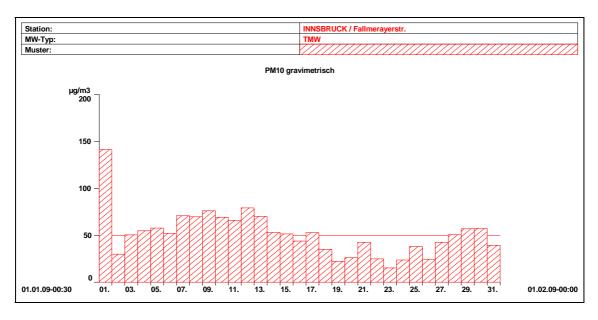
JÄNNER 2009 Zeitraum:

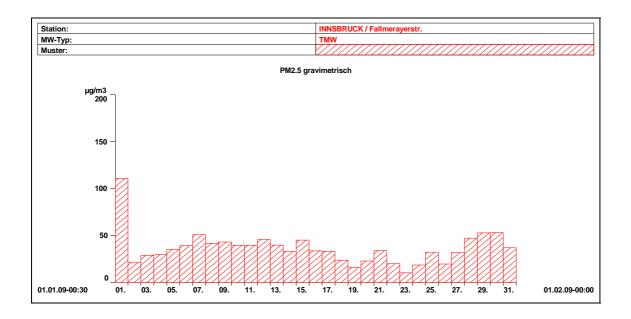
Messstelle: INNSBRUCK / Fallmerayerstrasse

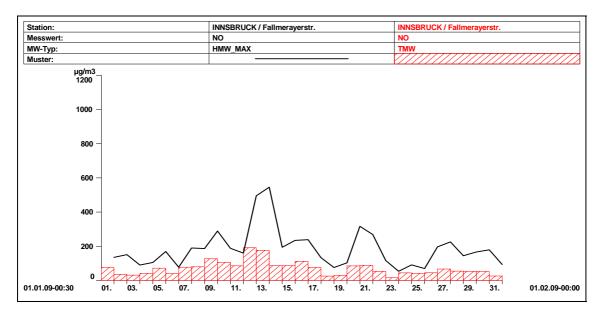
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	17		0		0
Zielwerte menschliche Gesundheit		17		6		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

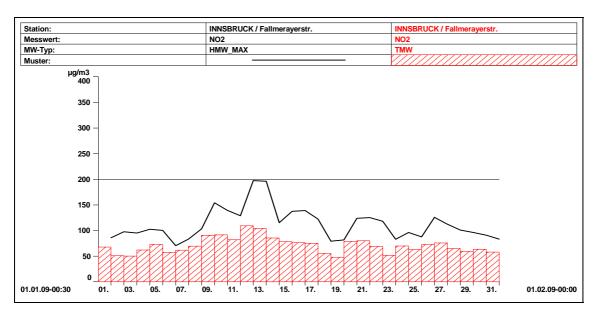

Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
2. VO gegen forstschädliche Luftverunreinigungen	0/0			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	<b>e</b> )			
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				6	
ÖAW: SO2-Kriterium für Siedlungsgebiete	0				
VDI-RL 2310: NO-Grenzwert			0		


 $[\]ddot{U}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)  $\ddot{U}2)$  Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.











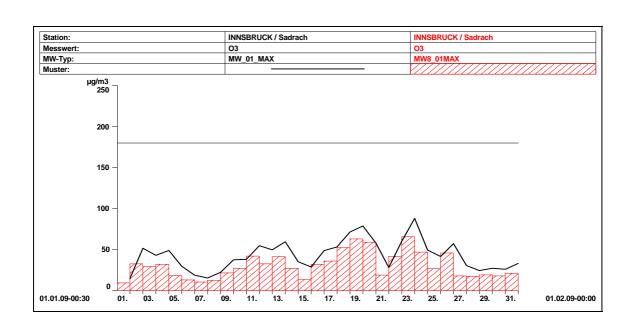



Messstelle: INNSBRUCK / Sadrach

	SC	)2	PM10	PM10	NO	_	NO2		_		03				СО	
			kont.	grav.					-		-					
	μg		μg/m³	μg/m³	$\mu g/m^3$		$\mu  g/m^3$	I		I	μg/m³				mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									23	27	15	19	19			
02.									33	33	52	52	56			
03.									29	29	43	43	45			
So 04.									32	32	49	50	51			
05.									18	18	30	35	36			
06.									13	13	19	19	19			
07.									10	11	15	15	17			
08.									13	13	22	22	24			
09.									22	22	38	38	41			
10.									27	27	38	39	40			
So 11.									42	42	55	57	58			
12.									33	33	50	50	52			
13.									41	42	60	60	60			
14.									27	28	35	35	38			
15.									14	14	29	29	32			
16.									32	32	49	49	50			
17.									36	36	53	57	60			
So 18.									52	52	71	71	75			
19.									63	63	79	79	79			
20.									59	61	58	68	71			
21.									19	22	28	28	29			
22.									42	42	60	60	61			
23.									66	66	88	89	90			
24.									47	49	49	54	58			
So 25.									27	27	42	42	43			
26.									46	46	57	57	59			
27.									18	18	31	31	34			
28.									17	17	24	26	27			
29.									19	19	27	27	29			
30.									18	18	26	27	27			
31.									21	21	33	33	38			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						90	
Max.01-M						88	
Max.3-MW							
Max.08-M							
Max.8-MW						66	
Max.TMW						49	
97,5% Perz.							
MMW						18	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach


## Anzahl der Tage mit Grenzwertüberschreitungen

D4.21	502	DN (10 1)	NO	NOS	02	CO
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					3	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	_
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}\text{1})$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

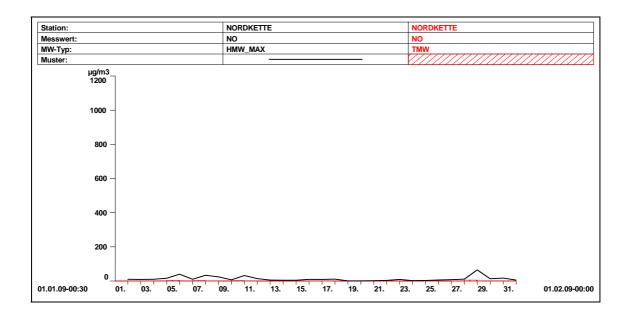
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

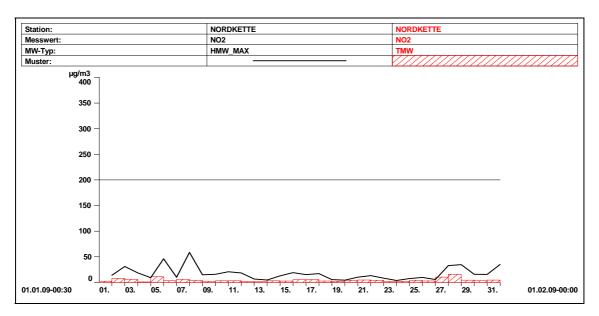
Zeitraum: JÄNNER 2009 Messstelle: NORDKETTE

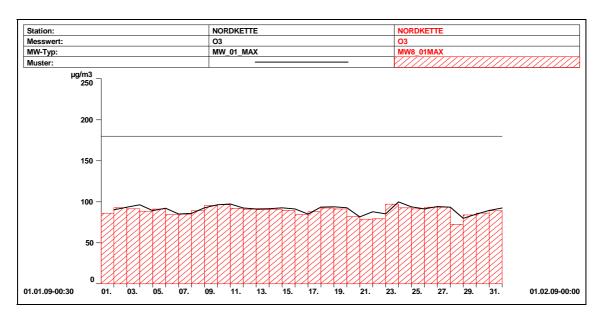
	SO	)2	PM10	PM10	NO	_	NO2		_	_	03	_		_	СО	_
		/3	kont.	grav.	/3						/3					
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.					10	2	10	14	86	86	90	90	91			
02.					9	8	27	31	93	93	93	93	94			
03.					11	6	16	19	91	91	96	96	97			
So 04.					16	1	6	9	89	89	89	89	89			
05.					40	11	43	46	91	91	92	92	92			
06.					11	3	8	10	84	84	85	85	85			
07.					34	6	39	59	85	85	86	86	86			
08.					25	4	13	15	89	89	93	93	93			
09.					7	2	9	16	96	96	96	96	96			
10.					32	3	13	21	96	96	97	97	98			
So 11.					14	3	15	18	92	92	92	93	93			
12.					6	2	6	7	91	91	91	91	91			
13.					5	1	3	5	90	90	92	92	92			
14.					5	3	10	13	91	91	93	93	93			
15.					10	3	11	19	89	89	91	91	92			
16.					9	5	12	15	84	84	85	85	86			
17.					11	6	16	17	88	88	94	94	95			
So 18.					1	3	5	6	92	93	94	94	94			
19.					1	2	4	4	91	92	93	93	93			
20.					2	4	10	10	82	82	82	84	85			
21.					4	5	11	13	79	79	88	89	89			
22.					9	4	7	8	79	79	85	85	86			
23.					2	2	3	4	97	97	100	101	101			
24.					3	2	7	8	93	93	94	94	94			
So 25.					6	4	8	10	91	91	91	93	92			
26.					8	3	6	6	93	93	94	94	94			
27.					11	10	28	33	93	94	93	94	94			
28.					66	16	29	35	72	73	80	80	81			
29.					13	4	11	16	84	84	85	85	85			
30.					17	3	15	16	86	86	89	89	90			
31.					6	5	24	35	89	89	92	94	95			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	со
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				66	59	101	
Max.01-M					43	100	
Max.3-MW					36		
Max.08-M							
Max.8-MW						97	
Max.TMW				6	16	94	
97,5% Perz.							
MMW				1	4	83	
Gl.JMW					4		

JÄNNER 2009 Zeitraum: Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.





