Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Mai 2003

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 12. Juni 2003

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

$We itere\ Informations angebote:$

⇒	Tonbanddienst der Post:	0512/1552
⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Enauterung über die Dedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – Imsterau	15
Karwendel West	18
Innsbruck – Andechsstrasse (Reichenau)	20
Innsbruck – Fallmerayerstrasse (Zentrum)	24
Innsbruck – Sadrach	28
Nordkette	30
Gärberbach – A13	33
Hall in Tirol – Münzergasse	36
Vomp – Raststätte A12	39
Vomp – An der Leiten	42
Zillertaler Alpen	45
Brixlegg – Innweg	47
Kramsach – Angerberg	50
Wörgl – Stelzhamerstrasse	53
Kufstein – Franz Josef Platz (Zentrum)	56
Kufstein – Festung	59
Lienz – Amlacherkreuzung	61
Lienz – Sportzentrum	65
Beurteilungsunterlagen Grenzwerte aus Gesetzen, Verordnungen und Richtlinien	67
orenzwerte aus Gesetzen, veroranungen und Mentillien	07
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	70

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM10 Staub Schwebestaub gemäss IG-L (Mittels kontinuierlich registrierender Staubmonitore

und PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder

einem Standortfaktor, wenn dieser vorhanden ist.)

Staub (= TSP-Staub = TSP-K) Schwebestaub (Gesamtstaub) gemäss IG-L bzw. TLRV (wird aus dem PM10

Staub durch Multiplikation mit dem Faktor 1,2 gewonnen.)

TSP total suspended particles

NO Stickstoffmonoxid
NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

Gl.JMW gleitender Jahresmittelwert

MMW Monatsmittelwert
TMW Tagesmittelwert

IGL 8-MW Maximaler Achtstundenmittelwert laut Immissionsschutzgesetz Luft

Max 8-MW Maximaler Achtstundenmittelwert (gleitend)
Max 3-MW Maximaler Dreistundenmittelwert (gleitend)

Max 1-MW Maximaler Einstundenmittelwert
Max HMW Maximaler Halbstundenmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

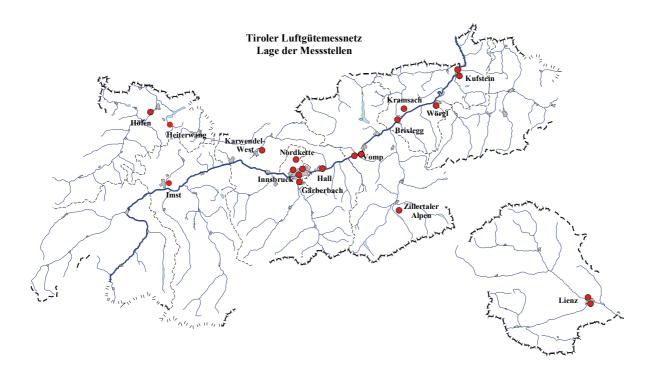
als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen % Promille = Anzahl Teile in tausend Teilen

VDI Verein Deutscher Ingenieure

2. FVO 2. Verordnung gegen forstschädliche Luftverunreinigungen


BGBl.Nr. 89/1984 (2. Forstverordnung)

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (IG-L,BGBl. 115/97)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE												
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	STAUB	NO	NO2	О3	СО					
Höfen – Lärchbichl	880 m	-	-	-	-	0	-					
Heiterwang – Ort / B179	995 m	-	0	O	O	-	-					
Imst – Imsterau	726 m	-	o	О	O	-	-					
Karwendel – West	1730 m	-	-	-	-	o	-					
Innsbruck – Andechsstrasse	570 m	-	0	O	O	0	О					
Innsbruck – Fallmerayerstrasse	580 m	O	0	O	O	-	О					
Innsbruck – Sadrach	670 m	-	-	-	-	0	-					
Nordkette	1950 m	-	-	O	О	o	-					
Gärberbach – A13	680 m	-	0	O	O	-	-					
Hall in Tirol – Münzergasse	560 m	-	0	O	O	-	-					
Vomp – Raststätte A12	550 m	-	o	О	O	-	О					
Vomp – An der Leiten	520 m	-	o	o	O	-	-					
Zillertaler Alpen	1930 m	-	-	-	-	О	-					
Brixlegg – Innweg	520 m	o	o	-	-	-	-					
Kramsach – Angerberg	600 m	-	-	o	О	О	-					
Wörgl – Stelzhamerstrasse	510 m	-	О	o	О	-	-					
Kufstein – Franz Josef Platz	500 m	0	o	o	О	-	_					
Kufstein – Festung	560 m	-	-	-	-	О	_					
Lienz – Amlacherkreuzung	670 m	0	o	o	О	-	О					
Lienz – Sportzentrum	670 m	_	_	_	_	0	_					

!!!

X

1)

Geräteausfall

Schadstoff wird nicht gemessen 1

Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt

Kurz	zübersicht über d	ie Einhaltung		rten (für Ozo 2003	n und Sticks	stoffdioxid au	ch Zielwert)			
Bezeichnung d	ler Messstelle	SO2	PM10 Staub 1)	TSP Staub	NO	NO2 1)	O3	CC		
HÖF Lärch							P,M,I			
HEITER Ort / I			0	0	0	0				
IMS Imste	ST		I_P	0	0	Ö				
KARWE	ENDEL						P,M,I			
INNSBRUCK			I_{P}	0	0	Ö	P,M,I	0		
INNSB	Andechsstrasse INNSBRUCK		I_{P}	0	0	Ö		0		
Fallmerayerstrasse INNSBRUCK			1				P,M,I			
Sadr NORDk					0	0	P,M,I			
GÄRBEI	RBACH		Т	0	0	Ö	1 ,1V1,1			
A1 HALL IN			I _P		-	Ö				
Münze VO	rgasse		0	0	0					
Raststät VOI	te A12		I_{P}	0	0	Ö,M,I		0		
An der	Leiten		I_P	0	0	Ö				
ZILLER' Alp	EN						P,M,I			
BRIXI Innv		0	I_P	0						
KRAM Angei					0	Ö	P,M,I			
WÖF Stelzham			I_P	0	0	Ö				
KUFS' Franz-Jos		0	I_P	0	0	Ö				
KUFS' Festi	TEIN						P,M,I,E			
LIE: Amlacher	NZ	0	0	0	0	Ö		0		
LIE	NZ						P,M,I			
Sportze 0	Grenzwerte der na	chstehenden Beu	teilungsgrundla	ıgen eingehalter	1		, ,			
F	Überschreitung de	r Grenzwerte der	2. FVO							
M	ÖAW: Überschrei	tung der Immissi	onsgrenzkonzen	tration für den M	Menschen					
P	ÖAW: Überschrei	tung der Immissi	onsgrenzkonzen	tration für die V	egetation 'egetation					
Ö	ÖAW: Überschrei	tung der Immissi	onsgrenzkonzen	tration für Ökos	systeme					
E	Überschreitung de	r EU-Information	nsstufe von 0.180	0 mg/m³ als Ein	stundenmittely	wert				
В	Überschreitung de Festlegung von Im									
I	Überschreitung von 62/2001) zum Sch	n Grenzwerten (f	ur Stickstoffdio	xid und Ozon at		-	sschutzgesetz Luf	t (BGBl		
I_{V}	Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBl. II Nr. 298/2001) zum Schutz von Ökosysteme und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg).									
I_P	Überschreitung des im Immissionsschutz Gesetz Luft genannten Tages ziel wertes von 50µg/m³ für PM10. Der PM10- Tages gren zwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.									
V	Überschreitung de		- C							
!	Überschreitung de				alarmgesetz ba	zw. für Ozon Vo	orwarnung			
!!	Überschreitung de	r jeweiligen Grer	nzwerte für Aları	mstufe 1 laut Sn	nogalarmgeset	z bzw. für Ozor	-Warnstufe 1			
	٠ ن									

Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2

Kurzbericht für den Mai 2003

Messnetz

Am Messnetz wurden keine Standortveränderungen durchgeführt. Die Verfügbarkeiten der gemessenen Schadstoffkomponenten sind den Messstellentabellen zu entnehmen.

HINWEIS:

Die hier veröffentlichten PM 10-Angaben sind Werte, die aus kontinuierlichen Messungen unter Verwendung von PM 10-Probenahmeköpfen erhoben wurden, anschließend und gemäss Anlage 1 des BGBl.II 344/2001 (Messkonzeptverordnung) mit dem sog. "Defaultfaktor" (= 1,3) multipliziert wurden. Die angegebenen TSP-Staubwerte ergeben sich gem. zitiertem Gesetz durch Multiplikation der einzelnen PM 10-Werte mit dem weiteren Faktor 1,2.

Klimaübersicht (MZA, Regionalstelle f. Tirol u. Vlbg.)

Wie auch schon der Mai der letzten 5 Jahre war der Wonnemonat auch heuer wieder viel zu warm. Mit einer positiven Abweichung zwischen 2,5 und 4 Grad blieb er nur knapp hinter dem Mai 2001 zurück. Trotzdem gingen wir nicht ohne Rekorde aus. 32,5 Grad, gemessen in Kufstein am 6. des Monats, waren nicht nur ein neuer Rekord für diesen Tag, sondern ein neuer Rekord für den gesamten Monat Mai! Ausreißer in der Wärmephase waren nur die pünktlich eingetroffenen Eisheiligen, an denen es vorübergehend bis auf 1500m, stellenweise sogar auf 1000m herunter schneite. Der sommerliche Charakter wird dadurch unterstrichen, dass es 12 Sommertage (Temperaturen > 25 Grad) gab (normal: 7 Tage) und sogar 4 Tropentage (>30 Grad), mit denen im Mittel noch gar nicht im Mai zu rechnen ist.

Die Niederschlagsmengen blieben vergleichsweise unspektakulär. In ganz Tirol wurden zwischen 60% und 140% des Normalwertes gemessen, also es war weder besonders trocken, noch besonders feucht. Unter den herrschenden Temperaturen konnte sich in der Landeshauptstadt gleich an 6 Tagen Gewitter entladen, im Mittel sind es nur 4 Gewittertage im Mai.

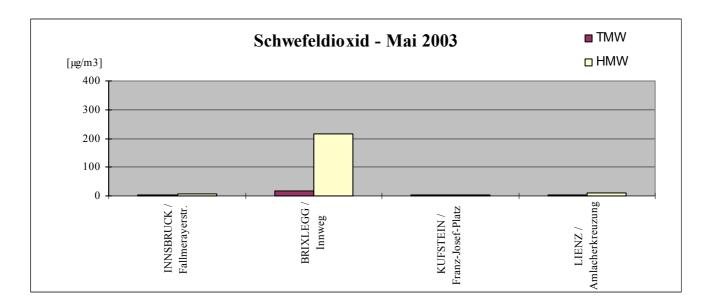
Der Föhn wehte nicht ganz so oft wie es im Frühjahr der Brauch ist, 5 mal wurden aber die 60 km/h in Innsbruck überschritten, dazu kam ein Sturm zufolge von Gewitterböen.

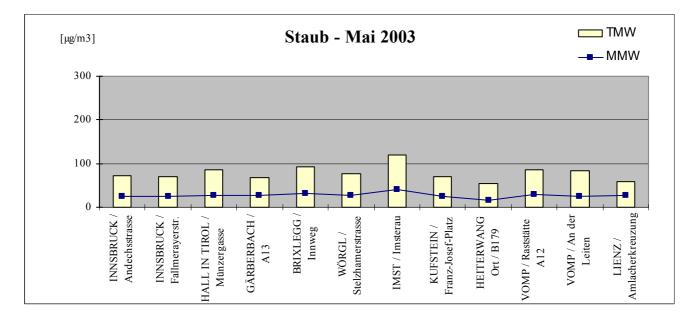
Genauso wie die Monate zuvor, schien auch im Mai die Sonne länger als gewöhnlich. Mit 224 Sonnenstunden gab es diesmal aber nur ein leichtes Plus (34 Stunden).

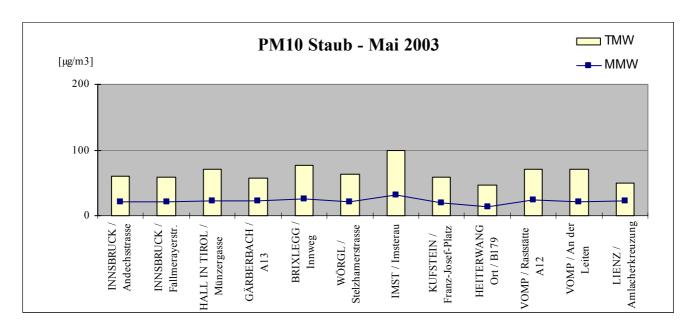
Luftschadstoffübersicht

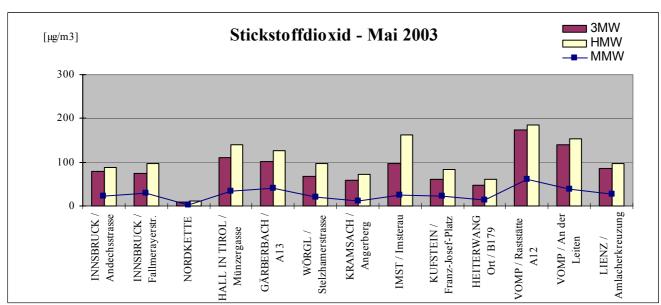
Die Auswertung für **Schwefeldioxid** ergibt für BRIXLEGG/Innweg mit 216 μ g SO2 /m³ Luft den höchsten gemessenen Halbstundenmittelwert des Messnetzes im Mai; die Kurzzeitbelastung an den anderen Standorten ist wesentlich geringer. Am genannten Ort wurde mit 5 μ g/m³ auch der höchste Monatsmittelwert erhalten. Wenngleich das IG-Luft einen Grenzwert für den Halbstundenmittelwert von 200 μ g SO2/m³ festgelegt hat, ist aufgrund der genannten Ausnahmeregelung (3 malige Überschreitung pro Tag ist zulässig) das IG-Luft als eingehalten auszuweisen. Das Kriterium für die Grenzwertüberschreitung gem. 2 Verordnung gegen forstschädliche Luftverunreinigungen wurde ebenfalls überall eingehalten.

