Amt der Tiroler Landesregierung Waldschutz – Luftgüte

November 2007

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

> Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz – Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 24. Jänner 2008

Für die Abteilung Waldschutz - Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	
Imst – Imsterau	
Karwendel West	
Innsbruck – Andechsstrasse (Reichenau)	
Innsbruck – Fallmerayerstrasse (Zentrum)	24
Innsbruck – Sadrach	28
Nordkette	30
Mutters – Gärberbach A13	33
Hall in Tirol – Sportplatz	36
Vomp – Raststätte A12	39
Vomp – An der Leiten	42
Zillertaler Alpen	45
Brixlegg – Innweg	47
Kramsach – Angerberg	50
Kundl – A12	53
Wörgl – Stelzhamerstrasse	56
Kufstein – Praxmarerstrasse	59
Kufstein – Festung	62
Lienz – Amlacherkreuzung	64
Lienz – Sportzentrum	68
Beurteilungsunterlagen Grenzwerte aus Gesetzen, Verordnungen und Richtlinien	71
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	73

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid
NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8_MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

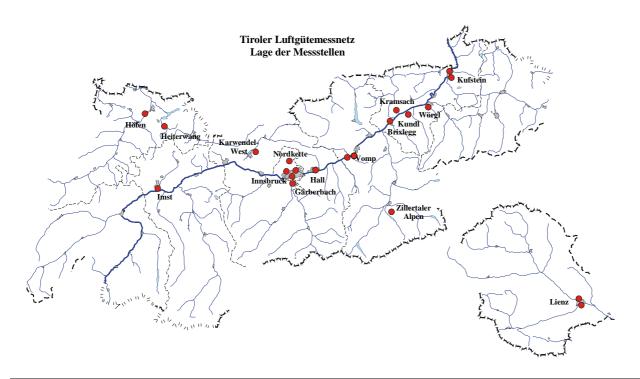
Gl.JMW Gleitender Jahresmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

	BEST	ΓÜCKU	NGSLISTI	E			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	O3	СО
Höfen – Lärchbichl	880 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	995 m	-	•/-	•	•	-	-
Imst – Imsterau	726 m	-	•/-	•	•	-	-
Karwendel – West	1730 m	-	-/-	=	-	•	-
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstrasse	580 m	•	•/•	•	•	-	•
Innsbruck – Sadrach	670 m	-	-/-	-	-	•	-
Nordkette	1950 m	-	-/-	•	•	•	-
Mutters – Gärberbach A13	680 m	-	•/-	•	•	-	-
Hall in Tirol – Sportplatz	560 m	-	•/-	•	•	-	-
Vomp – Raststätte A12	550 m	-	•/-	•	•	-	-
Vomp – An der Leiten	520 m	-	•/-	•	•	-	-
Zillertaler Alpen	1930 m	-	-/-	-	-	•	-
Brixlegg – Innweg	520 m	•	•/-	-	-	-	-
Kramsach – Angerberg	600 m	-	-/-	•	•	•	-
Kundl – A12	510 m	-	-/-	•	•	-	-
Wörgl – Stelzhamerstrasse	510 m	-	•/-	•	•	-	-
Kufstein – Praxmarerstrasse	500 m	•	•/-	•	•	-	-
Kufstein – Festung	560 m	-	-/-	-	-	•	-
Lienz – Amlacherkreuzung	670 m	•	•/-	•	•	-	•
Lienz – Sportzentrum	670 m	-	•/-	•	•	•	-

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Warn-, Grenz- und Zielwerten November 2007

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	03	CO
HÖFEN					P	
Lärchbichl						
HEITERWANG				Ö		
Ort / B179						
IM ST		IP		Ö		
Imsterau						
KARWENDEL		1			P	
West					_	
INNSBRUCK		IP		Ö	P	
Andechsstrasse						
INNSBRUCK		IP		IZ Ö		
Fallmeray erstrasse				M		
INNSBRUCK		1 1			P	
Sadrach						
NORDKETTE					P	
MUTTERS				Ö		
Gärberbach A13						
HALL IN TIROL		IP		IZ Ö		
Sportplatz				M		
VOMP		IP		IZ Ö		
Raststätte A12				M		
VOMP				Ö		
An der Leiten						
ZILLERTALER		1 1			P	
ALPEN					M	
BRIXLEGG		IP				
Innweg						
KRAMSACH				Ö	P	
Angerberg						
KUNDL				IZ Ö		
A12				M		
WÖRGL		IP		Ö		
Stelzhamerstrasse						
KUFSTEIN		1 T		Ö		
Praxmarerstrasse						
KUFSTEIN					P	
Festung						
LIENZ		IP		Ö		
Amlacherkreuzung						
LIENZ					P	
Sportzentrum						