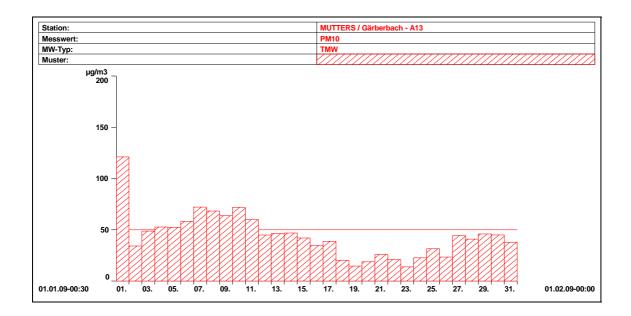


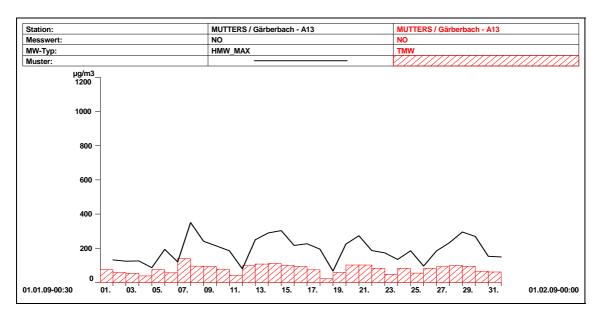
Messstelle: MUTTERS / Gärberbach - A13

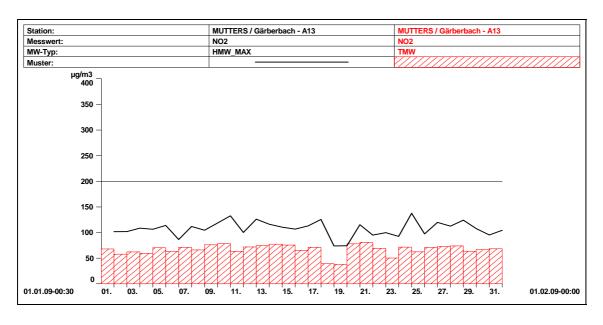
	SC	)2	PM10	PM10	NO		NO2			_	03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu  g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			121		132	68	94	102								
02.			34		124	58	96	102								
03.			49		126	62	102	109								
So 04.			53		86	59	100	106								
05.			53		194	70	106	114								
06.			58		120	63	82	86								
07.			72		350	71	108	112								
08.			68		241	66	100	105								
09.			64		213	76	112	119								
10.			72		185	78	117	133								
So 11.			60		79	63	92	100								
12.			45		250	72	117	126								
13.			46		290	74	114	116								
14.			47		303	77	100	110								
15.			42		216	76	99	107								
16.			35		226	65	110	113								
17.			39		195	71	117	126								
So 18.			20		66	39	65	74								
19.			15		224	38	74	74								
20.			19		273	78	114	115								
21.			26		187	81	90	95								
22.			21		173	69	97	100								
23.			14		134	50	86	92								
24.			23		185	72	128	138								
So 25.			31		96	62	85	97								
26.			23		184	71	115	120								
27.			44		232	73	108	112								
28.			41		295	74	118	124								
29.			46		269	64	96	108								
30.			45		153	67	89	95								
31.			38		149	68	104	104								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				350	138		
Max.01-M					128		
Max.3-MW					119		
Max.08-M							
Max.8-MW							
Max.TMW		121		139	81		
97,5% Perz.							
MMW		44		78	67		
Gl.JMW					50		

Messstelle: MUTTERS / Gärberbach - A13


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		9		0		
Zielwerte menschliche Gesundheit		9		1		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$   $\ddot{\text{U}}\text{berschreitung}$  des NO2-Grenzwertes gemäß  $\ddot{\text{O}}\text{AW}$  nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.







Messstelle: HALL IN TIROL / Sportplatz

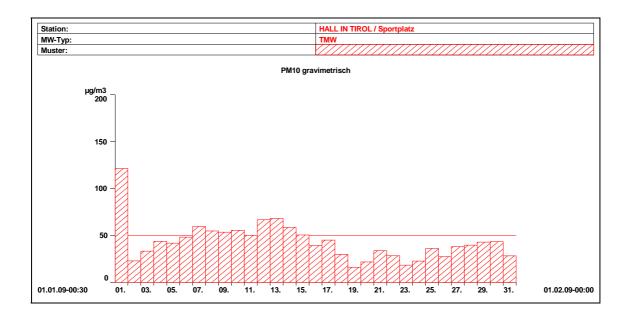
	SO	02	PM10	PM10	NO	_	NO2			_	03				СО	_
			kont.	grav.					_							
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				121	135	60	73	81								
02.				23	170	48	79	93								
03.				33	56	45	78	82								
So 04.				44	81	62	85	86								
05.				42	158	63	87	91								
06.				48	53	51	61	61								
07.				60	212	55	70	77								
08.				55	131	58	82	84								
09.				54	250	87	123	124								
10.				56	264	94	130	132								
So 11.				50	215	88	129	129								
12.				67	453	110	151	166								
13.				68	546	112	166	180								
14.				59	351	93	136	145								
15.				51	211	75	98	108								
16.				39	316	81	116	116								
17.				45	233	84	115	122								
So 18.				30	95	57	84	84								
19.				16	140	44	79	87								
20.				22	365	76	138	155								
21.				34	237	79	106	115								
22.				28	144	66	83	83								
23.				18	287	63	127	132								
24.				23	95	70	99	104								
So 25.				36	82	62	82	82								
26.				28	276	85	122	130								
27.				38	249	69	104	104								
28.				40	110	56	87	88								
29.				43	111	51	66	68								
30.				43	99	56	70	71								
31.				28	24	45	61	61								

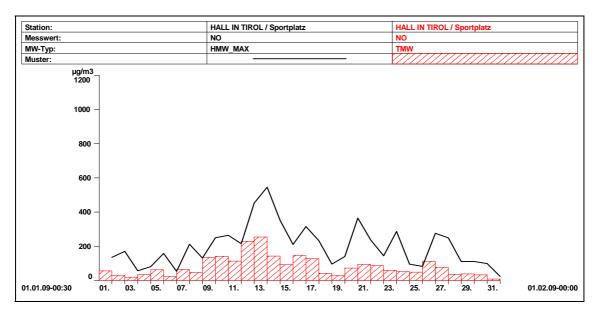
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				546	180		
Max.01-M					166		
Max.3-MW					149		
Max.08-M							
Max.8-MW							
Max.TMW			121	254	112		
97,5% Perz.							
MMW			43	80	69		
Gl.JMW					43		

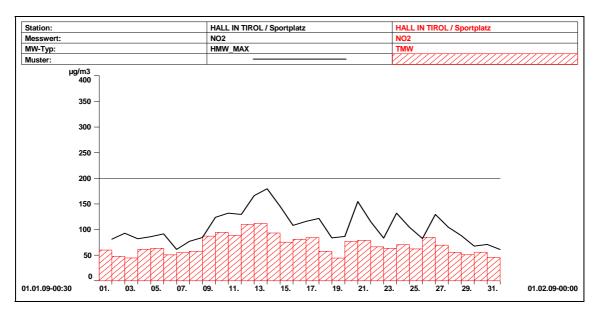
JÄNNER 2009 Zeitraum:

Messstelle: HALL IN TIROL / Sportplatz

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		9		0		
Zielwerte menschliche Gesundheit		9		9		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit			•			


langmistiger <u>Zierwert</u> menschnene Gesundheit			
2. VO gegen forstschädliche Luftverunreinigungen			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)			
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				9	
ÖAW: SO2-Kriterium für Siedlungsgebiete					
VDI-RL 2310: NO-Grenzwert			0		


 $[\]ddot{\text{U}}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.