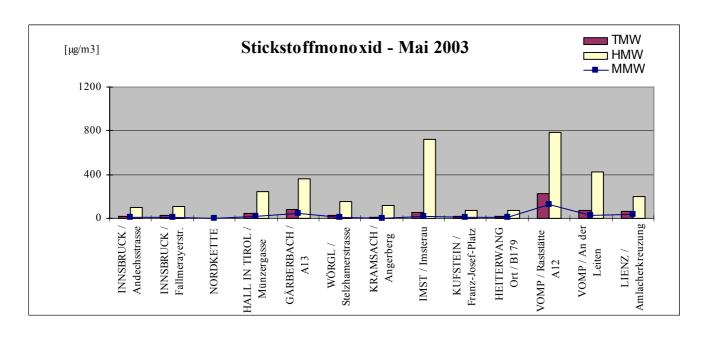
Die Auswertungen für den **Schwebstaub** (=TSP Staub) ergibt anhand der berechneten Werte bis auf die Messstelle Brixlegg/Innweg die Einhaltung des gültigen Tagesgrenzwertes von 150 μg/m³ gem. IG-Luft an allen Messorten. Der höchste Tagesmittelwert wurde in IMST/Imsterau mit 120 μg/m³ festgestellt und bestätigt die hier seit längerem festgestellten erhöhten Immissionen durch aktuelle Bautätigkeiten in unmittelbarer Nähe des Standortes. Die **PM 10-Staub-**Belastung ist gegenüber dem Vormonat allgemein leicht gestiegen, trotz vergleichsweise geringerem maximalem Tagesmittelwert des Berichtsmonates (IMST/Imsterau: 100 μg/m³ im Berichtsmonat; 112 μg/m³ im April 2003). Lagen im April nämlich "nur" 5 Orte über dem gesetzlichen Tagesgrenzwert gem. IG-Luft, so überschritten im Mai 9 Orte dieses Kriterium. Da eine 35-malige Überschreitung des Tagesgrenzwertes pro Kalenderjahr gem. IG-Luft zulässig ist, wird eine allfällige Grenzwertverletzung im Sinne des Gesetzes erst im Jahresbericht ausgewiesen werden. Beim **Stickstoffmonoxid** liefert die Messstelle VOMP/Raststätte A12 mit 124 μg NO/m3 Luft mit Abstand den höchsten Monatsmittelwert. Hier wurde auch der höchste Kurzzeitwert (Halbstundenmittelwert) von 783 μg NO/m³ festgestellt. Aber auch in IMST/Imsterau wurde (baustellenbedingt) mit 725 μg NO/m³ ein annähernd gleich hoher Wert gemessen, das Monatsmittel ist mit 43 μg NO/m³ Luft allerdings deutlich tiefer. Hier wie an den übrigen Messstellen sind die Grenzwerte gem. VDI-Richtlinie eingehalten.

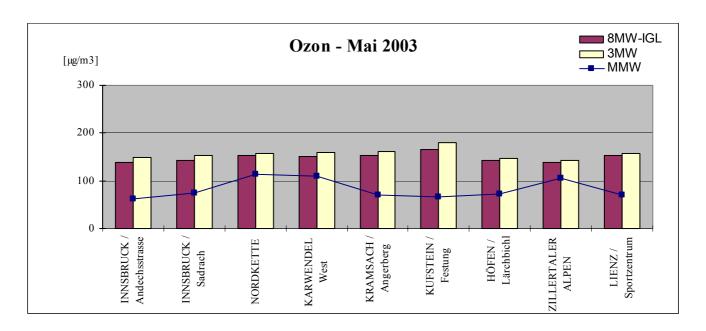

Bei den **Stickstoffdioxid**immissionen ist der gesetzliche Kurzzeit**grenz**wert zum Schutz des Menschen an allen Messstellen eingehalten. Der **Ziel**wert gem. IG-Luft zum Schutz des Menschen (Tagesmittel 80 μg NO2/m³) ist - gleich wie im Vormonat – an der Messstelle VOMP/RaststätteA12 (höchstes Tagesmittel 100 μg NO2/m³) deutlich überschritten. Hinsichtlich der Dauerbelastung (Monatsmittel) ist diese Station mit 60 μg NO2/m³ auch der höchstbelastete Standort des Tiroler Luftgütemessnetzes, gefolgt von GÄRBERBACH/A13 mit 41 μg NO2/m³.

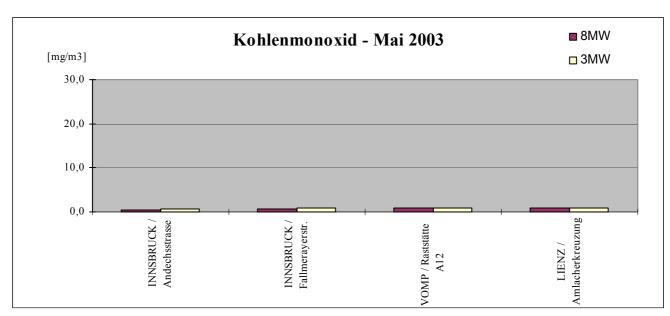

Die **Ozon**messungen zeigen im Berichtsmonat zwar eine deutliche Annäherung der Messwerte der Bergstationen (Karwendel West, Nordkette, Zillertaler Alpen) mit den am Talboden befindlichen Messstellen. Dennoch lag die mittlere Belastung (Monatsmittelwerte) an allen 3 Bergstationen über $100~\mu g/m^3$, während an fast allen tiefer gelegenen Standorten höhere Kurzzeitspitzen (höchster Einzelwert: $188~\mu g~O3/m^3$ in KUFSTEIN/Festung) als in der Höhe gemessen wurden. Am 8. Mai war in KUFSTEIN/Festung mit einem gemessenen Ein-Stundenmittelwert von $186~\mu g/m^3$ sogar die


EU-Informationsstufe überschritten; weiters sind alle Stationen nach den von der Österreichischen Akademie der Wissenschaften empfohlenen wirkungsbezogenen Grenzwerten zum Pflanzenschutz wie auch des Humanschutzes als überschritten auszuweisen; ebenso nach den Zielwertkriterien gem. IG-Luft.


Die Belastung mit **Kohlenmonoxid** ist gering. Alle 4 Standorte liegen weit unterhalb des gesetzlichen Grenzwertes gem. IG-Luft.

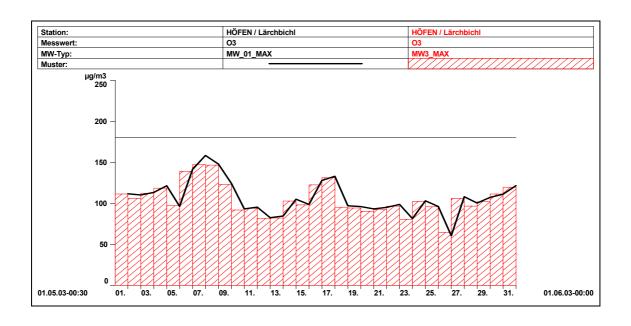

Stationsvergleich





MONATSBERICHT MAI 2003 Seite 9

Messstelle: HÖFEN / Lärchbichl


	SO2		PM10	TSP	NO	NO2			О3				_	СО		
			Staub	Staub												
	μg	m^3	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									106	109	111	112	112			
02.									97	101	106	110	112			
03.									105	108	112	113	114			
So 04.									109	113	119	121	122			
05.									91	95	97	96	103			
06.									122	126	139	141	145			
07.									143	143	147	158	160			
08.									131	132	147	148	149			
09.									101	111	123	124	125			
10.									80	85	92	93	93			
So 11.									86	88	94	95	96			
12.									74	75	81	83	84			
13.									73	74	82	85	89			
14.									94	97	103	105	107			
15.									90	95	98	99	99			
16.									111	116	123	128	128			
17.									113	120	131	133	134			
So 18.									84	89	95	97	98			
19.									86	86	94	96	98			
20.									85	89	90	93	99			
21.									86	88	92	95	97			
22.									86	88	97	99	99			
23.									69	70	80	81	83			
24.									91	97	103	103	104			
So 25.									94	94	96	96	97			
26.									54	79	64	61	62			
27.									91	93	106	108	109			
28.									91	92	97	100	102			
29.									94	95	102	107	108			
30.									96	101	111	111	114			
31.									97	105	120	122	124			

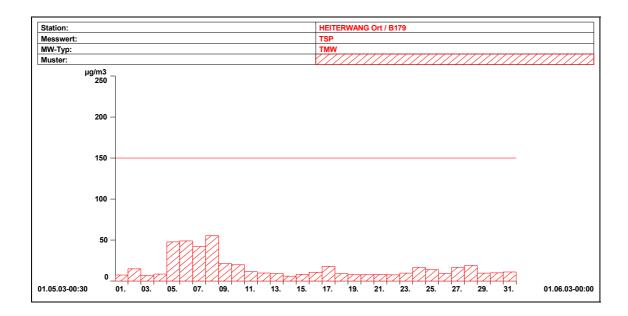
	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						160	
Max.1-MW						158	
Max.3-MW						147	
IGL8-MW						143	
Max.8-MW						143	
Max.TMW						103	
97,5% Perz.							
MMW						72	
Gl.JMW							

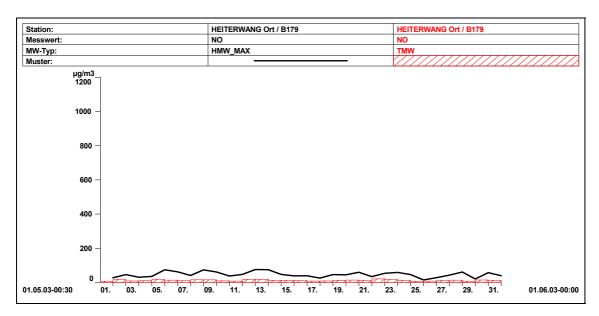
Messstelle: HÖFEN / Lärchbichl

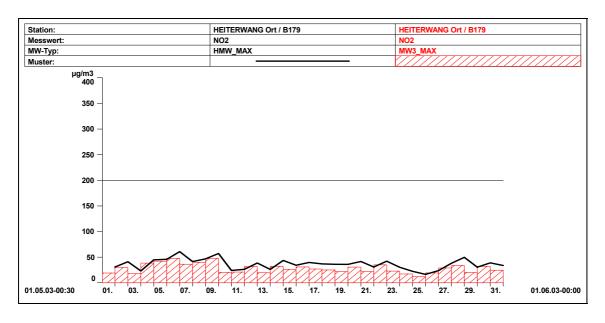
В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	O3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						12	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						5	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	1						
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

- Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
- Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: HEITERWANG Ort / B179


	SC)2	PM10	TSP	NO		NO2		_	O3			_	_		
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	I		I	μg/m³	1			mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			6	7	27	10	24	31								
02.			12	15	46	19	34	41								
03.			6	7	31	10	18	23								
So 04.			7	9	35	13	40	45								
05.			40	48	74	23	45	46								
06.			41	49	62	22	56	61								
07.			35	42	41	20	40	41								
08.			46	55	74	24	44	47								
09.			18	21	61	19	56	57								
10.			17	20	37	9	22	24								
So 11.			9	11	47	8	24	26								
12.			8	10	75	16	35	39								
13.			7	9	75	12	25	26								
14.			5	6	47	12	37	44								
15.			7	8	39	12	29	34								
16.			9	11	39	11	32	40								
17.			15	18	25	14	29	37								
So 18.			7	9	46	10	32	36								
19.			6	8	45	11	26	36								
20.			7	8	60	14	34	42								
21.			7	8	34	13	26	31								
22.			6	8	53	19	40	42								
23.			8	10	59	12	29	30								
24.			14	17	46	12	21	22								
So 25.			12	14	15	7	15	16								
26.			8	9	28	9	20	24								
27.			14	17	43	13	36	38								
28.			16	19	61	17	48	50								
29.			8	10	20	11	22	30								
30.			8	10	57	15	39	39								
31.			9	11	40	12	32	34								

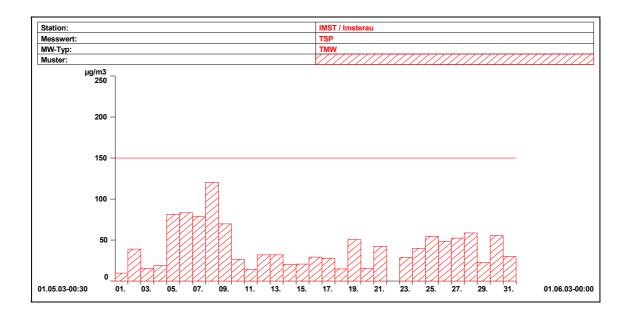

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				75	61		
Max.1-MW					56		
Max.3-MW					48		
IGL8-MW							
Max.8-MW							
Max.TMW		46	55	21	24		
97,5% Perz.							
MMW		-	16	12	14	-	·
Gl.JMW							

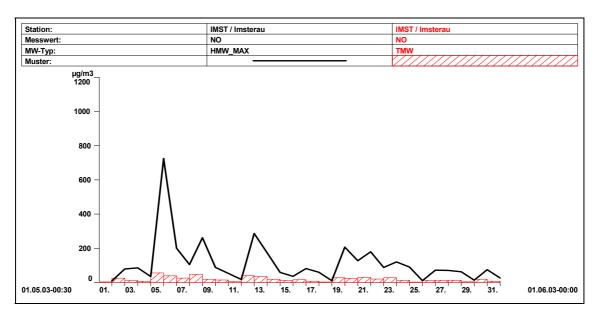

HEITERWANG Ort / B179 Messstelle:

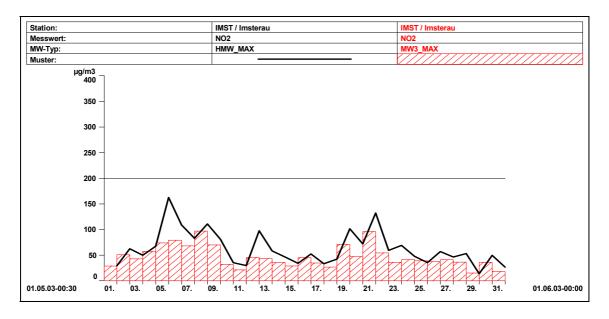
В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					0		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					0		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		0			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: MAI 2003 Messstelle: IMST / Imsterau

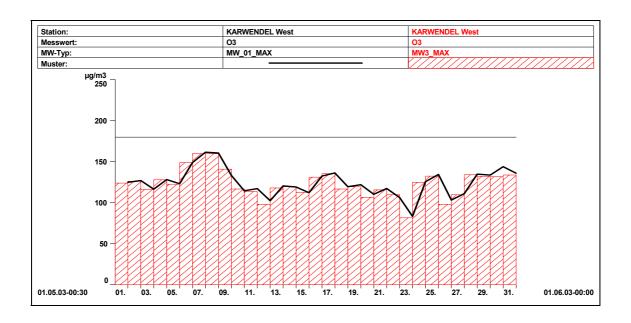

	SC)2	PM10	TSP	NO		NO2	_	03		со					
			Staub	Staub												
	μg	m³	μg/m³	μg/m³	μg/m³		μg/m³	ı			μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			8	10	9	11	29	29								
02.			32	39	79	36	61	63								
03.			13	15	85	21	50	50								
So 04.			16	19	35	22	63	68								_
05.			68	81	725	47	105	163								
06.			69	83	200	46	97	109								
07.			66	79	105	43	74	83								
08.			100	120	262	50	101	111								
09.			58	70	88	36	80	81								
10.			22	27	53	17	35	35								
So 11.			12	14	17	8	23	30								
12.			27	32	287	25	67	98								
13.			27	32	173	23	43	58								
14.			17	20	59	22	37	46								
15.			17	21	36	19	30	34								
16.			24	29	81	24	49	52								
17.			23	28	60	17	33	33								
So 18.			12	15	10	12	40	42								
19.			42	51	207	27	91	101								
20.			13	16	127	27	54	72								
21.			35	42	180	34	109	132								
22.					88	30	56	59								
23.			24	29	120	24	46	69								
24.			32	40	90	23	46	48								
So 25.			29	54	10	9	31	35								
26.			26	49	72	14	46	57								
27.			28	52	70	16	45	46								
28.			31	59	62	25	46	53								
29.			12	22	13	7	13	14								
30.			30	55	75	24	47	50								
31.			16	30	27	12	22	27								


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		30	30	31	31		
Verfügbarkeit		99%	99%	98%	98%		
Max.HMW				725	163		
Max.1-MW					109		
Max.3-MW					97		
IGL8-MW							
Max.8-MW							
Max.TMW		100	120	56	50		
97,5% Perz.							
MMW			41	19	24		
Gl.JMW		29			33		


Zeitraum: MAI 2003 Messstelle: IMST / Imsterau

В	Seurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					8		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		5			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


Messstelle: KARWENDEL West

	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									120	119	124	125	126			
02.									121	121	126	127	127			
03.									114	115	116	117	118			
So 04.									125	125	128	128	129			
05.									119	123	123	123	124			
06.									143	143	149	149	150			
07.									151	153	160	162	164			
08.									152	152	160	161	163			
09.									129	152	141	133	139			
10.									109	120	117	115	116			
So 11.									110	111	114	117	118			
12.									90	94	98	103	103			
13.									104	103	118	120	121			
14.									113	117	120	119	120			
15.									110	111	112	112	114			
16.									126	126	131	133	134			
17.									131	131	135	136	137			
So 18.									109	123	117	120	122			
19.									115	117	119	122	122			
20.									103	103	107	110	111			
21.									110	111	116	117	119			
22.									104	110	110	106	109			
23.									80	82	82	83	84			
24.									122	122	125	126	126			
So 25.									126	128	132	135	135			
26.									89	99	98	103	104			
27.									108	108	110	111	113			
28.									128	128	134	135	136			
29.									120	132	132	134	142			
30.									126	126	132	144	146			
31.									129	129	134	136	137			

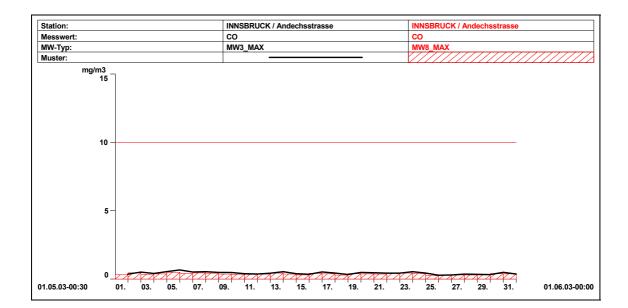
	SO2	PM10	TSP	NO	NO2	03	CO
		Staub	Staub				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						164	
Max.1-MW						162	
Max.3-MW						160	
IGL8-MW						152	
Max.8-MW						153	
Max.TMW						140	
97,5% Perz.							
MMW						109	
Gl.JMW							

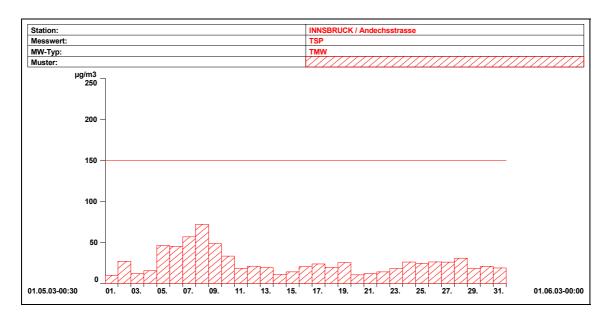
Messstelle: KARWENDEL West

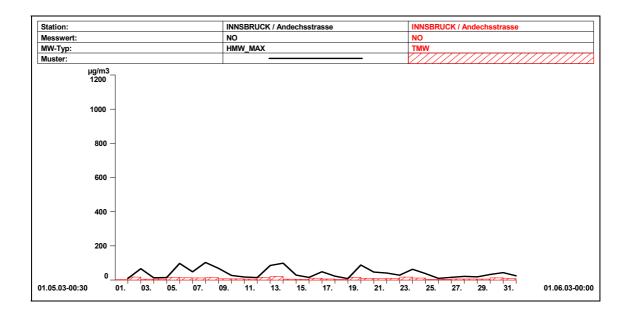
В	Seurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						28	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						19	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

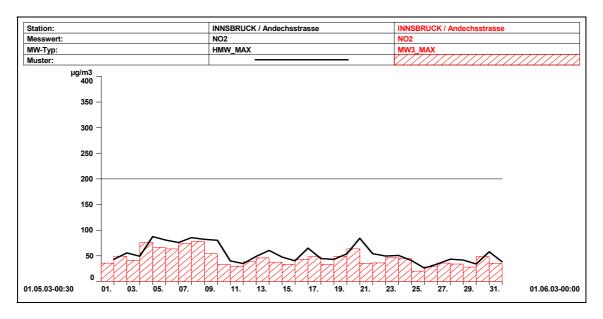
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

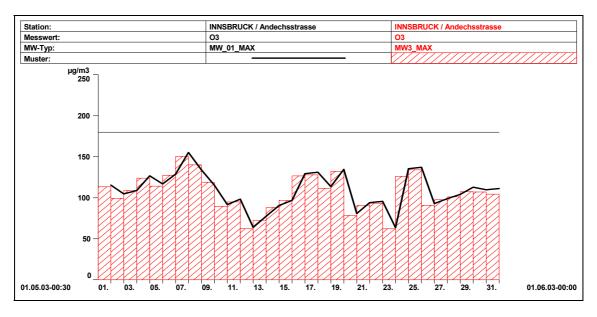
Messstelle: INNSBRUCK / Andechsstrasse


	SO)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			8	10	9	12	37	43	105	110	113	116	116	0.3	0.4	0.5
02.			22	27	66	33	51	56	76	81	99	105	109	0.5	0.5	0.6
03.			10	12	13	22	48	49	97	101	109	109	110	0.3	0.4	0.6
So 04.			13	15	15	25	86	87	105	111	124	127	131	0.4	0.6	0.6
05.			38	46	98	29	77	81	103	103	114	117	126	0.5	0.8	1.1
06.			38	45	48	34	73	76	98	119	127	129	131	0.4	0.5	0.6
07.			47	57	103	38	78	85	138	138	150	155	159	0.4	0.6	0.7
08.			60	72	69	32	82	82	115	134	140	134	139	0.4	0.5	0.5
09.			40	49	27	30	71	80	97	116	119	115	118	0.4	0.5	0.6
10.			28	33	18	21	37	40	78	81	89	92	93	0.3	0.5	0.5
So 11.			15	18	15	16	32	35	86	85	95	98	100	0.3	0.4	0.4
12.			17	21	85	26	47	49	58	58	62	64	68	0.4	0.6	0.7
13.			16	19	99	28	47	60	55	55	72	78	78	0.4	0.6	0.7
14.			9	11	29	20	40	48	80	84	88	91	93	0.4	0.4	0.5
15.			12	14	16	21	39	40	90	92	97	97	100	0.3	0.4	0.4
16.			17	20	49	29	57	65	111	112	127	129	134	0.4	0.6	0.7
17.			20	24	23	24	42	45	119	121	128	131	134	0.4	0.5	0.5
So 18.			16	19	8	14	40	43	95	106	111	114	114	0.3	0.4	0.4
19.			21	25	88	24	52	54	122	124	132	135	135	0.4	0.5	0.6
20.			9	10	47	31	74	84	68	102	78	81	84	0.4	0.6	0.7
21.			10	12	41	19	51	54	80	81	91	94	95	0.4	0.5	0.6
22.			12	14	29	21	45	49	79	81	93	96	97	0.4	0.5	0.6
23.			15	18	63	26	49	51	48	50	62	64	65	0.4	0.7	0.8
24.			22	26	38	17	38	41	120	120	126	135	136	0.4	0.4	0.4
So 25.			20	24	10	10	22	26	109	125	134	137	138	0.3	0.3	0.3
26.			22	26	16	16	32	34	78	80	91	93	93	0.3	0.3	0.3
27.			22	26	22	21	41	44	84	88	98	99	101	0.3	0.4	0.4
28.			26	31	19	23	38	42	86	96	101	104	104	0.3	0.4	0.5
29.			15	18	33	16	32	34	100	101	107	113	118	0.3	0.4	0.4
30.			17	21	44	27	52	58	81	81	107	110	115	0.4	0.6	0.7
31.			16	19	25	19	34	38	94	98	104	111	115	0.4	0.4	0.5

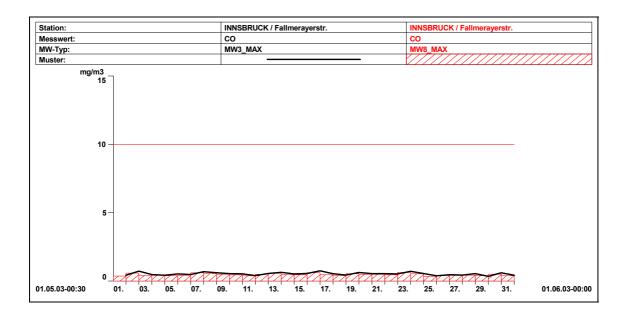

	SO2	PM10	TSP	NO	NO2	03	СО
		Staub	Staub				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31	31	31
Verfügbarkeit		100%	100%	98%	98%	97%	99%
Max.HMW				103	87	159	1.1
Max.1-MW					86	155	0.8
Max.3-MW					78	150	0.7
IGL8-MW						138	
Max.8-MW						138	0.5
Max.TMW		60	72	21	38	93	0.4
97,5% Perz.							
MMW		-	25	9	23	63	0.3
Gl.JMW		31			37		

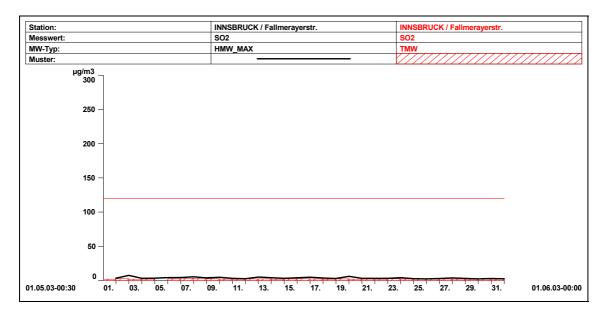

Messstelle: INNSBRUCK / Andechsstrasse

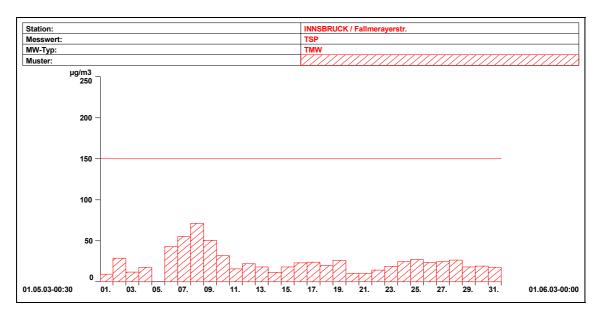

В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					5	28	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1	16	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		0
IG-L:	Zielwerte menschliche Gesundheit		1			0	6	
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

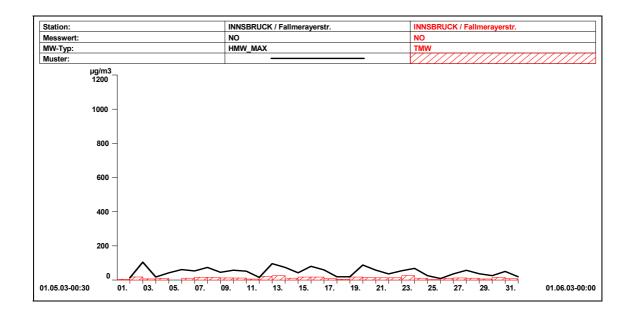

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

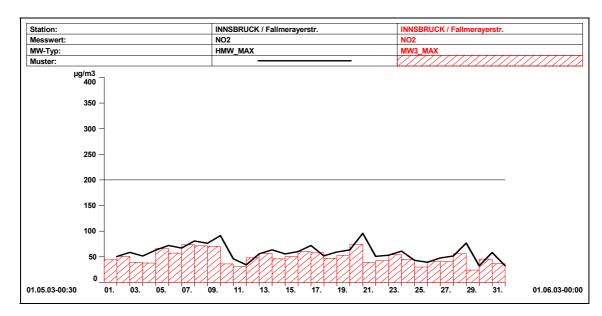
Messstelle: INNSBRUCK / Fallmerayerstrasse