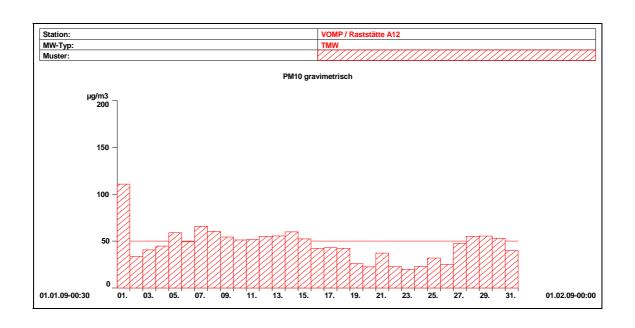
Messstelle: VOMP / Raststätte A12

	SC	)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				111	176	75	109	116								
02.				33	340	64	144	168								
03.				41	190	68	121	134								
So 04.				45	179	74	144	144								
05.				59	358	87	133	136								
06.				49	159	67	100	103								
07.				66	452	68	103	103								
08.				60	336	69	127	129								
09.				54	590	107	192	202								
10.				51	646	112	176	180								
So 11.				52	232	90	140	147								
12.				55	535	90	156	163								
13.				55	849	112	192	205								
14.				60	585	104	174	186								
15.				52	467	101	141	159								
16.				42	603	94	157	159								
17.				43	570	92	147	165								
So 18.				42	260	83	152	157								
19.				26	373	79	118	125								
20.				23	275	90	124	131								
21.				37	569	93	141	152								
22.				23	388	78	145	154								
23.				20	223	86	138	149								
24.				23	302	89	146	152								
So 25.				32	178	74	131	133								
26.				25	341	84	154	157								
27.				47	490	95	152	161								
28.				55	376	82	147	150								
29.				55	448	83	127	136								
30.				53	483	83	119	148								
31.				40	293	87	132	138								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				849	205		
Max.01-M					192		
Max.3-MW					184		
Max.08-M							
Max.8-MW							
Max.TMW			111	300	112		
97,5% Perz.							
MMW			46	150	86		
Gl.JMW					67		

Messstelle: VOMP / Raststätte A12

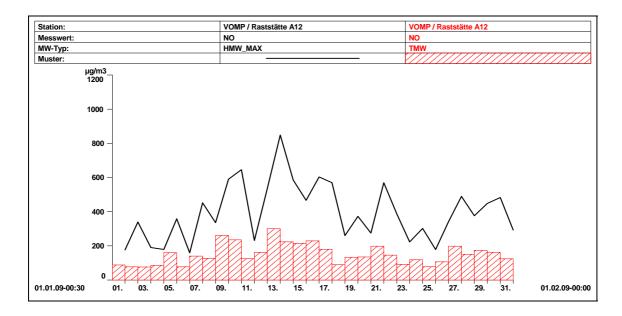
### Anzahl der Tage mit Grenzwertüberschreitungen

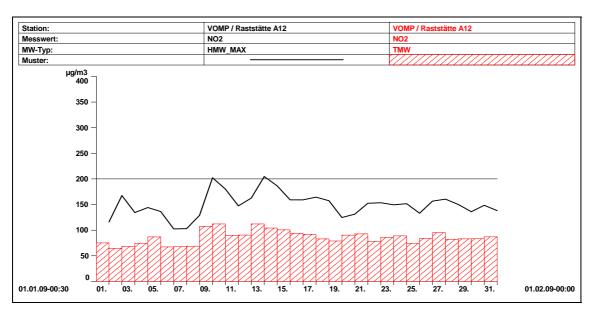

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		14		2		
Zielwerte menschliche Gesundheit		14		21		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI l	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				21		

 $[\]ddot{\text{U}}\text{1})$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert


0




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.





Messstelle: VOMP / An der Leiten

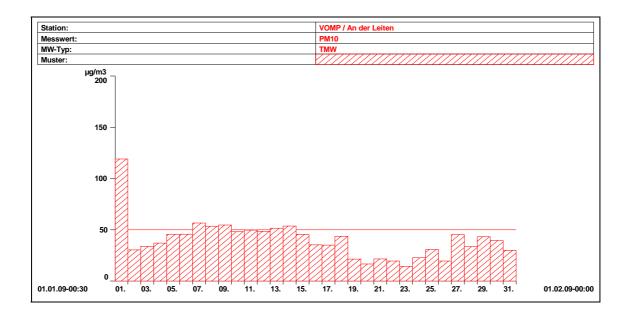
	SO	)2	PM10 kont.	PM10	NO		NO2				03		_		со	
	μg	/m³	μg/m ³	grav. μg/m³	μg/m³		$\mu g/m^3$		-		$\mu g/m^3$				mg/m³	
	۴۵	max	mg/III	mg/	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			119		108	56	78	79								
02.			30		211	44	102	116								
03.			34		114	47	92	98								
So 04.			37		107	56	91	101								
05.			46		238	67	91	91								
06.			46		112	52	75	76								
07.			57		233	53	73	74								
08.			54		163	52	80	84								
09.			55		366	83	148	153								
10.			48		435	87	136	137								
So 11.			50		180	73	110	116								
12.			48		348	76	128	131								
13.			52		570	88	144	145								
14.			54		289	79	120	120								
15.			46		198	70	87	93								
16.			35		321	65	104	105								
17.			35		305	68	113	115								
So 18.			44		168	63	105	109								
19.			21		193	60	95	106								
20.			17		95	63	82	86								
21.			22		148	64	76	86								
22.			20		160	50	82	86								
23.			14		69	55	80	82								
24.			23		102	64	83	97								
So 25.			31		84	53	80	87								
26.			20		183	61	94	97								
27.			45		196	72	88	90								
28.			34		99	58	95	100								
29.			43		102	57	74	79								
30.			40		84	53	63	68								
31.			30		31	49	65	71								

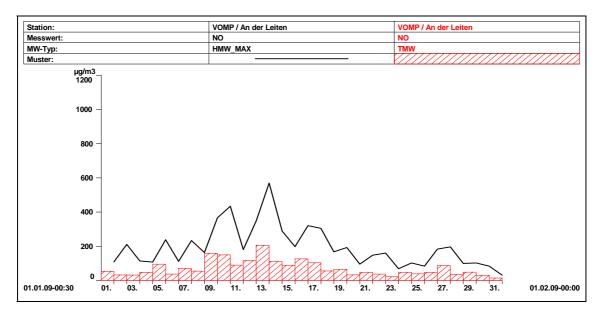
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				570	153		
Max.01-M					148		
Max.3-MW					138		
Max.08-M							
Max.8-MW							
Max.TMW		119		206	88		
97,5% Perz.							
MMW		40		70	63		
Gl.JMW					42		

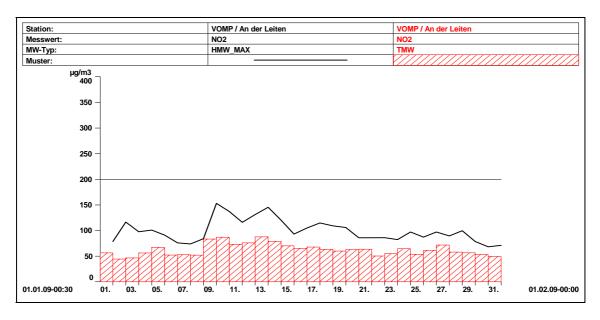
JÄNNER 2009 Zeitraum:

Messstelle: VOMP / An der Leiten

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		6		0		
Zielwerte menschliche Gesundheit		6		3		
Zielwerte Ökosysteme, Vegetation				n.a.	•	


Ozongesetz			
Alarmschwelle			
Informationsschwelle			
langfristiger Zielwert menschliche Gesundheit			
2. VO gegen forstschädliche Luftverunreinigungen			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


 $[\]ddot{\text{U}}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

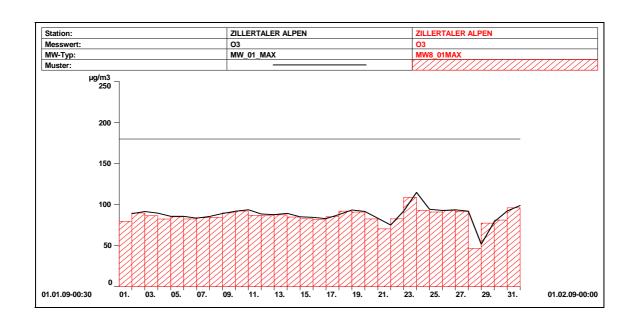






Messstelle: ZILLERTALER ALPEN

	SC	)2	PM10	PM10	NO		NO2			03		03			CO	_
		_	kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									84	84	89	89	90			
02.									90	90	92	92	92			
03.									86	86	90	90	90			
So 04.									82	83	86	86	86			
05.									85	85	86	86	86			
06.									83	83	83	84	84			
07.									84	84	85	85	86			
08.									84	84	89	89	89			
09.									90	90	92	92	93			
10.									92	92	94	94	94			
So 11.									87	87	89	89	89			
12.									86	87	88	88	89			
13.									87	87	89	89	89			
14.									85	85	85	85	86			
15.									83	83	84	85	85			
16.									82	82	83	83	83			
17.									85	85	88	88	88			
So 18.									92	92	93	94	94			
19.									91	91	92	92	93			
20.									82	83	83	84	86			
21.									70	70	75	75	80			
22.									83	83	92	92	93			
23.									109	109	115	115	115			
24.									93	93	94	94	95			
So 25.									91	91	93	93	93			
26.									93	93	94	94	94			
27.									92	92	92	92	92			
28.									46	47	52	52	52			
29.									77	77	79	79	79			
30.									81	81	92	92	94			
31.									96	96	99	99	99			


	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						115	
Max.01-M						115	
Max.3-MW							
Max.08-M							
Max.8-MW						109	
Max.TMW						98	
97,5% Perz.							
MMW			, in the second			81	·
Gl.JMW							

Messstelle: ZILLERTALER ALPEN

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					1	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$   $\ddot{\text{U}}\text{berschreitung}$  des NO2-Grenzwertes gemäß  $\ddot{\text{O}}\text{AW}$  nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

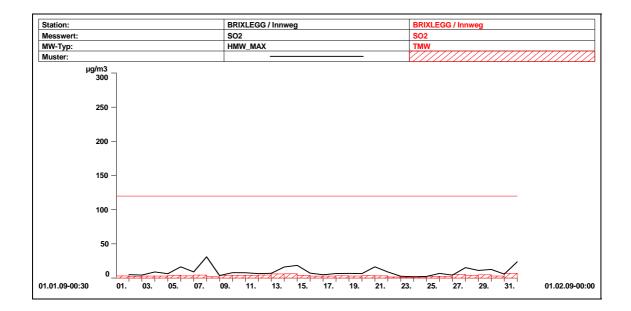
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

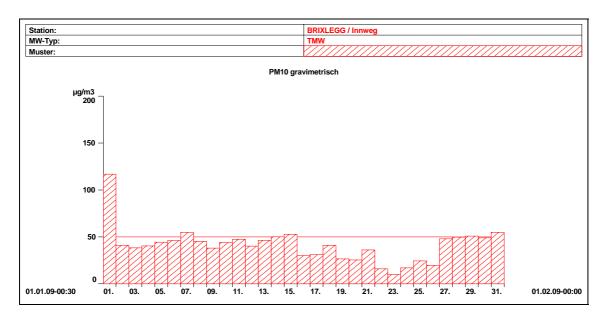
 $Messstelle: \quad BRIXLEGG \, / \, Innweg$ 

	SO	)2	PM10	PM10	NO		NO2				03				СО	_
		, ,	kont.	grav.	/ 2		/ 2				/ 2				/ 2	_
	μg		$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	<u> </u>
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	3	5		117			-									
02.	2	4		41												
03.	3	9		38												
So 04.	3	6		40												
05.	4	16		44												
06.	3	9		46												
07.	4	31		55												
08.	2	4		45												
09.	4	8		38												
10.	4	8		44												
So 11.	4	6		47												
12.	4	7		40												
13.	6	16		46												
14.	6	18		50												
15.	4	7		53												
16.	3	5		30												
17.	3	7		31												
So 18.	3	7		41												
19.	3	7		27												
20.	4	16		25												
21.	3	9		36												
22.	2	3		16												
23.	1	2		10												
24.	1	2		17												
So 25.	3	7		24												
26.	2	4		20												
27.	5	15		48												
28.	4	11		50												
29.	5	13		51												
30.	3	6		49												
31.	7	24		55												

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	31						
Max.01-M							
Max.3-MW	17						
Max.08-M							
Max.8-MW							
Max.TMW	7		117				
97,5% Perz.	10						
MMW	4		41				
Gl.JMW							

JÄNNER 2009 Zeitraum:


Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	5				
Zielwerte menschliche Gesundheit		5				
Zielwerte Ökosysteme, Vegetation	0					
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{U}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.





Messstelle: KRAMSACH / Angerberg

	SC	02	PM10	PM10	NO		NO2	_			03	_			СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				72	54	44	57	61	12	13	14	14	17			
02.				31	62	33	51	53	22	22	34	34	38			
03.				31	59	37	71	75	34	34	36	38	37			
So 04.				27	42	50	70	71	17	17	27	27	29			
05.				27	123	52	70	78	13	13	26	26	27			
06.				37	52	44	55	55	15	15	18	20	21			
07.				44	69	44	49	53	12	12	19	20	20			
08.				48	42	43	63	63	18	18	25	25	26			
09.				35	136	63	83	84	14	14	27	27	27			
10.				33	121	67	85	85	25	25	32	32	33			
So 11.				36	69	63	77	82	20	20	31	31	32			
12.				24	50	60	77	82	27	27	40	41	42			
13.				28	217	65	84	96	17	17	35	36	38			
14.				32	246	70	86	92	11	11	22	22	23			
15.				46	112	67	76	79	6	6	12	12	15			
16.				24	57	53	78	79	16	16	30	30	31			
17.				22	53	55	70	70	22	22	33	34	35			
So 18.				24	32	52	68	69	21	21	30	30	35			
19.				14	38	37	56	61	32	32	43	43	45			
20.				8	131	38	69	87	42	43	68	68	69			
21.				18	125	51	67	73	21	24	26	27	29			
22.				13	58	35	57	60	36	37	49	49	49			
23.				8	14	33	52	55	63	63	76	79	79			
24.				15	25	41	72	72	64	63	55	56	57			
So 25.				21	38	42	64	64	39	39	58	58	58			
26.				19	41	54	85	86	37	37	54	55	56			
27.				33	126	61	69	74	6	6	11	11	15			
28.				36	64	39	55	58	28	29	40	40	40			
29.				40	118	47	61	63	14	16	19	20	22			
30.				35	82	42	57	57	20	20	32	33	33			
31.				27	16	33	48	55	26	26	29	29	29			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				246	96	79	
Max.01-M					86	76	
Max.3-MW					82		
Max.08-M							
Max.8-MW						63	
Max.TMW			72	49	70	43	
97,5% Perz.							
MMW			29	21	49	14	
Gl.JMW					25		

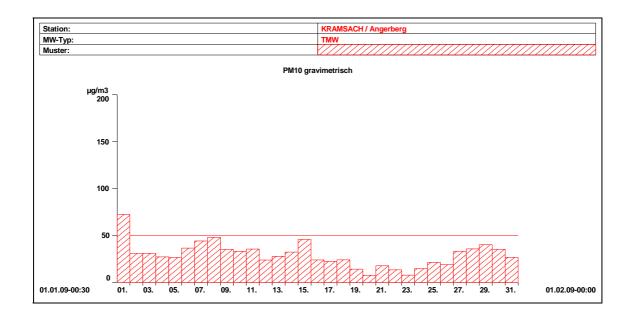
0

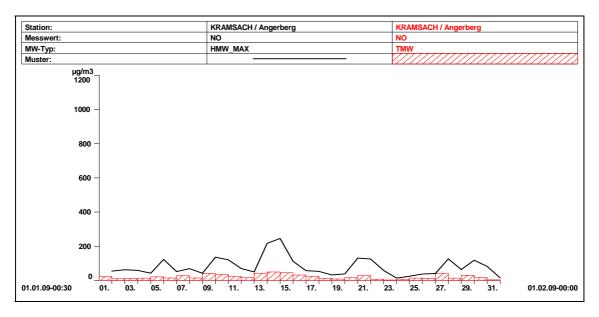
JÄNNER 2009 Zeitraum:

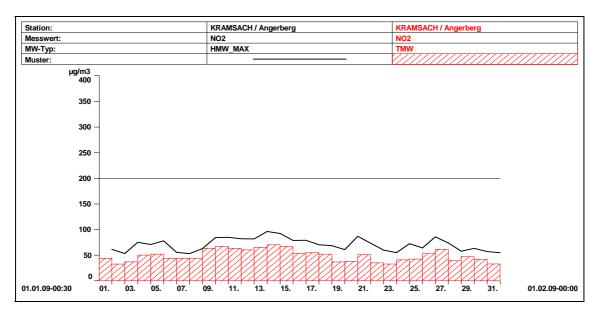
Messstelle: KRAMSACH / Angerberg

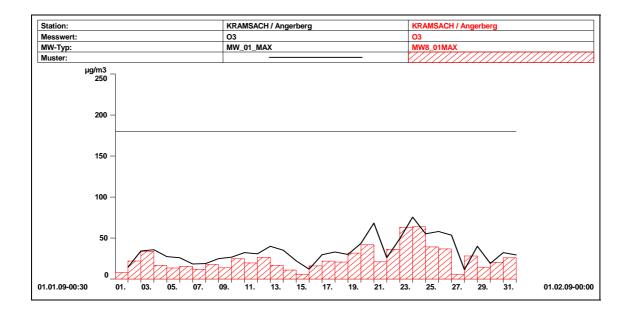
# Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		1		0		
Zielwerte menschliche Gesundheit		1		0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD)	[ Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				24	2	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.