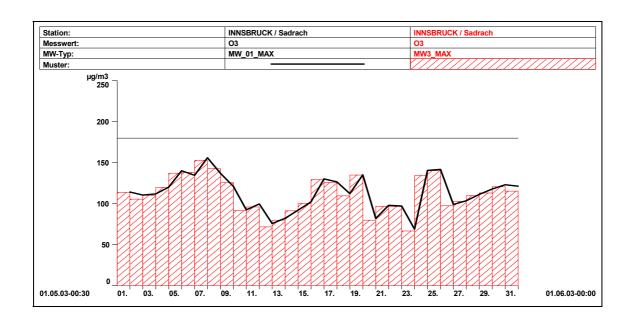

	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	2	3	8	9	13	19	45	51						0.4	0.4	0.5
02.	3	7	24	29	105	35	52	59						0.6	0.9	1.3
03.	2	3	10	12	18	24	41	52						0.4	0.5	0.6
So 04.	2	3	15	18	42	23	59	63						0.4	0.5	0.5
05.		4			62		68	72						0.4	0.5	0.6
06.	2	4	36	43	54	32	65	67						0.4	0.5	0.6
07.	3	5	46	55	74	44	74	81						0.6	0.7	0.8
08.	3	4	59	71	45	37	75	76						0.5	0.6	0.7
09.	2	5	42	51	58	37	89	91						0.5	0.6	0.7
10.	2	3	26	32	52	28	40	46						0.4	0.6	0.8
So 11.	2	3	13	16	16	17	31	34						0.4	0.4	0.5
12.	2	5	18	22	96	31	46	56						0.5	0.6	0.8
13.	2	4	15	18	74	34	60	64						0.6	0.8	1.0
14.	2	3	10	12	43	30	52	56						0.5	0.6	0.6
15.	2	4	15	18	81	33	58	60						0.5	0.6	0.7
16.	3	5	19	23	59	37	71	72						0.6	0.9	1.2
17.	2	4	20	24	19	27	47	52						0.5	0.5	0.5
So 18.	2	3	16	20	19	20	56	59						0.4	0.5	0.5
19.	2	6	22	26	88	29	60	63						0.5	0.7	0.7
20.	2	3	8	10	58	39	82	96						0.5	0.6	0.7
21.	2	3	9	10	36	30	42	51						0.5	0.6	0.6
22.	2	3	12	14	55	27	48	53						0.5	0.6	0.7
23.	2	4	16	19	68	33	60	61						0.6	0.8	0.9
24.	2	3	21	25	26	21	42	43						0.5	0.5	0.5
So 25.	2	2	23	27	9	15	32	39						0.3	0.4	0.4
26.	2	3	20	23	36	25	44	48						0.4	0.5	0.6
27.	2	4	20	25	57	30	44	52						0.4	0.5	0.6
28.	2	3	22	27	37	31	65	77						0.4	0.7	0.7
29.	2	2	15	18	26	18	28	33						0.4	0.4	0.4
30.	2	3	16	19	51	31	50	58						0.5	0.6	0.8
31.	2	2	15	18	20	24	31	33						0.4	0.4	0.6


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	30	30	30	30	30		30
Verfügbarkeit	98%	99%	99%	98%	98%		99%
Max.HMW	7			105	96		1.3
Max.1-MW					89		0.9
Max.3-MW	5				74		0.8
IGL8-MW							
Max.8-MW							0.6
Max.TMW	3	59	71	26	44		0.5
97,5% Perz.	4						
MMW	2		25	12	29		0.4
Gl.JMW		28			41		


INNSBRUCK / Fallmerayerstrasse Messstelle:


В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					3		
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L:	Grenzwerte menschliche Gesundheit	0		0		0		0
IG-L:	Zielwerte menschliche Gesundheit		1			0		
IG-L:	Warnwerte	0				0		
IG-L:	Zielwerte Ökosysteme, Vegetation	0				n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							


Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


Messstelle: INNSBRUCK / Sadrach

	so)2	PM10	TSP	NO		NO2			_	03	_	_		CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									106	111	114	114	115			
02.									92	96	106	111	111			
03.									106	106	110	112	112			
So 04.									118	118	120	120	121			
05.									116	116	137	140	141			
06.									121	132	138	135	135			
07.									142	145	153	156	158			
08.									121	142	143	137	138			
09.									113	122	126	121	123			
10.									79	82	92	93	94			
So 11.									80	84	96	100	101			
12.									62	63	72	76	77			
13.									67	67	80	82	91			
14.									86	89	91	92	97			
15.									94	95	100	102	102			
16.									116	116	129	130	133			
17.									122	123	126	127	128			
So 18.									100	104	110	112	114			
19.									126	126	135	135	137			
20.									74	105	80	82	82			
21.									91	91	97	98	101			
22.									85	88	97	97	98			
23.									59	62	67	69	69			
24.									123	123	134	141	141			
So 25.									112	129	140	142	142			
26.									84	85	98	99	99			
27.									97	98	103	104	105			
28.									95	98	110	111	112			
29.									106	106	113	118	122			
30.									101	101	121	123	123			
31.									105	107	115	121	123			

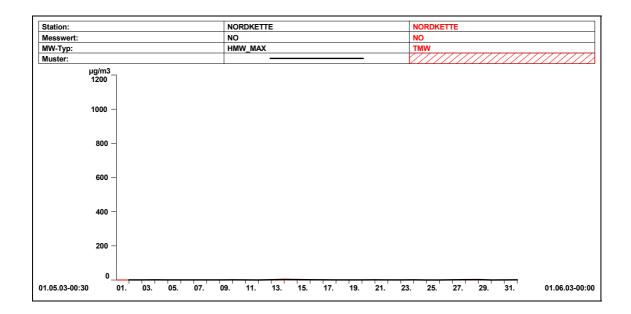
	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						158	
Max.1-MW						156	
Max.3-MW						153	
IGL8-MW						142	
Max.8-MW						145	
Max.TMW						111	
97,5% Perz.							
MMW						75	
Gl.JMW							

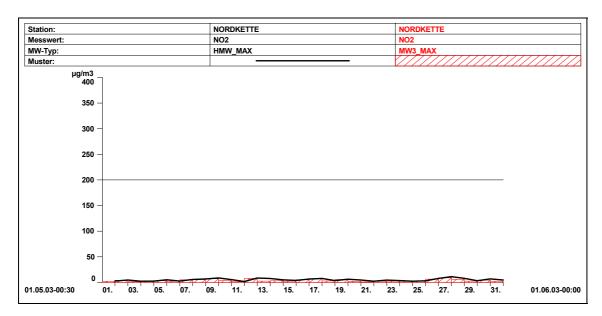
Messstelle: INNSBRUCK / Sadrach

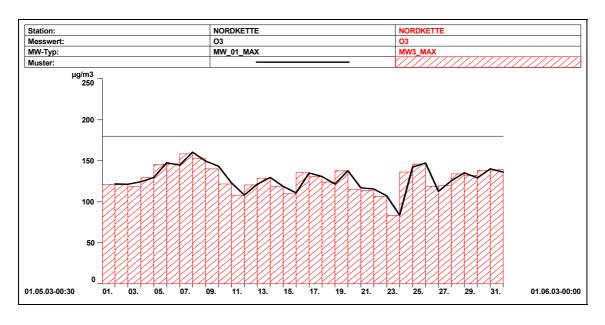
В	Seurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						18	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						11	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: MAI 2003 Messstelle: NORDKETTE


	SO	02	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					1	1	2	3	120	120	121	122	124			
02.					1	2	5	5	120	121	121	121	122			
03.					2	1	2	2	117	117	118	124	126			
So 04.					1	1	2	3	127	127	129	130	130			
05.					1	1	3	5	129	128	146	148	148			
06.					1	2	2	3	137	142	146	145	146			
07.					1	3	5	6	153	154	158	161	161			
08.					1	3	6	7	137	154	153	150	151			
09.					2	3	9	9	133	137	140	143	144			
10.					1	1	6	6	117	118	122	123	128			
So 11.					1	0	1	2	103	110	107	108	108			
12.					2	3	8	9	117	117	121	121	122			
13.					4	1	5	8	126	126	129	130	130			
14.					3	1	5	5	108	113	119	119	119			
15.					2	1	3	4	109	109	110	111	114			
16.					2	3	6	7	130	131	135	135	137			
17.					1	3	8	8	128	130	131	131	131			
So 18.					1	2	3	4	118	125	124	122	126			
19.					1	3	6	6	127	130	138	138	138			
20.					1	1	4	5	112	115	115	117	119			
21.					1	0	1	2	111	111	114	116	116			
22.					1	1	4	5	105	107	107	107	108			
23.					1	1	3	4	81	84	83	84	84			
24.					1	1	2	2	128	128	136	142	144			
So 25.					1	2	3	3	144	144	146	147	148			
26.					2	3	7	8	102	117	119	113	114			
27.					3	3	11	11	107	108	120	126	130			
28.					3	3	8	8	125	125	134	135	137			
29.					1	1	3	3	122	128	132	129	130			
30.					1	2	6	7	132	131	138	140	142			
31.					2	1	4	5	125	136	139	136	140			

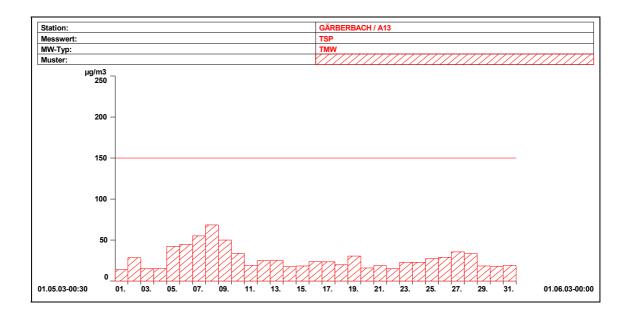

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				4	11	161	
Max.1-MW					11	161	
Max.3-MW					9	158	
IGL8-MW						153	
Max.8-MW						154	
Max.TMW				1	3	151	
97,5% Perz.							
MMW				1	2	114	
Gl.JMW					4		

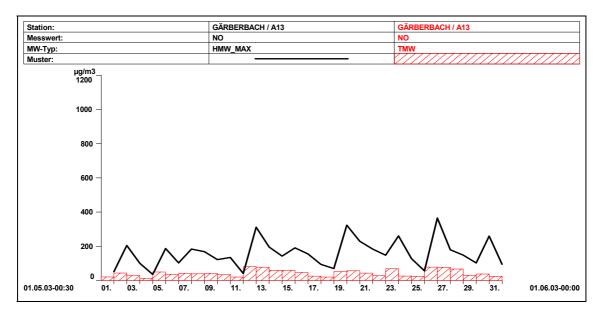

Zeitraum: MAI 2003 Messstelle: **NORDKETTE**

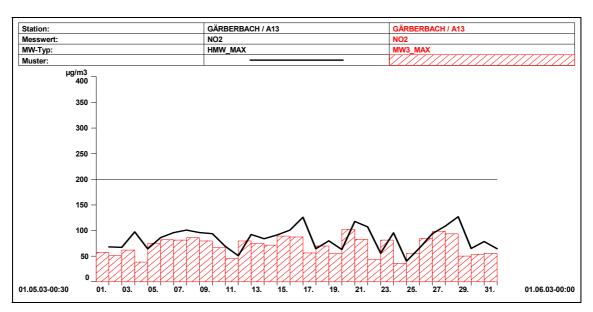
В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					0	31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					0	30	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit					0		
IG-L:	Zielwerte menschliche Gesundheit					0	24	
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					0		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2					0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe				_		0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: GÄRBERBACH / A13


	SO)2	PM10	TSP	NO		NO2				03		СО			
			Staub	Staub												
	μg	m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			12	14	51	37	65	68								
02.			24	28	205	35	61	67								
03.			13	15	101	37	77	97								
So 04.			13	15	35	23	47	64								
05.			35	42	187	43	78	86								
06.			37	45	103	46	84	96								
07.			46	55	184	53	82	101								
08.			57	68	168	47	91	96								
09.			42	50	122	56	88	94								
10.			28	34	135	33	68	69								
So 11.			16	19	41	25	46	51								
12.			21	25	312	41	88	92								
13.			21	25	195	39	79	84								
14.			14	17	142	51	78	91								
15.			15	18	191	44	90	101								
16.			20	24	155	49	119	126								
17.			20	23	94	34	64	65								
So 18.			16	20	69	32	74	80								
19.			25	30	323	37	60	63								
20.			13	16	229	55	115	118								
21.			16	19	184	45	89	107								
22.			13	15	147	33	47	56								
23.			19	23	260	41	95	96								
24.			19	23	127	25	38	40								
So 25.			23	27	56	38	57	66								
26.			24	29	365	47	92	94								
27.			30	36	180	58	104	109								
28.			28	33	148	61	102	127								
29.			15	18	102	31	57	65								
30.			15	18	260	34	74	79								
31.			16	19	95	32	59	65								

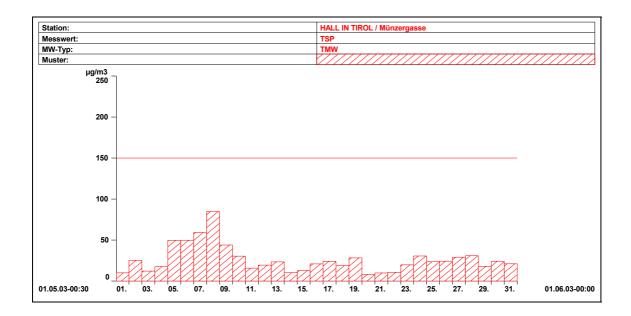

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				365	127		
Max.1-MW					119		
Max.3-MW					102		
IGL8-MW							
Max.8-MW							
Max.TMW		57	68	81	61		
97,5% Perz.							
MMW			27	43	41		
Gl.JMW		25			43		

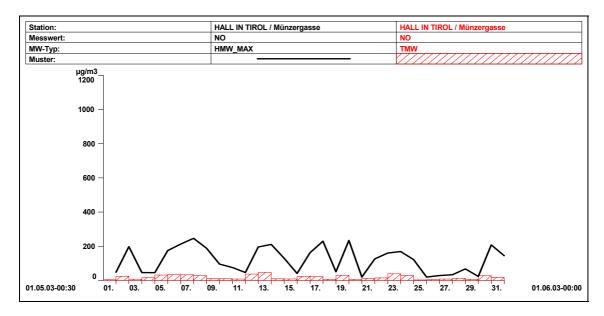

Messstelle: GÄRBERBACH / A13

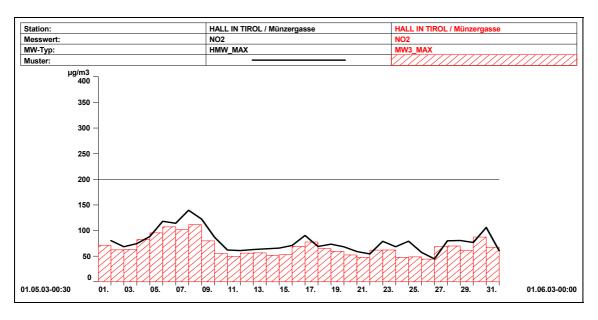
В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					17		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		1			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $Messstelle: \quad HALL\ IN\ TIROL\ /\ M\"{u}nzergasse$


	SO)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			8	10	48	22	77	80								
02.			21	25	198	41	63	68								
03.			10	12	46	29	73	74								
So 04.			15	18	45	36	87	88								
05.			41	50	175	52	112	118								
06.			41	50	213	59	114	114								
07.			49	59	247	59	125	140								
08.			71	85	189	60	120	122								
09.			37	44	96	39	87	87								
10.			25	30	75	28	61	62								
So 11.			13	16	47	21	58	61								
12.			16	19	196	28	59	63								
13.			19	23	211	33	60	64								
14.			9	10	129	28	52	66								
15.			11	13	41	26	61	71								
16.			17	21	163	33	83	90								
17.			20	24	230	29	66	69								
So 18.			16	19	51	21	69	73								
19.			24	28	234	29	59	68								
20.			7	8	20	31	58	59								
21.			8	10	126	29	51	54								
22.			9	11	160	29	68	79								
23.			16	20	169	34	68	68								
24.			26	31	122	23	69	79								
So 25.			20	24	20	18	57	57								
26.			20	24	29	20	42	45								
27.			24	29	33	31	69	80								
28.			26	31	68	35	77	81								
29.			15	18	23	26	74	77								
30.			20	24	208	45	97	106								
31.			17	21	145	26	58	61								


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	μg/m³	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		99%	99%	98%	98%		
Max.HMW				247	140		
Max.1-MW					125		
Max.3-MW					111		
IGL8-MW							
Max.8-MW							
Max.TMW		71	85	48	60		
97,5% Perz.							
MMW			26	18	33		
Gl.JMW		29			41		

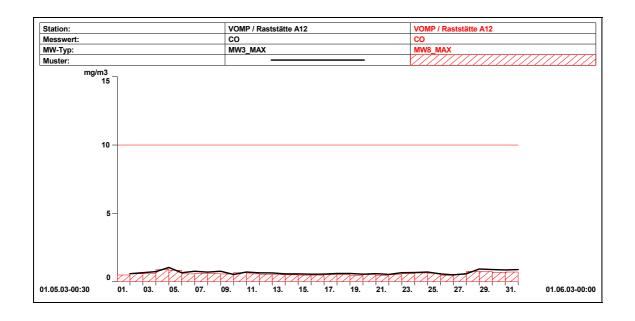

HALL IN TIROL / Münzergasse Messstelle:

В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					10		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		1			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	1		0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

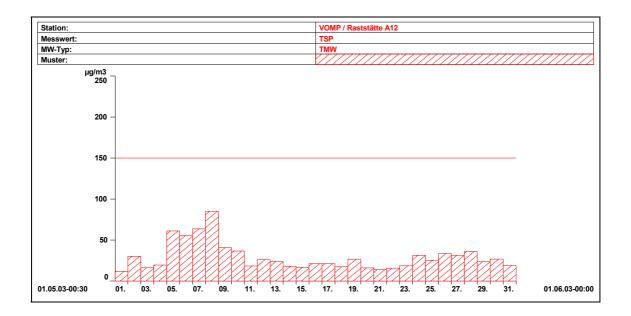
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

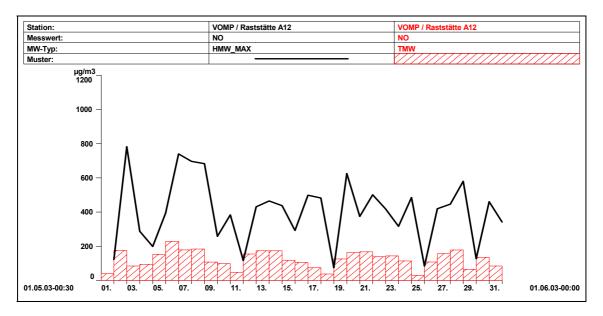
Messstelle: VOMP / Raststätte A12

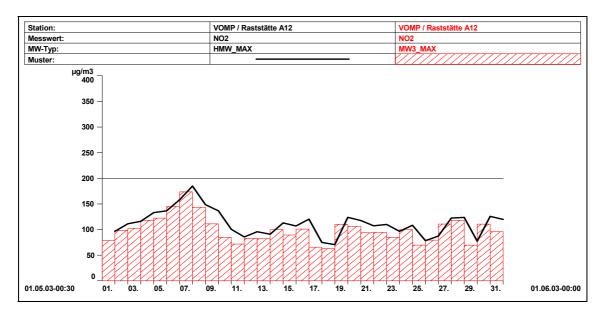
	SC	02	PM10 Staub	TSP Staub	NO		NO2		_		03				со	
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
	1.0	max	1.0	1.0	max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			10	12	123	41	93	96						0.5	0.7	0.8
02.			25	30	783	66	109	111						0.6	0.7	0.8
03.			14	16	288	54	109	116						0.6	0.8	0.9
So 04.			16	20	199	66	130	133						0.9	1.3	1.6
05.			51	61	394	80	129	136						0.8	0.6	0.7
06.			46	55	741	97	153	158						0.6	1.0	1.0
07.			53	64	697	100	181	185						0.6	0.7	0.8
08.			71	85	684	97	146	149						0.6	0.9	1.0
09.			34	41	258	71	123	137						0.6	0.6	0.7
10.			31	37	384	51	94	100						0.7	0.8	0.8
So 11.			15	18	117	45	80	86						0.6	0.7	0.8
12.			22	26	431	52	92	96						0.5	0.7	0.8
13.			20	24	465	47	86	91						0.5	0.6	0.7
14.			15	18	438	69	112	113						0.5	0.6	0.6
15.			14	17	293	54	96	107						0.5	0.6	0.6
16.			18	21	499	54	119	120						0.5	0.6	0.6
17.			18	21	482	45	64	75						0.5	0.7	0.9
So 18.			14	17	75	38	69	71						0.5	0.7	0.7
19.			22	27	626	54	119	124						0.5	0.6	0.7
20.			13	16	375	71	115	118						0.5	0.7	0.7
21.			12	14	501	60	98	107						0.5	0.6	0.6
22.			13	16	418	57	107	110						0.5	0.9	1.0
23.			15	19	317	50	92	97						0.6	0.7	0.7
24.			26	31	485	60	101	108						0.6	0.8	0.8
So 25.			21	25	84	40	70	78						0.6	0.6	0.7
26.			28	34	420	53	83	87						0.5	0.5	0.5
27.			26	31	446	65	120	122						0.5	0.6	0.7
28.			30	36	580	72	118	124						0.8	1.2	1.2
29.			20	24	128	43	67	77						0.7	0.9	1.0
30.			22	27	461	67	116	126						0.7	1.0	1.1
31.			16	19	342	55	109	120						0.7	1.0	1.2


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		31
Verfügbarkeit		100%	100%	98%	98%		99%
Max.HMW				783	185		1.6
Max.1-MW					181		1.3
Max.3-MW					174		1.0
IGL8-MW							
Max.8-MW							0.9
Max.TMW		71	85	229	100		0.6
97,5% Perz.							
MMW			29	124	60		0.5
Gl.JMW		28			66		

Messstelle: VOMP / Raststätte A12


В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					29		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					3		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		0
IG-L:	Zielwerte menschliche Gesundheit		3			3		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

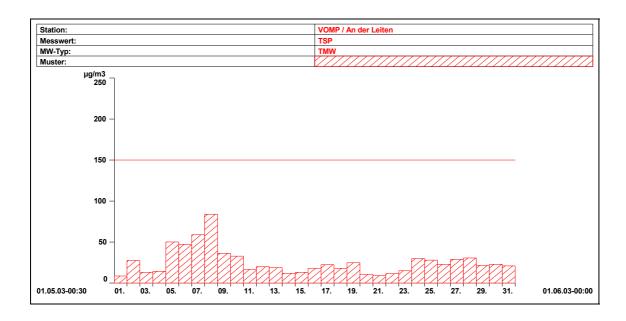

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

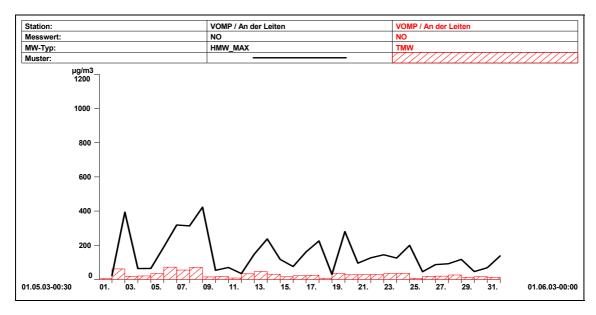

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

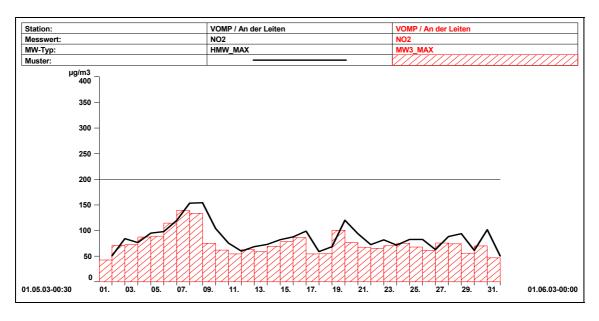
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats

Messstelle: VOMP / An der Leiten

	SO)2	PM10	TSP	NO		NO2				03		_		CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			7	9	24	23	48	51								
02.			23	27	394	45	77	84								
03.			11	13	64	36	74	77								
So 04.			12	14	64	37	94	95								
05.			42	50	189	47	90	98								
06.			39	47	319	61	117	120								
07.			49	59	314	68	151	153								
08.			70	84	423	73	147	154								
09.			30	36	54	44	82	104								
10.			27	33	70	32	72	76								
So 11.			14	17	34	28	56	60								
12.			17	20	148	35	66	69								
13.			16	19	237	31	70	73								
14.			10	12	117	45	80	82								
15.			11	13	76	34	83	88								
16.			15	18	161	36	97	99								
17.			19	22	225	27	55	59								
So 18.			15	18	30	27	66	68								
19.			21	25	280	36	105	120								
20.			9	11	95	49	91	94								
21.			8	9	127	37	69	72								
22.			10	11	144	34	68	82								
23.			12	15	125	34	71	72								
24.			25	30	199	42	82	83								
So 25.			23	28	45	30	79	83								
26.			19	23	87	30	63	63								
27.			24	29	92	36	73	88								
28.			25	31	117	38	86	94								
29.			18	21	46	26	58	61								
30.			19	23	68	37	97	102								
31.			17	21	138	29	44	51								

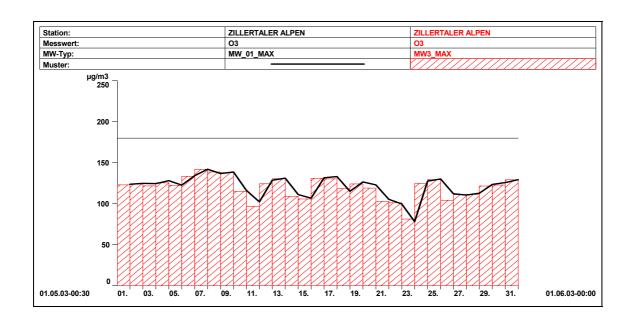

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		99%	99%	98%	98%		
Max.HMW				423	154		
Max.1-MW					151		
Max.3-MW					139		
IGL8-MW							
Max.8-MW							
Max.TMW		70	84	72	73		
97,5% Perz.							
MMW		-	25	27	38	-	
Gl.JMW		28			45		


MAI 2003 Zeitraum:


Messstelle: VOMP / An der Leiten

В	Seurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					18		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		1			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


Messstelle: ZILLERTALER ALPEN

	SO)2	PM10	TSP	NO	_	NO2		_		О3	_			СО	
			Staub	Staub												
	μg		μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$	I			μg/m³	I			mg/m³	I
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									117	117	123	124	125			
02.									123	123	124	125	125			
03.									113	114	122	125	125			
So 04.									123	123	125	128	131			
05.									114	123	122	123	124			
06.									132	132	133	134	136			
07.									138	138	142	142	142			
08.									118	139	139	137	139			
09.									125	131	138	139	140			
10.									112	114	115	116	118			
So 11.									90	96	97	102	104			
12.									110	110	124	129	129			
13.									125	128	131	131	131			
14.									105	105	109	111	112			
15.									103	105	106	107	108			
16.									128	128	131	132	132			
17.									128	130	130	133	133			
So 18.									109	123	118	115	117			
19.									110	114	124	127	127			
20.									114	115	119	123	123			
21.									101	101	103	105	106			
22.									97	102	101	100	101			
23.									75	85	81	78	78			
24.									114	114	125	128	128			
So 25.									125	128	129	130	131			
26.									93	97	104	112	114			
27.									99	104	111	111	112			
28.									108	109	111	113	116			
29.									114	113	122	124	127			
30.									116	118	123	126	126			
31.									123	126	129	129	131			