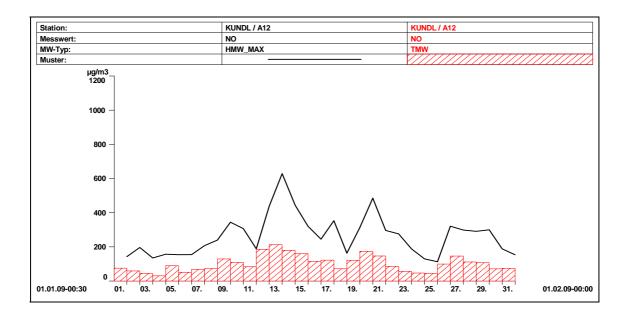


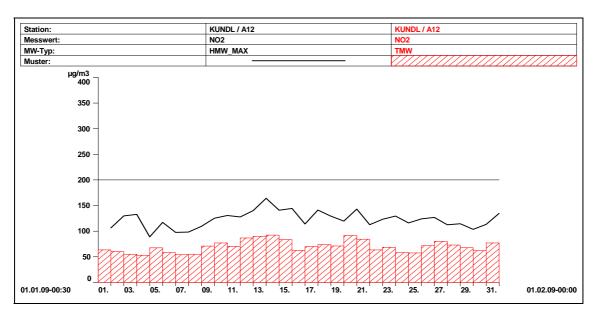


Zeitraum: JÄNNER 2009 Messstelle: KUNDL / A12

	SC	02	PM10	PM10	NO		NO2			_	03	_			СО	
			kont.	grav.		_			_							
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	_		_	$\mu g/m^3$				mg/m³	•
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					143	63	106	106								
02.					196	60	97	130								
03.					135	55	104	133								
So 04.	_				157	53	81	89								
05.					154	67	108	117								
06.					154	58	96	98								
07.					207	54	97	98								
08.					240	55	97	110								
09.					344	71	114	125								
10.					307	77	111	131								
So 11.					189	70	116	128								
12.					438	87	132	140								
13.					629	90	154	164								
14.					444	92	134	141								
15.					321	83	127	144								
16.					245	62	103	114								
17.					353	70	119	141								
So 18.					163	74	119	129								
19.					313	71	116	120								
20.					485	91	125	143								
21.					296	84	106	113								
22.					276	64	104	123								
23.					188	68	125	129								
24.					130	58	85	116								
So 25.					113	57	122	124								
26.					321	72	126	127								
27.					298	80	112	112								
28.					291	73	106	115								
29.					300	68	102	104								
30.					188	62	103	113								
31.					154	77	123	135								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31		
Verfügbarkeit				98%	98%		
Max.HMW				629	164		
Max.01-M					154		
Max.3-MW					131		
Max.08-M							
Max.8-MW							
Max.TMW				213	92		
97,5% Perz.							
MMW				102	70		
Gl.JMW					57		


JÄNNER 2009 Zeitraum: Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				6		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				6		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{U}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



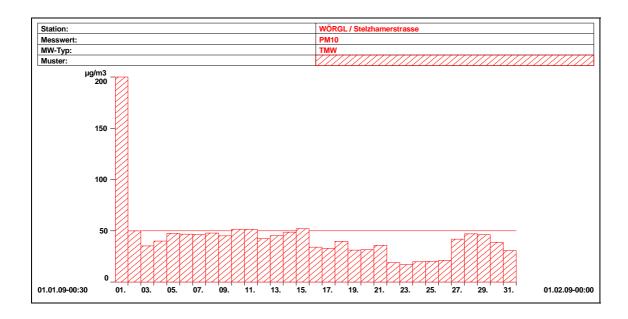


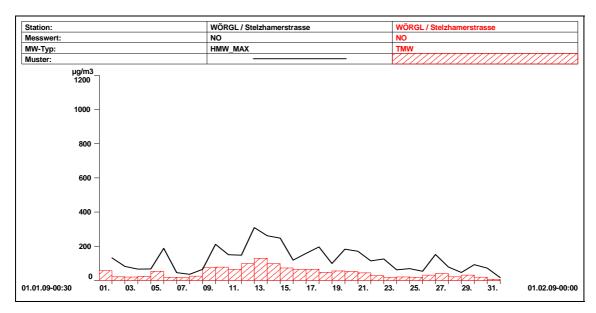
Messstelle: WÖRGL / Stelzhamerstrasse

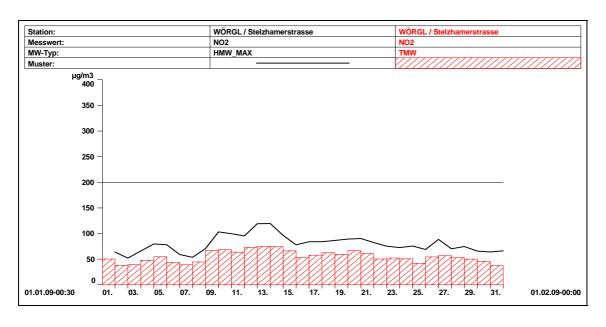
	SO	02	PM10 kont.	PM10 grav.	NO		NO2				03	_			со	
	μg	/m³	μg/m³	μg/m ³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max	, ,		max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			204		132	50	63	64								
02.			50		82	38	50	52								
03.			35		66	39	64	66								
So 04.			40		67	48	80	80								
05.			47		188	55	76	78								
06.			47		45	43	58	59								
07.			46		36	39	52	54								
08.			48		65	44	70	71								
09.			45		211	67	102	103								
10.			52		150	68	93	100								
So 11.			51		148	64	93	95								
12.			42		309	73	112	119								
13.			45		262	75	111	119								
14.			49		248	75	93	96								
15.			52		118	66	78	78								
16.			34		159	53	82	84								
17.			33		196	58	84	84								
So 18.			40		99	62	85	87								
19.			31		183	59	87	89								
20.			32		171	67	89	90								
21.			36		114	61	82	82								
22.			19		126	50	70	75								
23.			17		62	52	69	73								
24.			20		69	51	73	76								
So 25.			20		54	42	61	69								
26.			21		152	54	87	89								
27.			42		78	57	70	70								
28.			47		46	53	74	75								
29.			46		92	50	65	66								
30.			39		72	46	63	64								
31.			31		16	37	66	66								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				309	119		
Max.01-M					112		
Max.3-MW					110		
Max.08-M							
Max.8-MW							
Max.TMW		204		129	75		
97,5% Perz.							
MMW		44		45	55		
Gl.JMW					31		

Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		4		0		
Zielwerte menschliche Gesundheit		4		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$   $\ddot{\text{U}}\text{berschreitung}$  des NO2-Grenzwertes gemäß  $\ddot{\text{O}}\text{AW}$  nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.







Messstelle: KUFSTEIN / Praxmarerstrasse

	SO	)2	PM10 kont.	PM10 grav.	NO	_	NO2		_		03	_		_	со	
	μg	/m³	μg/m³	grav. μg/m³	μg/m³	_	$\mu g/m^3$		-		μg/m³			_	mg/m³	
	1.0	max	1.0	1.0	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	5	13	149		100	47	54	58								
02.	2	5	42		37	33	41	43								
03.	2	6	31		39	33	57	58								
So 04.	3	5	34		51	47	63	64								
05.	4	7	34		94	50	75	78								
06.	3	5	40		41	41	49	57								
07.	2	4	46		40	39	49	52								
08.	3	4	47		59	45	64	66								
09.	3	6	31		90	59	71	72								
10.	4	6	39		98	66	75	77								
So 11.	4	7	33		58	60	68	75								
12.	5	9	32		101	66	85	88								
13.	5	9	33		175	68	85	93								
14.	5	11	36		195	68	88	93								
15.	4	5	41		73	61	77	80								
16.	3	5	30		112	48	64	69								
17.	4	7	26		144	57	70	74								
So 18.	3	6	29		96	54	84	86								
19.	2	3	13		84	47	69	76								
20.	3	7	21		180	56	87	89								
21.	3	5	19		84	51	73	75								
22.	3	6	16		110	48	72	74								
23.	2	3	11		80	44	78	82								
24.	2	7	15		102	46	71	76								
So 25.	3	8	23		117	39	53	64								
26.	3	4	21		62	54	77	80								
27.	3	7	39		111	58	70	70								
28.	3	4	32		54	40	57	61								
29.	4	8	38		82	46	57	60								
30.	3	6	33		69	43	58	59								
31.	2	2	26		10	33	44	46								

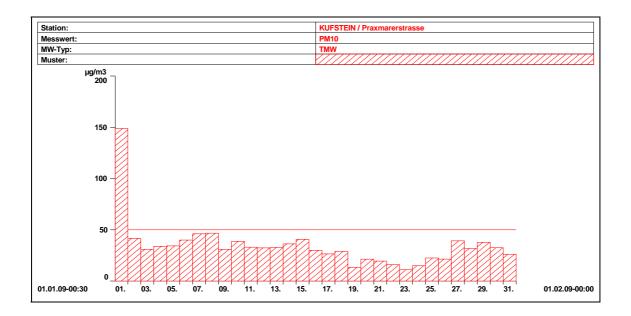
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	13			195	93		
Max.01-M					88		
Max.3-MW	10				86		
Max.08-M							
Max.8-MW							
Max.TMW	5	149		66	68		
97,5% Perz.	7						
MMW	3	34		27	50		
Gl.JMW					29		