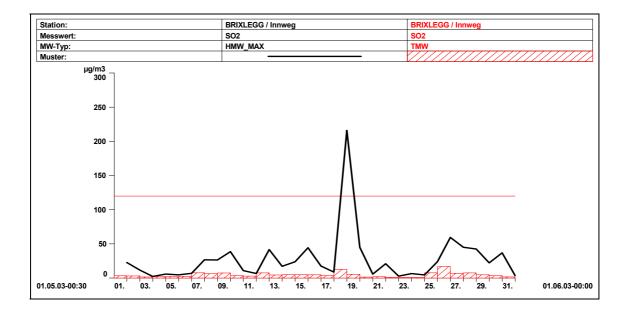
	SO2	PM10 Staub	TSP Staub	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						142	
Max.1-MW						142	
Max.3-MW						142	
IGL8-MW						138	
Max.8-MW						139	
Max.TMW						136	
97,5% Perz.							
MMW						105	
Gl.JMW							

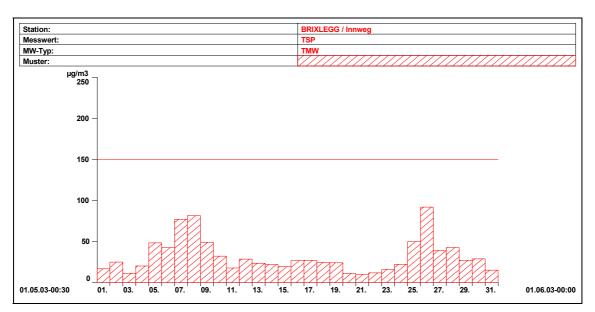
Messstelle: ZILLERTALER ALPEN

В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						28	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						19	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: BRIXLEGG / Innweg


	SO)2	PM10 Staub	TSP Staub	NO	_	NO2		_		03	_			СО	
	μg	/m³	μg/m³	μg/m³	μg/m³	_	μg/m³		_		$\mu g/m^3$				mg/m³	
	F8	max	rg m	mg/m	max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	3	23	14	17												
02.	3	12	21	25												
03.	2	2	9	11												
So 04.	2	6	17	20												
05.	2	5	40	48												
06.	3	7	35	42												
07.	8	27	64	77												
08.	6	26	68	81												
09.	7	39	41	49												
10.	4	11	27	32												
So 11.	3	7	15	18												
12.	8	42	24	28												
13.	4	17	19	23												
14.	5	24	18	22												
15.	5	44	16	19												
16.	5	18	22	27												
17.	3	9	22	27												
So 18.	13	216	20	24												
19.	5	45	20	24												
20.	1	6	9	11												
21.	2	21	8	10												
22.	1	3	10	12												
23.	1	7	13	16												
24.	1	5	18	22												
So 25.	8	24	41	50												
26.	17	60	77	92												
27.	7	45	32	39												
28.	8	43	35	42												
29.	5	22	22	27												
30.	3	37	24	29												
31.	2	4	12	15												

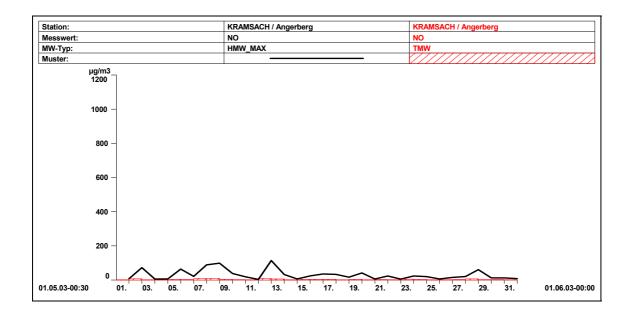

	SO2	PM10	TSP Staub	NO	NO2	03	СО
	μg/m³	Staub μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31				
Verfügbarkeit	98%	100%	100%				
Max.HMW	216						
Max.1-MW							
Max.3-MW	87						
IGL8-MW							
Max.8-MW							
Max.TMW	17	77	92				
97,5% Perz.	25						
MMW	5		32				
Gl.JMW		31					

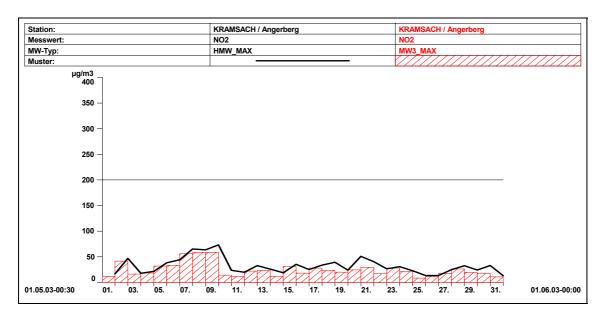
BRIXLEGG / Innweg Messstelle:

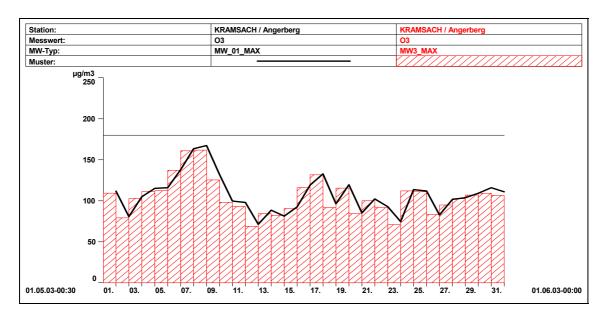
В	Seurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme							
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)							
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L:	Grenzwerte menschliche Gesundheit	0		0				
IG-L:	Zielwerte menschliche Gesundheit		3					
IG-L:	Warnwerte	0						
IG-L:	Zielwerte Ökosysteme, Vegetation	0						
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0				
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KRAMSACH / Angerberg


	SO)2	PM10	TSP	NO		NO2			_	03	_	_		CO	
			Staub	Staub												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					8	4	14	17	105	107	109	112	112			
02.					73	20	42	47	69	91	79	81	96			
03.					6	5	15	18	99	99	103	105	108			
So 04.				_	7	10	20	22	107	107	111	115	115			
05.					64	14	37	38	104	105	112	116	117			
06.					22	15	38	44	129	129	137	138	138			
07.					89	21	64	65	154	157	161	163	164			
08.					99	25	62	64	142	147	162	167	168			
09.					39	18	68	73	98	143	125	132	132			
10.					19	7	19	24	85	90	98	100	102			
So 11.				_	4	5	16	20	83	86	93	98	99			
12.					114	12	24	33	63	64	69	71	74			
13.					33	11	23	26	74	74	84	89	90			
14.					7	5	18	19	75	76	82	81	89			
15.					24	12	33	35	86	86	90	93	94			
16.					36	12	22	25	109	109	116	119	119			
17.					34	11	31	34	127	127	132	133	133			
So 18.					17	7	31	39	87	107	92	96	98			
19.					42	9	20	24	110	111	116	120	122			
20.					6	10	38	51	72	99	84	85	89			
21.					24	9	28	40	92	93	100	102	109			
22.					6	8	20	27	85	86	92	93	95			
23.					24	13	28	31	61	68	71	75	76			
24.					20	9	21	23	108	109	112	114	114			
So 25.					7	5	12	13	107	108	111	112	113			
26.					16	8	12	13	74	89	83	83	83			
27.					21	10	19	25	88	88	95	102	104			
28.					61	14	28	33	91	93	103	104	105			
29.					13	9	23	24	94	98	107	109	110			
30.					13	10	27	33	99	99	109	116	119			
31.					8	7	12	13	88	94	106	111	113			

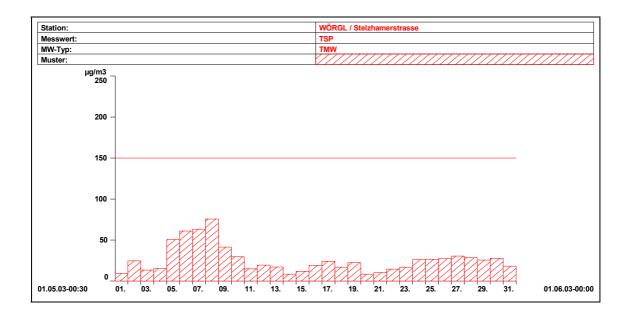

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				114	73	168	
Max.1-MW					68	167	
Max.3-MW					59	162	
IGL8-MW						154	
Max.8-MW						157	
Max.TMW				10	25	103	
97,5% Perz.							
MMW				4	11	70	
Gl.JMW					24		

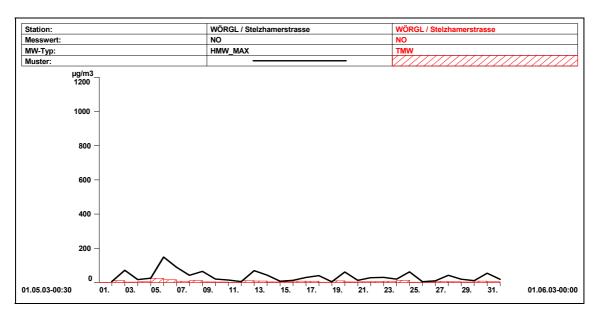

KRAMSACH / Angerberg Messstelle:

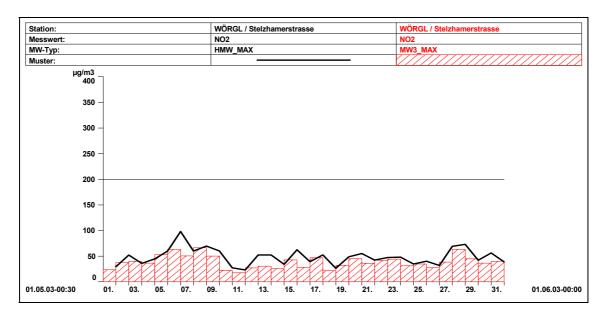
В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					Ü1	31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					0	13	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit					0		
IG-L:	Zielwerte menschliche Gesundheit					0	4	
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					0		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2					0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: WÖRGL / Stelzhamerstrasse


	SC)2	PM10	TSP	NO		NO2			_	О3				СО	
			Staub	Staub					_							
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	l			mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 1-MW	max HMW	IGL 8-MW	max 8-MW	max 3-MW	max 1-MW	max HMW	max 8-MW	max 1-MW	max HMW
	1 101 00	11101 00							0-1V1 VV	0-1VI VV	J-1V1 VV	1-101 00	11IVI VV	0-1V1 VV	1-101 00	11101 00
01. 02.			8 21	9 25	5 71	9 27	25 44	29 52								
03.			11	13	16	13	31	36								
So 04.			13	15	25	17	41	45								
05.			42	51	149	33	56	60								
06.			51	61	89	35	79	98								
07.			53	63	42	28	58	60								
08.			63	76	65	38	68	70								
09.			34	41	20	24	57	60								
10.			25	30	14	11	23	27								
So 11.			12	15	5	8	18	23								
12.			16	19	69	18	39	52								
13.			14	17	43	17	44	52								
14.			7	8	7	17	27	34								
15.			10	12	12	20	61	62								
16.			16	19	29	21	37	39								
17.			20	24	40	23	50	52								
So 18.			14	17	4	13	25	26								
19.			19	22	61	20	37	49								
20.			7	8	12	23	49	55								
21.			9	10	28	23	42	42								
22.			12	15	30	21	45	47								
23.			14	17	19	23	45	48								
24.			22	26	62	18	32	35								
So 25.			22	27	4	15	37	40								
26.			23	27	10	17	29	32								
27.			25	30	42	23	59	69								
28.			24	28	19	23	70	73								
29.			21	26	11	16	35	42								
30.			23	28	54	23	49	56								
31.			15	18	18	20	38	39								

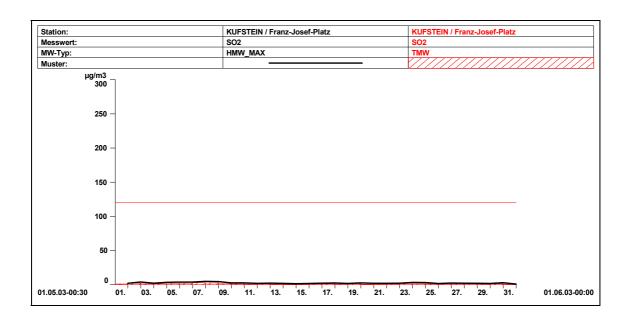

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				149	98		
Max.1-MW					79		
Max.3-MW					67		
IGL8-MW							
Max.8-MW							
Max.TMW		63	76	24	38		
97,5% Perz.							
MMW		-	26	6	21	, in the second	·
Gl.JMW		29			33		


Messstelle: WÖRGL / Stelzhamerstrasse

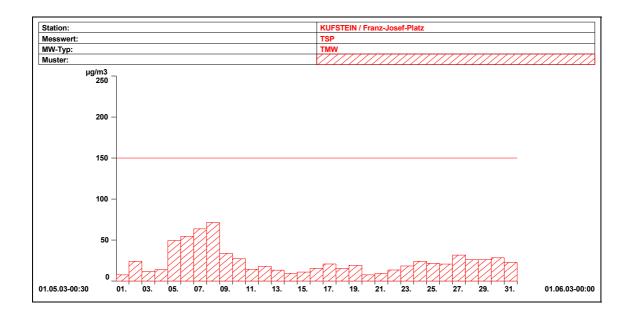
В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					1		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		3			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

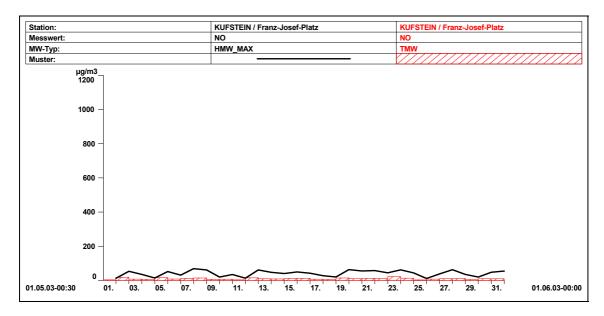
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

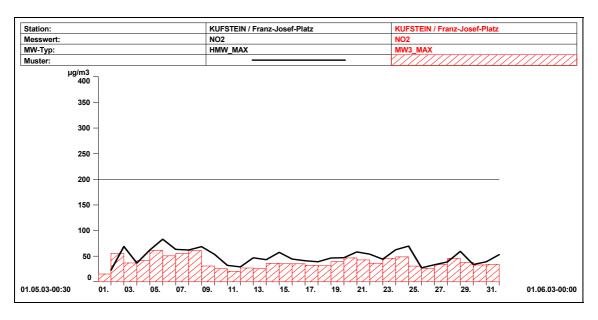
Messstelle: KUFSTEIN / Franz-Josef-Platz


	SC)2	PM10	TSP	NO		NO2				03				CO	
		_	Staub	Staub												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	1	2	6	8	13	9	19	23								
02.	2	4	20	24	53	36	61	69								1
03.	1	2	10	11	35	18	34	37								
So 04.	1	4	12	14	14	18	46	62								
05.	2	4	41	49	52	40	78	83								1
06.	2	4	45	54	31	31	59	63								1
07.	3	5	53	64	69	36	59	62								1
08.	3	5	59	71	62	39	65	69								1
09.	1	3	28	34	20	21	42	54								1
10.	1	3	23	27	35	14	25	32								
So 11.	1	2	12	14	13	11	20	29								
12.	1	2	15	18	61	21	39	47								
13.	1	2	11	13	47	15	31	43								
14.	1	2	8	9	40	19	42	57								1
15.	1	2	9	11	50	20	40	44								1
16.	1	2	13	15	42	22	40	41								1
17.	1	3	17	21	28	21	34	39								
So 18.	1	2	13	15	20	14	43	46								
19.	1	3	16	19	63	22	43	47								1
20.	1	2	6	8	56	23	52	58								1
21.	1	2	8	9	58	21	49	54								1
22.	1	2	11	13	44	22	40	44								1
23.	2	3	15	18	62	29	57	63								1
24.	1	3	20	24	44	26	62	70								
So 25.	1	2	18	22	11	11	21	27								
26.	1	2	17	21	38	17	30	33								
27.	1	2	26	32	63	19	38	39								1
28.	1	2	22	26	35	25	49	59								
29.	1	2	22	26	20	16	29	34								1
30.	1	3	24	28	48	21	35	39								
31.	1	1	19	23	55	20	47	53								1

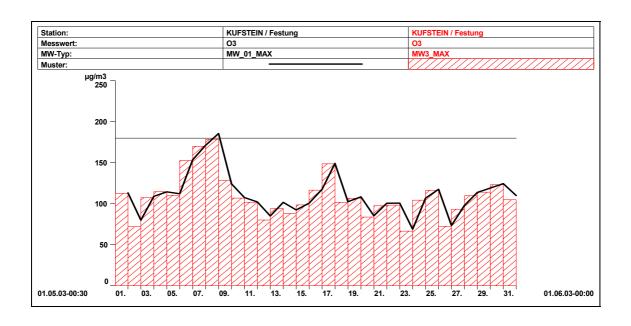
	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31		
Verfügbarkeit	98%	100%	100%	98%	98%		
Max.HMW	5			69	83		
Max.1-MW					78		
Max.3-MW	5				61		
IGL8-MW							
Max.8-MW							
Max.TMW	3	59	71	22	40		
97,5% Perz.	4						
MMW	1		24	10	22		
Gl.JMW		23			31		


Messstelle: KUFSTEIN / Franz-Josef-Platz


В	Seurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					1		
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L:	Grenzwerte menschliche Gesundheit	0		0		0		
IG-L:	Zielwerte menschliche Gesundheit		2			0		
IG-L:	Warnwerte	0				0		
IG-L:	Zielwerte Ökosysteme, Vegetation	0				n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							


Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


Messstelle: KUFSTEIN / Festung

	SC	D2	PM10	TSP	NO		NO2				О3				СО	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									109	109	112	113	113			
02.									57	80	72	80	83			
03.									101	101	107	109	110			
So 04.									109	110	115	115	117			
05.									99	102	110	112	114			
06.									139	137	153	154	158			
07.									159	161	170	171	172			
08.									165	168	179	186	188			
09.									102	153	128	124	126			
10.									102	102	107	108	109			
So 11.									93	97	102	102	103			
12.									69	73	80	85	86			
13.									87	87	94	102	105			
14.									79	87	88	92	96			
15.									86	91	99	101	103			
16.									110	110	117	118	119			
17.									138	138	149	149	150			
So 18.									92	112	102	103	103			
19.									100	99	107	108	109			
20.									70	87	84	85	89			
21.									89	91	98	101	105			
22.									91	92	98	101	102			
23.									53	68	67	69	69			
24.									96	97	104	107	109			
So 25.									110	110	116	118	119			
26.									62	87	72	74	75			
27.									84	88	93	98	100			
28.									93	99	110	114	116			
29.									95	98	114	119	120			
30.									108	112	123	125	125			
31.									89	95	105	110	112			

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						188	
Max.1-MW						186	
Max.3-MW						179	
IGL8-MW						165	
Max.8-MW						168	
Max.TMW						110	
97,5% Perz.							
MMW						66	
Gl.JMW							

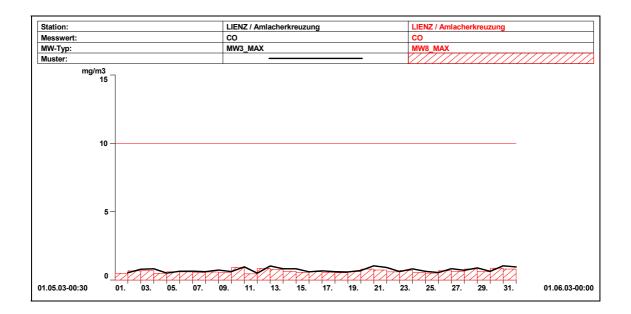
KUFSTEIN / Festung Messstelle:

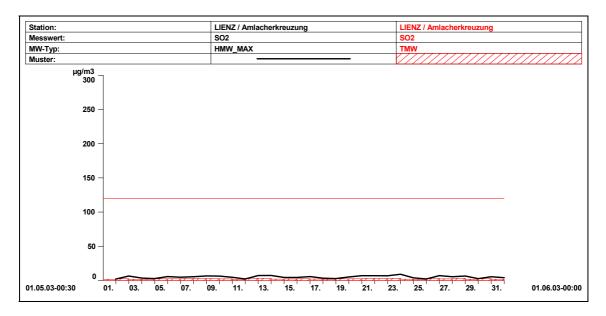
В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	ÖAW: Zielvorstellungen-Pflanzen,Ökosysteme						31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						14	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	IG-L: Grenzwerte menschliche Gesundheit							
IG-L:	IG-L: Zielwerte menschliche Gesundheit						4	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	EU - RL 92/72/EWG: Ozoninformationsstufe						1	
OZONGESETZ:	OZONGESETZ: Vorwarnstufe						0	
OZONGESETZ:						0		
OZONGESETZ:	Warnstufe 2						0	

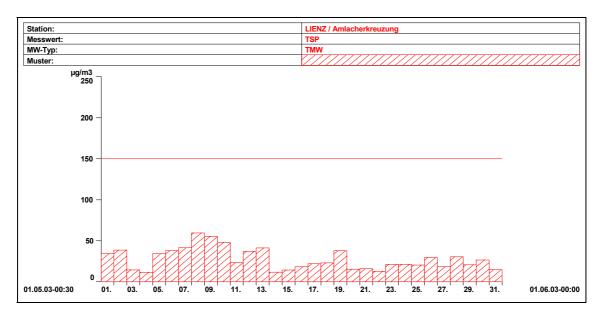
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

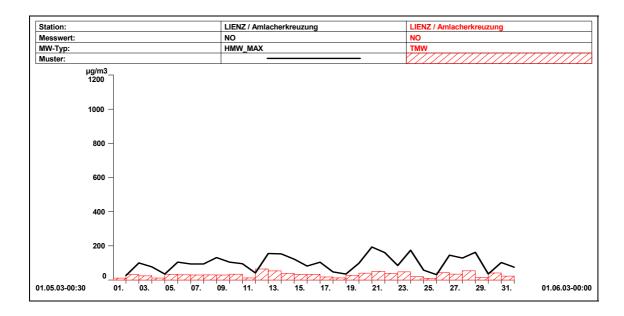
Messstelle: LIENZ / Amlacherkreuzung

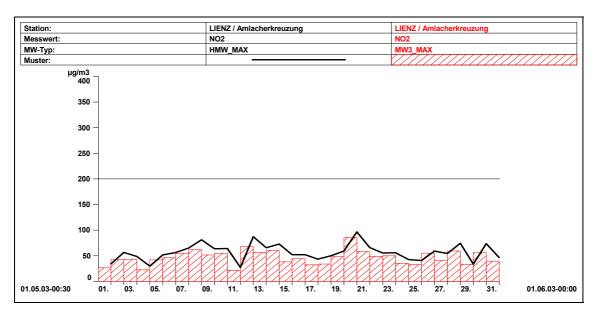
	SO)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	1	2	29	34	27	15	31	34						0.5	0.6	0.6
02.	3	6	32	39	100	27	46	57						0.7	0.9	1.1
03.	2	3	12	14	77	18	47	49						0.7	0.9	1.0
So 04.	1	3	10	11	35	11	27	30						0.5	0.6	0.6
05.	2	6	29	34	105	26	49	52						0.6	0.7	0.7
06.	2	5	32	38	94	28	53	56						0.6	0.8	0.8
07.	3	5	35	41	95	34	64	65						0.5	0.7	1.0
08.	3	7	50	59	132	34	72	81						0.6	0.9	1.0
09.	3	6	46	55	105	30	55	64						0.5	0.7	0.8
10.	2	5	40	48	96	30	61	64						0.9	1.1	1.2
So 11.	1	2	19	23	42	12	23	27						0.4	0.6	0.7
12.	3	7	31	37	156	37	78	87						0.9	1.1	1.6
13.	3	7	34	41	153	30	59	66						0.8	1.0	1.1
14.	2	4	10	12	122	33	67	73						0.6	0.9	1.0
15.	2	4	12	14	82	26	43	52						0.6	0.7	0.8
16.	3	6	15	18	105	28	52	52						0.6	0.7	0.8
17.	2	3	18	22	48	22	42	44						0.6	0.7	0.8
So 18.	2	3	19	23	35	19	42	50						0.5	0.7	0.8
19.	2	5	32	38	98	32	54	59						0.6	0.8	0.8
20.	2	7	13	15	194	35	92	97						0.8	1.1	1.2
21.	3	7	13	16	161	33	62	66						0.7	1.0	1.1
22.	3	7	11	13	85	34	49	56						0.6	0.7	0.7
23.	3	9	18	21	175	29	52	56						0.7	0.9	1.0
24.	2	4	18	21	58	20	39	43						0.5	0.7	0.8
So 25.	1	2	17	20	31	17	37	41						0.5	0.6	0.7
26.	3	7	25	29	146	31	58	59						0.7	0.9	1.1
27.	2	5	15	18	129	24	43	54						0.6	0.9	1.0
28.	3	6	25	30	163	35	64	75						0.8	1.0	1.1
29.	2	3	17	21	36	17	31	34						0.6	0.7	0.9
30.	3	5	22	27	102	32	54	74						0.9	1.1	1.4
31.	2	4	12	15	76	20	43	47						0.8	1.0	1.2

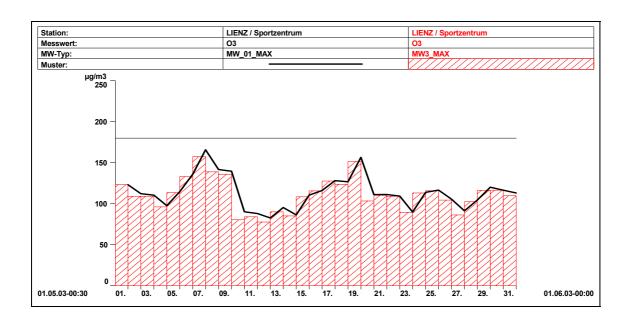

	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31		31
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	9			194	97		1.6
Max.1-MW					92		1.1
Max.3-MW	7				85		1.0
IGL8-MW							
Max.8-MW							0.9
Max.TMW	3	50	59	65	37		0.6
97,5% Perz.	6						
MMW	2		27	32	26		0.5
Gl.JMW		29			34		


LIENZ / Amlacherkreuzung Messstelle:


В	Beurteilungsgrundlage				NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					3		
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L:	Grenzwerte menschliche Gesundheit	0		0		0		0
IG-L:	Zielwerte menschliche Gesundheit		0			0		
IG-L:	Warnwerte	0				0		
IG-L:	Zielwerte Ökosysteme, Vegetation	0				n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:								
OZONGESETZ:								
OZONGESETZ:	Warnstufe 2							


 $[\]ddot{\mathrm{U}}1)$ Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


Messstelle: LIENZ / Sportzentrum

	SC	D2	PM10	TSP	NO		NO2				О3				СО	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									119	119	123	123	124			
02.									100	103	109	112	113			
03.									97	102	109	111	111			
So 04.						_			89	94	96	98	98			
05.									103	107	114	115	118			
06.									129	130	133	136	138			
07.									153	153	157	166	166			
08.									127	129	139	142	142			
09.									128	129	136	140	142			
10.									64	104	80	90	95			
So 11.									77	81	84	88	89			
12.									65	71	78	83	86			
13.									74	75	90	95	103			
14.									78	77	85	86	91			
15.									103	106	108	111	111			
16.									115	115	116	116	117			
17.									116	120	128	128	129			
So 18.									119	118	124	127	128			
19.									142	141	151	157	158			
20.									85	119	103	111	112			
21.									106	107	110	111	112			
22.									104	106	109	109	110			
23.									83	85	90	90	90			
24.									110	111	113	114	115			
So 25.									114	114	116	117	117			
26.									103	104	104	106	106			
27.									76	92	86	91	95			
28.									88	95	102	105	105			
29.									106	108	116	120	123			
30.									108	111	117	117	118			
31.									99	101	110	113	115			