Messstelle: KUFSTEIN / Praxmarerstrasse

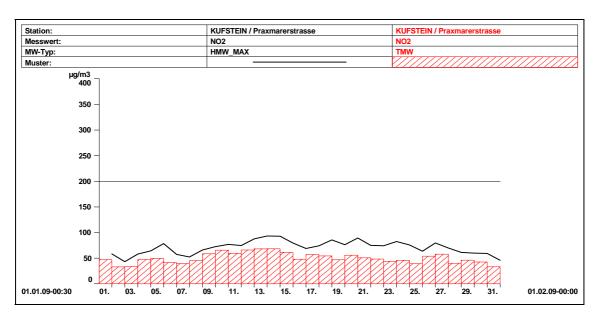
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	1		0		
Zielwerte menschliche Gesundheit		1		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
2. VO gegen forstschädliche Luftverunreinigungen	0/0			

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	<b>e</b> )			
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				25	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	
ÖAW: SO2-Kriterium für Siedlungsgebiete	0				
VDI-RL 2310: NO-Grenzwert			0		


 $[\]ddot{\text{U}}1)$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

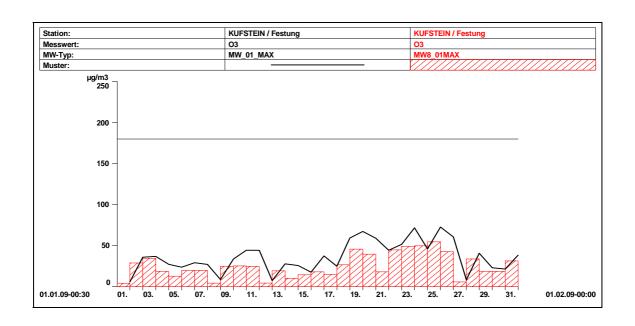






Messstelle: KUFSTEIN / Festung

	SC	)2	PM10	PM10	NO		NO2			О3			СО			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu  g/m^3$				$\mu  g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									4	4	6	6	6			
02.									29	29	36	36	37			
03.									34	34	37	37	41			
So 04.									18	18	27	27	28			
05.									13	13	24	24	24			
06.									20	20	29	29	30			
07.									20	22	27	27	28			
08.									4	4	9	9	10			
09.									25	24	34	34	34			
10.									25	24	44	49	52			
So 11.									25	24	44	44	47			
12.									4	5	7	7	12			
13.									19	20	28	28	28			
14.									10	10	26	28	31			
15.									14	14	18	18	20			
16.									18	18	37	37	38			
17.									15	15	25	25	26			
So 18.									27	27	59	59	65			
19.									46	45	67	74	76			
20.									40	40	59	59	66			
21.									18	19	44	51	52			
22.									45	46	52	52	53			
23.									49	48	72	72	73			
24.									50	49	46	46	46			
So 25.									55	55	73	73	73			
26.									43	43	61	62	63			
27.									6	6	8	9	9			
28.									34	34	41	41	41			
29.									18	18	23	23	23			
30.									19	18	21	21	24			
31.									31	31	38	38	39			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						25	
Verfügbarkeit						90%	
Max.HMW						76	
Max.01-M						73	
Max.3-MW							
Max.08-M							
Max.8-MW						55	
Max.TMW						35	
97,5% Perz.							
MMW						14	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					0	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SO	)2	PM10	PM10	NO		NO2				03				со	
	_		kont.	grav.				_								
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	3	7		153	212	78	120	141						2.4	2.6	3.0
02.	3	5		39	249	62	114	124						1.6	1.7	1.9
03.	3	5		60	199	65	104	114								
So 04.	2	5		70	187	65	117	118								
05.	4	6		88	372	103	173	179								
06.	3	5		79	164	76	108	110								
07.	4	7		75	336	86	151	160						2.5	3.5	3.6
08.	4	6		65	348	82	153	160						2.4	4.0	4.1
09.	3	6		72	348	89	158	159						2.4	3.3	4.0
10.	3	5		80	293	95	165	170						2.3	3.6	4.1
So 11.	3	5		69	259	82	133	139						2.3	3.0	3.2
12.	4	9		71	548	111	192	205						2.6	4.3	4.5
13.	5	8		77	514	112	182	184						3.0	3.9	4.0
14.	4	8		76	387	101	150	156						2.9	3.2	3.4
15.	4	8		85	459	98	157	170						2.4	2.9	3.4
16.	4	9		57	589	89	157	163						2.5	3.5	3.6
17.	3	6		43	285	65	137	154						2.4	3.0	3.0
So 18.	3	5		63	285	66	123	129						2.5	3.4	3.5
19.	4	9		51	524	96	191	192						2.4	2.8	3.1
20.	3	6		50	351	87	141	143						2.1	2.6	2.7
21.	3	6		40	413	91	139	146						1.9	2.5	2.6
22.	4	8		54	371	76	116	124						1.8	2.2	2.7
23.	3	5		22	255	65	137	150						1.3	1.4	1.6
24.	3	5		30	213	69	123	143						1.4	2.1	2.7
So 25.	2	5		28	213	54	124	134						1.4	2.4	2.5
26.	4	7		37	337	83	135	150						1.8	2.6	3.4
27.	3	6		48	287	87	136	138						1.7	2.0	2.6
28.	4	10		34	391	73	148	161						1.4	2.1	2.1
29.	4	6		36	285	75	135	150						1.8	2.6	2.7
30.	3	7		45	325	76	132	140						1.7	2.9	3.1
31.	2	4		21	87	34	62	81						1.6	0.9	1.2

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	31		31	31	31		
Verfügbarkeit	98%		100%	98%	98%		85%
Max.HMW	10			589	205		
Max.01-M					192		4.3
Max.3-MW	8				183		
Max.08-M							
Max.8-MW							3.0
Max.TMW	5		153	221	112		
97,5% Perz.	7						
MMW	3		59	128	80		1.5
Gl.JMW					43		

Messstelle: LIENZ / Amlacherkreuzung

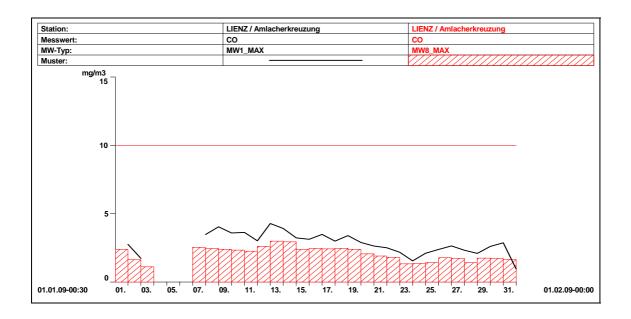
# Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	18		1		0
Zielwerte menschliche Gesundheit		18		16		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				16		

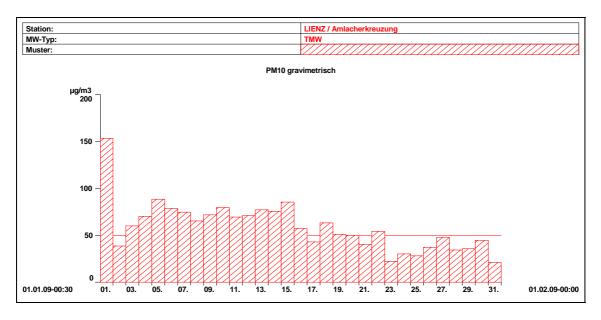
 $[\]ddot{\text{U}}1)$   $\ddot{\text{U}}\text{berschreitung}$  des NO2-Grenzwertes gemäß  $\ddot{\text{O}}\text{AW}$  nur für den JMW (gleitend)

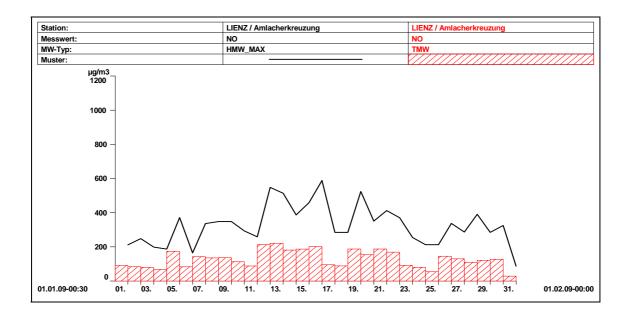
ÖAW: SO2-Kriterium für Siedlungsgebiete

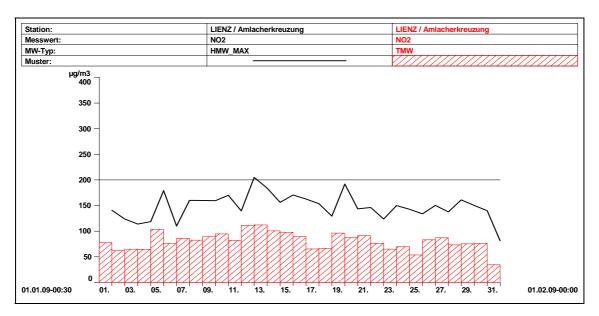
VDI-RL 2310: NO-Grenzwert


0

0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.