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						166	
Max.1-MW						166	
Max.3-MW						157	
IGL8-MW						153	
Max.8-MW						153	
Max.TMW						107	
97,5% Perz.							
MMW						70	
Gl.JMW							

LIENZ / Sportzentrum Messstelle:

В	eurteilungsgrundlage	SO2	PM10	TSP	NO	NO2	03	CO
ÖAW:	ÖAW: Zielvorstellungen-Pflanzen,Ökosysteme						31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						23	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	IG-L: Grenzwerte menschliche Gesundheit							
IG-L:	IG-L: Zielwerte menschliche Gesundheit						10	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:						0		
OZONGESETZ:	OZONGESETZ: Vorwarnstufe						0	
OZONGESETZ:						0		
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl.Nr. 199/84)

Grenzwerte für Schwefeldioxid (SO2):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit de Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO2)								
	April - Oktober	November - März						
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³						
(HMW) in den Monaten								
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.								
Tagesmittelwert (TMW)	0,05 mg/m³	0,10 mg/m³						

II. Warnwerte für Ozon laut Ozongesetz 1992:

Vorwarnung:	0,200 mg/m³ (3-Stundenmittelwert)
Warnstufe 1	0,300 mg/m³ (3-Stundenmittelwert)
Warnstufe 2	0,400 mg/m³ (3-Stundenmittelwert)

III. Vereinbarung gemäß Art. 15a B-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe und über Maßnahmen zur Verringerung der Belastung der Umwelt samt Anlagen:

Immissionswerte im Sinne des Artikels 3

(Konzentrationswerte in mg/m³, bezogen auf 20° C und 1013 mbar)

1.Schwefeldioxid in Verbindung mit Staub								
als Tagesmittelwert								
als Halbstundenmittelwert; drei Halbstundenmittelwerte pro Tag bis zu einer Konzentration von 0,5 mg SO ₂ /m³ gelten nicht als Überschreitung des Halbstundenmittelwertes								
als Tagesmittelwert; dieser Wert bezieht sich auf Staub mit einem Stock'schen Äquivalentdurchmesser kleiner 10μm.								
2. Kohlenmonoxid								
als gleitender Achtstundenmittelwert								
als Einstundenmittelwert								
3.Stickstoffdioxid								
als Halbstundenmittelwert								
,								

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO2)					August 1989: Luftqualitätskriterien Ozon (O3)							
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO2 in mg/m³				Wirkungsbezogene Immissionsgrenzkonzentrationen für O3 in mg/m³									
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode*					
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-					
zum Schutz der Vegetation	zum Schutz der Vegetation 0,200 0,080 0,030		zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060						
Zielvorstellungen zum Schutz der Ökosysteme 0,080 0,040 0,010													
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode													

Die h	Die höchstzulässige Konzentration von Schwefeldioxid (SO2) und Staub in der freien Luft beträgt									
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten							
		Schwefeldioxid	in mg/m³ Luft							
	April - Oktober	November - März								
Tagesmittelwert	0,05	0,10	0,20							
Halbstundenmittelwert	0,07	0,15	0,20							
		Staub in	mg/m³							
Tagesmittelwert	0,	12	0,20							
	Die Überschreitung dieses	Grenzwertes für Staub an	Die Überschreitung dieses Halbstundenmittelwertes							
	sieben nicht aufeinanderfo	lgenden Tagen im Jahr gilt	dreimal pro Tag bis höchstens 0,50 mg SO2/m³gilt							
	nicht als Luftbe	eeinträchtigung.	nicht als Luftbeeinträchtigung.							

V. Immissionsschutzgesetz-Luft i.d.g.F.

a) Schutz der menschlichen Gesundheit (BGBI. I Nr. 62/2001)

Gre	enzwerte in μg/m³ (aus	genommen CO: an	gegeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200*)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30**)
Schwebestaub				150	
PM_{10}				50***)	40
	Wai	nwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Zie	lwerte in μg/m³			
Stickstoffdioxid				80	
PM_{10}				50	20
Ozon			110 ****)		

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m 3 gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m 3 ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m 3

b) Schutz der Ökosysteme und der Vegetation (BGBI. II Nr. 298/2001)

Grenzwerte in μg/m³					
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid					201)
Stickstoffoxide					30
Zielwerte in μg/m³					
Schwefeldioxid				50	
Stickstoffdioxid				80	
¹) für das Kalenderjahr und Winterhalbjah	(1.Oktober bis 31.N	März)	•	•	•

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)		
Tagesmittelwert	0,5 mg/m³	
Halbstundenmittelwert	1,0 mg/m³	

II. EU-Richtlinie / Ozoninformationsstufe: (EU-RL 92/72/EWG)

Grenzwert für Ozon (O3)		
Einstundenmittelwert (nichtgleitend):	0,180 mg/m³	

^{**)} Der Immissionsgrenzwert von 30 μg/m 3 ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m 3 bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m 3 verringert. Die Toleranzmarge von 10 μg/m 3 gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m 3 gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25."

^{****)} Der Mittelwert über acht Stunden ist gleitend; er wird viermal täglich anhand der acht Stundenwerte (0-8 Uhr, 8-16 Uhr, 16-24 Uhr, 12-20 Uhr) berechnet.

IG-L Überschreitungen:

PM10 Staub

Tagesmittelwerte>50µg/m3 im Zeitraum 01.05.03-00:30 - 01.06.03-00:00

MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse Anzahl: 1	08.05.2003	60
<pre>INNSBRUCK / Fallmerayerstr. Anzahl: 1</pre>	08.05.2003	59
HALL IN TIROL / Münzergasse Anzahl: 1	08.05.2003	71
GÄRBERBACH / A13 Anzahl: 1	08.05.2003	57
IMST / Imsterau	05.05.2003	68
IMST / Imsterau	06.05.2003	69
IMST / Imsterau	07.05.2003	66
IMST / Imsterau	08.05.2003	100
<pre>IMST / Imsterau Anzahl: 5</pre>	09.05.2003	58
BRIXLEGG / Innweg	07.05.2003	64
BRIXLEGG / Innweg	08.05.2003	68
BRIXLEGG / Innweg Anzahl: 3	26.05.2003	77
WÖRGL / Stelzhamerstrasse	06.05.2003	51
WÖRGL / Stelzhamerstrasse	07.05.2003	53
WÖRGL / Stelzhamerstrasse Anzahl: 3	08.05.2003	63
KUFSTEIN / Franz-Josef-Platz	07.05.2003	53
KUFSTEIN / Franz-Josef-Platz Anzahl: 2	08.05.2003	59
VOMP / Raststätte A12	05.05.2003	51
VOMP / Raststätte A12	07.05.2003	53
VOMP / Raststätte A12 Anzahl: 3	08.05.2003	71
VOMP / An der Leiten Anzahl: 1	08.05.2003	70

SCHWEBESTAUB

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00 Tagesmittelwert>150 μ g/m3

MESSSTELLE	Datum	Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00 Halbstundenmittelwert>200µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00 Tagesmittelwert>80µg/m3

MESSSTELLE	Datum	Wert[µg/m3]
VOMP / Raststätte A12	06.05.2003	97
VOMP / Raststätte A12	07.05.2003	100
VOMP / Raststätte A12	08.05.2003	97
Anzahl: 3		

SCHWEFELDIOXID

IG-L Warnwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00
Dreistundenmittelwert>500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00 Halbstundenmittelwert 4 mal pro Tag $>200\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00
Tagesmittelwert>10mg/m3

 $\label{eq:messstelle} MESSSTELLE \qquad \qquad Datum \qquad \qquad Wert [\mu g/m3]$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

IG-L Warnwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00
Dreistundenmittelwert>400µg/m3

MESSSTELLE Datum Wert[μg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.05.03-00:30 - 01.06.03-00:00 Achtstundenmittelwert>110µg/m3

MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse	07.05.2003-24:00 08.05.2003-24:00 16.05.2003-24:00	138 115 111

TNNODDIOU / Andorboshussa	17 05 2002 24.00	110
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse	17.05.2003-24:00 19.05.2003-24:00	119 122
INNSBRUCK / Andechsstrasse	24.05.2003-24:00	120
Anzahl: 6		
INNSBRUCK / Sadrach	04.05.2003-24:00	118
INNSBRUCK / Sadrach	05.05.2003-24:00	116 121
INNSBRUCK / Sadrach INNSBRUCK / Sadrach	06.05.2003-24:00 07.05.2003-24:00	142
INNSBRUCK / Sadrach	08.05.2003-24:00	121
INNSBRUCK / Sadrach	09.05.2003-24:00	113
INNSBRUCK / Sadrach	16.05.2003-24:00	116
INNSBRUCK / Sadrach	17.05.2003-24:00	122
INNSBRUCK / Sadrach	19.05.2003-24:00	126
INNSBRUCK / Sadrach	24.05.2003-24:00	123
INNSBRUCK / Sadrach	25.05.2003-24:00	112
Anzahl: 11		
NORDKETTE	01.05.2003-24:00	120
NORDKETTE	02.05.2003-24:00	120
NORDKETTE	03.05.2003-24:00	117
NORDKETTE	04.05.2003-24:00	127
NORDKETTE	05.05.2003-24:00	129
NORDKETTE	06.05.2003-24:00	137
NORDKETTE	07.05.2003-24:00	153
NORDKETTE	08.05.2003-24:00	137
NORDKETTE	09.05.2003-24:00	133
NORDKETTE	10.05.2003-24:00	117
NORDKETTE	12.05.2003-24:00	117
NORDKETTE	13.05.2003-24:00	126
NORDKETTE	16.05.2003-24:00	130
NORDKETTE	17.05.2003-24:00	128
NORDKETTE	18.05.2003-24:00	118
NORDKETTE	19.05.2003-24:00	127
NORDKETTE	20.05.2003-24:00	112
NORDKETTE	21.05.2003-24:00	111
NORDKETTE	24.05.2003-24:00 25.05.2003-24:00	128
NORDKETTE NORDKETTE	28.05.2003-24:00	144 125
NORDKETTE	29.05.2003-24:00	122
NORDKETTE	30.05.2003-24:00	132
NORDKETTE	31.05.2003-24:00	125
Anzahl: 24		
KADMENDEL Mos+	01.05.2003-24:00	100
KARWENDEL West KARWENDEL West	02.05.2003-24:00	120 121
KARWENDEL West	03.05.2003-24:00	114
KARWENDEL West	04.05.2003-24:00	125
KARWENDEL West	05.05.2003-24:00	119
KARWENDEL West	06.05.2003-24:00	143
KARWENDEL West	07.05.2003-24:00	151
KARWENDEL West	08.05.2003-24:00	152
KARWENDEL West	09.05.2003-24:00	129
KARWENDEL West	14.05.2003-24:00	113
KARWENDEL West	16.05.2003-24:00	126
KARWENDEL West	17.05.2003-24:00 19.05.2003-24:00	131
KARWENDEL West KARWENDEL West	24.05.2003-24:00	115 122
KARWENDEL West	25.05.2003-24:00	126
KARWENDEL West	28.05.2003-24:00	128
KARWENDEL West	29.05.2003-24:00	120
KARWENDEL West	30.05.2003-24:00	126
KARWENDEL West	31.05.2003-24:00	129

Anzahl: 19		
KRAMSACH / Angerberg KRAMSACH / Angerberg KRAMSACH / Angerberg KRAMSACH / Angerberg	06.05.2003-24:00 07.05.2003-24:00 08.05.2003-24:00 17.05.2003-24:00	129 154 142 127
Anzahl: 4	17.03.2003-24:00	127
KUFSTEIN / Festung KUFSTEIN / Festung	06.05.2003-24:00 07.05.2003-24:00	139 159
KUFSTEIN / Festung	08.05.2003-24:00	165
KUFSTEIN / Festung Anzahl: 4	17.05.2003-24:00	138
HÖFEN / Lärchbichl	06.05.2003-24:00	122
HÖFEN / Lärchbichl HÖFEN / Lärchbichl	07.05.2003-24:00 08.05.2003-24:00	143 131
HÖFEN / Lärchbichl	16.05.2003-24:00	111
HÖFEN / Lärchbichl	17.05.2003-24:00	113
Anzahl: 5		
ZILLERTALER ALPEN	01.05.2003-24:00	117
ZILLERTALER ALPEN ZILLERTALER ALPEN	02.05.2003-24:00 03.05.2003-24:00	123
ZILLERTALER ALPEN	04.05.2003-24:00	113 123
ZILLERTALER ALPEN	05.05.2003-24:00	114
ZILLERTALER ALPEN	06.05.2003-24:00	132
ZILLERTALER ALPEN	07.05.2003-24:00	138
ZILLERTALER ALPEN	08.05.2003-24:00	118
ZILLERTALER ALPEN	09.05.2003-24:00	125
ZILLERTALER ALPEN	10.05.2003-24:00	112
ZILLERTALER ALPEN	13.05.2003-24:00	125
ZILLERTALER ALPEN	16.05.2003-24:00	128
ZILLERTALER ALPEN	17.05.2003-24:00	128
ZILLERTALER ALPEN ZILLERTALER ALPEN	20.05.2003-24:00 24.05.2003-24:00	114 114
ZILLERTALER ALPEN	25.05.2003-24:00	125
ZILLERTALER ALPEN	29.05.2003-24:00	114
ZILLERTALER ALPEN	30.05.2003-24:00	116
ZILLERTALER ALPEN	31.05.2003-24:00	123
Anzahl: 19		
LIENZ / Sportzentrum	01.05.2003-24:00	119
LIENZ / Sportzentrum	06.05.2003-24:00	129
LIENZ / Sportzentrum	07.05.2003-24:00	153
LIENZ / Sportzentrum LIENZ / Sportzentrum	08.05.2003-24:00 09.05.2003-24:00	127 128
LIENZ / Sportzentrum	16.05.2003-24:00	115
LIENZ / Sportzentrum LIENZ / Sportzentrum	17.05.2003-24:00	116
LIENZ / Sportzentrum	18.05.2003-24:00	119
LIENZ / Sportzentrum	19.05.2003-24:00	142
LIENZ / Sportzentrum	25.05.2003-24:00	114
Anzahl: 10		