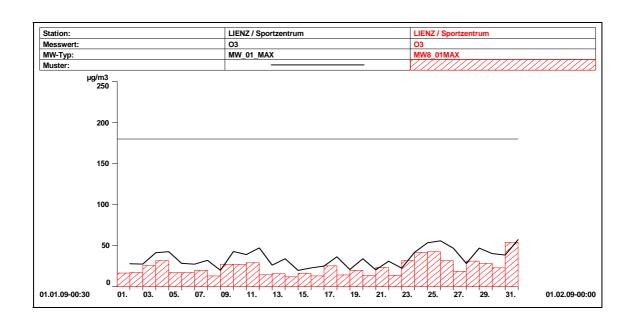






 $Messstelle: \quad LIENZ \, / \, Sportzentrum$ 

	SC	)2	PM10	PM10	NO		NO2			_	03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mug/m^3$				$\mu  g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									17	17	28	28	30			
02.									17	17	27	28	31			
03.									26	26	41	44	45			
So 04.									32	32	43	43	43			
05.									17	17	28	28	30			
06.									17	17	27	27	28			
07.									20	20	32	33	34			
08.									13	13	20	20	22			
09.									27	27	43	43	43			
10.									27	27	39	41	41			
So 11.									29	29	47	47	52			
12.									14	14	26	26	29			
13.									16	16	34	34	36			
14.									12	12	20	20	20			
15.									16	16	23	23	25			
16.									13	13	25	27	28			
17.									25	26	36	36	39			
So 18.									14	14	21	21	22			
19.									20	20	34	35	37			
20.									13	13	20	20	22			
21.									23	23	31	31	32			
22.									14	14	22	22	23			
23.									32	32	42	42	44			
24.									42	42	53	53	54			
So 25.									42	43	56	58	60			
26.									32	32	47	47	50			
27.									19	19	28	28	32			
28.									31	32	47	48	49			
29.									28	29	40	41	42			
30.									23	24	38	44	46			
31.									54	54	57	57	58			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						60	
Max.01-M						57	
Max.3-MW							
Max.08-M							
Max.8-MW						54	
Max.TMW						45	
97,5% Perz.							
MMW						12	
Gl.JMW							

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					0	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$  Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

### Beurteilungsunterlagen:

#### A. Inländische Grenzwerte

### I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

#### a) Schutz der menschlichen Gesundheit

Gi	Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)											
Luftschadstoff	HMW	MW3	MW8	TMW	JMW							
Schwefeldioxid	200 *)			120								
Kohlenmonoxid			10									
Stickstoffdioxid	200				30 **)							
$PM_{10}$				50 ***)	40							
	Aları	nwerte in μg/m³										
Schwefeldioxid		500										
Stickstoffdioxid		400										
	Ziel	werte in μg/m³										
Stickstoffdioxid				80								
$PM_{10}$				50	20							

### b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³											
Luftschadstoff	HMW	MW3	MW8	TMW	JMW						
Schwefeldioxid					201)						
Stickstoffoxide					30						
	Ziel	werte in μg/m³									
Schwefeldioxid				50							
Stickstoffdioxid				80							
1) für das Kalenderjahr und Winterhalbjahr (1.0	Oktober bis 31.März	)		•							

# II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)							
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)							
Zielwert	120 µg/m³ als Achtstundenmittelwert *)							
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.								

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5  $\mu g/m^3$  gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

### III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂ )										
	April - Oktober	November - März								
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³								
(HMW) in den Monaten										
Die zulässige Überschreitung des Grenzwertes	, die sich aus der Perzentilregelung ergibt, da	urf höchstens 100% des Grenzwertes betragen.								
Tagesmittelwert (TMW) 0,05 mg/m³ 0,10 mg/m³										
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³								

# IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Nov. 1998: Luftqualitätskriterien Stickstoffdioxid ( $\mathrm{NO}_2$ )					August 1989: Luftqualitätskriterien Ozon (O ₃ )							
Wirkungsbezogene Immissionsgrenzkonzentrationen für $NO_2$ in $mg/m^3$				Wirkungsbezogene Immissionsgrenzkonzentrationen für $O_3$ in $mg/m^3$									
HMW TMW JMW				HMW	1MW	8MW	Vegetations- periode *)						
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-					
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060					
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010										
*) als Mittelwert der Siebe	nstunden	mittelwe	rte in der	Zeit von 09.00 – 16.00 Uhr MEZ wä	ihrend de	r Vegetat	ionsperio	ode					

Die höchstzulässige Konzentration von Schwefeldioxid $(\mathrm{SO}_2)$ in der freien Luft beträgt			
	in Erholungsgebieten		in allgemeinen Siedlungsgebieten
	Schwefeldioxid in mg/m³ Luft		
	April - Oktober	November – März	
Tagesmittelwert	0,05	0,10	0,20
Halbstundenmittelwert	0,07	0,15	0,20
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

#### V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)			
Tagesmittelwert	500 μg/m³		
Halbstundenmittelwert	1000 μg/m³		

# IG-L Überschreitungen:

#### PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00 Tagesmittelwerte >  $50\mu g/m3$ 

MESSSTELLE	Datum WERT[μg	r/m3]
MUTTERS / Gärberbach - A13 Anzahl: 9	04.01.2009 05.01.2009 06.01.2009 07.01.2009 08.01.2009 09.01.2009 10.01.2009	53 58 72 68 64 72
VOMP / An der Leiten VOMP / An der Leiten VOMP / An der Leiten VOMP / An der Leiten	01.01.2009 07.01.2009 08.01.2009 09.01.2009 13.01.2009 14.01.2009	57 54 55 52
WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse Anzahl: 4	10.01.2009 11.01.2009	52 51
KUFSTEIN / Praxmarerstrasse Anzahl: 1	01.01.2009	149

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00 Tagesmittelwerte >  $50\mu g/m3$ 

MESSSTELLE	Datum	WERT[µg/m	3]
IMST / Imsterau	01.01	.2009	63
IMST / Imsterau	05.01	.2009	51
IMST / Imsterau	07.01	.2009	54
IMST / Imsterau	08.01	.2009	52
IMST / Imsterau	09.01	.2009	57
IMST / Imsterau	10.01	.2009	53
IMST / Imsterau	12.01	.2009	51
IMST / Imsterau	13.01	.2009	52
Anzahl: 8			

<pre>IMST / A12 IMST / A12</pre>	01.01.2009 04.01.2009 05.01.2009 06.01.2009 07.01.2009 08.01.2009 12.01.2009 14.01.2009	57 51 55 53 55 61 57
INNSBRUCK / Andechsstrasse Anzahl: 18	01.01.2009 04.01.2009 05.01.2009 06.01.2009 07.01.2009 08.01.2009 10.01.2009 11.01.2009 12.01.2009 13.01.2009 14.01.2009 15.01.2009 16.01.2009 17.01.2009 28.01.2009 29.01.2009 30.01.2009	154 51 62 66 75 75 87 86 92 109 103 75 61 67 69 56
<pre>INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. Anzahl: 17</pre>	01.01.2009 04.01.2009 05.01.2009 06.01.2009 07.01.2009 08.01.2009 10.01.2009 11.01.2009 12.01.2009 13.01.2009 14.01.2009 15.01.2009 17.01.2009 28.01.2009 29.01.2009 30.01.2009	141 55 58 52 71 70 76 69 66 79 70 53 51 53 51 57
HALL IN TIROL / Sportplatz Anzahl: 9	01.01.2009 07.01.2009 08.01.2009 09.01.2009 10.01.2009 12.01.2009 13.01.2009 14.01.2009	121 60 55 54 56 67 68 59

Anzahl: 18

VOMP / Raststätte A12	01.01.2009	111
VOMP / Raststätte A12	05.01.2009	59
VOMP / Raststätte A12	07.01.2009	66
VOMP / Raststätte A12	08.01.2009	60
VOMP / Raststätte A12	09.01.2009	54
VOMP / Raststätte A12	10.01.2009	51
VOMP / Raststätte A12	11.01.2009	52
VOMP / Raststätte A12	12.01.2009	55
VOMP / Raststätte A12	13.01.2009	55
VOMP / Raststätte A12	14.01.2009	60
VOMP / Raststätte A12	15.01.2009	52
VOMP / Raststätte A12	28.01.2009	55
VOMP / Raststätte A12	29.01.2009	55
VOMP / Raststätte A12	30.01.2009	53
Anzahl: 14	30.01.2009	33
AllZallivili		
BRIXLEGG / Innweg	01.01.2009	117
BRIXLEGG / Innweg	07.01.2009	55
BRIXLEGG / Innweg	15.01.2009	53
BRIXLEGG / Innweg	29.01.2009	51
BRIXLEGG / Innweg	31.01.2009	55
Anzahl: 5	31.01.2009	55
Alizaili. 5		
KRAMSACH / Angerberg	01.01.2009	72
Anzahl: 1	01.01.2009	7 2
LIENZ / Amlacherkreuzung	01.01.2009	153
LIENZ / Amlacherkreuzung	03.01.2009	60
LIENZ / Amlacherkreuzung	04.01.2009	70
LIENZ / Amlacherkreuzung	05.01.2009	88
LIENZ / Amlacherkreuzung	06.01.2009	79
LIENZ / Amlacherkreuzung	07.01.2009	75
LIENZ / Amlacherkreuzung	08.01.2009	65
LIENZ / Amlacherkreuzung	09.01.2009	72
LIENZ / Amlacherkreuzung	10.01.2009	80
LIENZ / Amlacherkreuzung	11.01.2009	69
LIENZ / Amlacherkreuzung	12.01.2009	71
LIENZ / Amlacherkreuzung	13.01.2009	77
LIENZ / Amlacherkreuzung	14.01.2009	76
LIENZ / Amlacherkreuzung	15.01.2009	85
LIENZ / Amlacherkreuzung	16.01.2009	57
		63
LIENZ / Amlacherkreuzung	18.01.2009	
LIENZ / Amlacherkreuzung	19.01.2009	51
LIENZ / Amlacherkreuzung	22.01.2009	54

#### STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE	Datum	WERT[μς	g/m3]	
IMST / Imsterau	 09 01	 2009-16:30	223	
IMST / Imsterau		2009-17:00	230	
IMST / Imsterau		2009-17:30	242	
IMST / Imsterau	09.01.	2009-18:00	203	
IMST / Imsterau	10.01.	2009-14:30	215	
IMST / Imsterau		2009-16:30	226	
IMST / Imsterau		2009-17:00	232	
IMST / Imsterau		2009-17:30	214	
IMST / Imsterau		2009-15:30	231	
IMST / Imsterau		2009-16:00	234	
IMST / Imsterau		2009-16:30	217	
IMST / Imsterau IMST / Imsterau		2009-17:30 2009-18:00	217 260	
IMST / Imsterau IMST / Imsterau		2009-18:30	210	
IMST / Imsterau		2009-18:00	206	
Anzahl: 15	13.01.	2007 10:00	200	
Alizatii • 15				
IMST / A12	09.01.	2009-16:00	214	
IMST / A12		2009-16:30	227	
IMST / A12		2009-17:00	257	
IMST / A12	09.01.	2009-17:30	234	
IMST / A12	09.01.	2009-18:00	212	
IMST / A12	10.01.	2009-15:30	217	
IMST / A12		2009-16:00	222	
IMST / A12		2009-16:30	253	
IMST / A12		2009-17:00	270	
IMST / A12		2009-17:30	254	
IMST / A12		2009-18:00	205	
IMST / A12		2009-17:00	204	
IMST / A12		2009-17:30	208	
IMST / A12		2009-16:00 2009-17:00	211	
IMST / A12 IMST / A12		2009-17:30	216 209	
IMST / A12 IMST / A12		2009-17:30	202	
IMST / A12		2009-18:30	201	
IMST / A12		2009-18:00	210	
IMST / A12		2009-17:00	206	
IMST / A12		2009-17:30	201	
IMST / A12		2009-18:00	216	
IMST / A12	16.01.	2009-18:30	212	
IMST / A12	17.01.	2009-18:00	202	
Anzahl: 24				
INNSBRUCK / Andechsstrasse		2009-09:00	203	
INNSBRUCK / Andechsstrasse		2009-18:30	210	
INNSBRUCK / Andechsstrasse	13.01.	2009-19:00	206	
Anzahl: 3				
VOMP / Raststätte A12	00 01	2009-18:30	202	
VOMP / Raststatte A12 VOMP / Raststätte A12		2009-18:30	205	
Anzahl: 2	13.01.	2007 07.30	200	
INIDAILE - Z				
LIENZ / Amlacherkreuzung	12.01.	2009-17:30	205	
Anzahl: 1	•			

IG-L Alarmwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00 Dreistundenmittelwert >  $400 \mu g/m3$ 

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00 Tagesmittelwert >  $80\mu g/m3$ 

MESSSTELLE	Datum	WERT[μg/n	n3]
IMST / Imsterau	09.01	.2009	94
IMST / Imsterau	10.01	.2009 .2009 .2009	101
IMST / Imsterau	12.01	.2009	112
IMST / Imsterau	13.01	.2009	109
IMST / Imsterau	16.01	.2009	87
Anzahl: 5			
IMST / A12	02 01	.2009	82
IMST / A12			99
IMST / A12			117
IMST / A12			92
IMST / A12	12.01	.2009	112
IMST / A12	13.01		109
IMST / A12	14.01	.2009	
IMST / A12		.2009	
IMST / A12		.2009	
IMST / A12		.2009	
Anzahl: 10			
HELEEDWANG Out / D170	00 01	2000	0.2
HEITERWANG Ort / B179			83
HEITERWANG Ort / B179 HEITERWANG Ort / B179			96
Anzahl: 3	17.01	.2009	90
Alizalii · 5			
INNSBRUCK / Andechsstrasse	09.01	.2009	95
INNSBRUCK / Andechsstrasse			99
INNSBRUCK / Andechsstrasse			
INNSBRUCK / Andechsstrasse	12.01	.2009	120
INNSBRUCK / Andechsstrasse	13.01	.2009	111
INNSBRUCK / Andechsstrasse	12.01 13.01 14.01	.2009	93
INNSBRUCK / Andechsstrasse	20.01	.2009	82
INNSBRUCK / Andechsstrasse		.2009	
Anzahl: 8			
INNSBRUCK / Fallmerayerstr.	09 01	. 2009	91
INNSBRUCK / Fallmerayerstr.			92
INNSBRUCK / Fallmerayerstr.	11.01	.2009	82
INNSBRUCK / Fallmerayerstr.	12.01		109
INNSBRUCK / Fallmerayerstr.	13.01		104
INNSBRUCK / Fallmerayerstr.	14.01		86
Anzahl: 6			
MITTERS / Charles-hearly 712	01 01	2000	01
MUTTERS / Gärberbach - A13 Anzahl: 1	21.01	.2009	81
WITGILL. T			

HALL IN TIROL / Sportplatz	09.01.2009	87
HALL IN TIROL / Sportplatz	10.01.2009	94
HALL IN TIROL / Sportplatz	11.01.2009	88
HALL IN TIROL / Sportplatz	12.01.2009	110
HALL IN TIROL / Sportplatz	13.01.2009	112
HALL IN TIROL / Sportplatz	14.01.2009	93
HALL IN TIROL / Sportplatz	16.01.2009	81
HALL IN TIROL / Sportplatz	17.01.2009	84
HALL IN TIROL / Sportplatz	26.01.2009	85
Anzahl: 9	20.01.2009	0.5
VOMP / Raststätte A12	05.01.2009	87
VOMP / Raststätte A12	09.01.2009	107
VOMP / Raststätte A12	10.01.2009	112
VOMP / Raststätte A12	11.01.2009	90
VOMP / Raststätte A12	12.01.2009	90
VOMP / Raststätte A12	13.01.2009	112
VOMP / Raststätte A12	14.01.2009	104
VOMP / Raststätte A12	15.01.2009	101
	16.01.2009	94
VOMP / Raststätte A12 VOMP / Raststätte A12	17.01.2009	92
VOMP / Raststätte A12		83
, ,	18.01.2009	
VOMP / Raststätte A12 VOMP / Raststätte A12	20.01.2009	90
, ,	21.01.2009	93
VOMP / Raststätte A12	23.01.2009	86
VOMP / Raststätte A12	24.01.2009	89
VOMP / Raststätte A12	26.01.2009	84
VOMP / Raststätte A12	27.01.2009	95
VOMP / Raststätte A12	28.01.2009	82
VOMP / Raststätte A12	29.01.2009	83
VOMP / Raststätte A12	30.01.2009	83
VOMP / Raststätte A12	31.01.2009	87
Anzahl: 21		
VOMP / An der Leiten	09.01.2009	83
VOMP / An der Leiten	10.01.2009	87
VOMP / An der Leiten	13.01.2009	88
Anzahl: 3		
KUNDL / A12	12.01.2009	87
KUNDL / A12	13.01.2009	90
KUNDL / A12	14.01.2009	92
KUNDL / A12	15.01.2009	83
KUNDL / A12	20.01.2009	91
KUNDL / A12	21.01.2009	84
Anzahl: 6		
LIENZ / Amlacherkreuzung	05.01.2009	103
LIENZ / Amlacherkreuzung	07.01.2009	86
LIENZ / Amlacherkreuzung	08.01.2009	82
LIENZ / Amlacherkreuzung	09.01.2009	89
LIENZ / Amlacherkreuzung	10.01.2009	95
LIENZ / Amlacherkreuzung	11.01.2009	82
LIENZ / Amlacherkreuzung	12.01.2009	111
LIENZ / Amlacherkreuzung	13.01.2009	112
LIENZ / Amlacherkreuzung	14.01.2009	101
LIENZ / Amlacherkreuzung	15.01.2009	98
LIENZ / Amlacherkreuzung	16.01.2009	96 89
LIENZ / Amlacherkreuzung	19.01.2009	96
LIENZ / Amlacherkreuzung	20.01.2009	96 87
——————————————————————————————————————	21.01.2009	87 91
LIENZ / Amlacherkreuzung		
LIENZ / Amlacherkreuzung	26.01.2009	83
LIENZ / Amlacherkreuzung	27.01.2009	87
Anzahl: 16		

#### SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

___________

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00 Tagesmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

#### KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.09-00:30 - 01.02.09-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

#### OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.01.09-00:30 - 01.02.09-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.01.09-00:30 - 01.02.09-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.01.09-00:30 - 01.02.09-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!