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
IP	Überschreitung des im IG-L genannten Tages ziel wertes von 50µg/m³ für PM10. Der PM10-Tages grenz wert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
IG	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem. Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der Informationsschwelle gemäß Ozongesetz.
!	Überschreitung von Warnwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den November 2007

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/1997 i.d.g.F.) und gemäß Ozongesetz (BGBl. 210/1992 i.d.g.F.) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/98, novelliert mit BGBl. II 263/2004) ein Luftgütemessnetz mit insgesamt 21 Messstationen.

Dieser Bericht enthält für die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM 10 und PM 2,5) Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Nach dem zu kalten September und dem zu kalten Oktober wird der Herbst durch einen zu kalten November abgerundet. 0,5 bis 1,5 Grad blieben die Temperaturen hinter dem langjährigen Mittel zurück, nur in Teilen Osttirols war es stellenweise ein wenig zu warm. Ausschlaggebend waren die große Häufigkeit an Nordwestwetterlagen sowie ein massiver Kaltlufteinbruch um die Monatsmitte, der auch von einigen zu warmen Tagen in der letzten Dekade nicht kompensiert werden konnte. Die Höchsttemperatur wurde bei Föhn in Mayrhofen mit 17,5 Grad am 23.11. gemessen, am kältesten war es in Galtür mit -18,7 Grad am 16.11.

Regionsweise völlig unterschiedlich fiel die Niederschlagsbilanz aus. Merklich zu nass war es vor allem im östlichen Unterland, mit einem Überschuss von 50 bis 100% zum langjährigen Mittel. 10 bis 50% mehr als normal fiel nördlich des Inns. Richtung Alpenhauptkamm lagen die Niederschlagssummen nahe des Solls. In Osttirol blieb es hingegen etwas zu trocken.

Selbst im mittleren Inntal gab es im November schon 8 Tage mit Schneedecke, auch wenn sie nur 6 cm erreichte. In den klassischen Nordweststaulagen gab es so viel Neuschnee, wie nur selten zuvor in einem November. In Reutte fielen beispielsweise schon 106 cm Schnee, was in den letzten 30 Jahren nur 1999 (135 cm) noch übertroffen wurde. Tiefwinterlich wurde es schon auf den Bergen. Auf der Seegrube etwa fielen schon vor der Monatsmitte in 3 Tagen satte 225 cm Neuschnee und auf der Kitzbüheler Ehrenbachhöhe lag das ganze Monat über eine durchgehende Winterdecke.

Sieben Tage mit Sturmgeschwindigkeiten über 60 km/h sind selbst in Innsbruck deutlich überdurchschnittlich. Allerdings waren die meisten davon durch Nordföhn verursacht und eher nur lokal beschränkt.

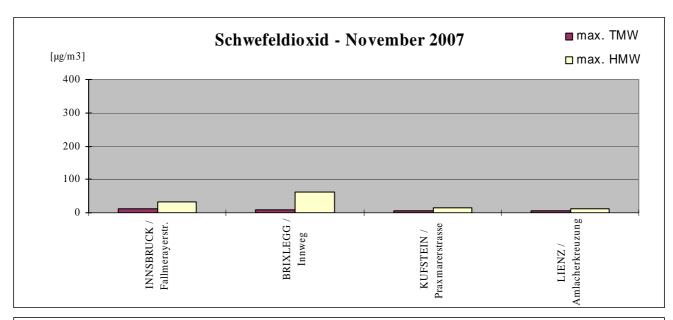
Die Sonne blieb in Nordtirol um einige Stunden hinter ihrem Soll zurück, während es in Osttirol sonniger war als gewöhnlich.

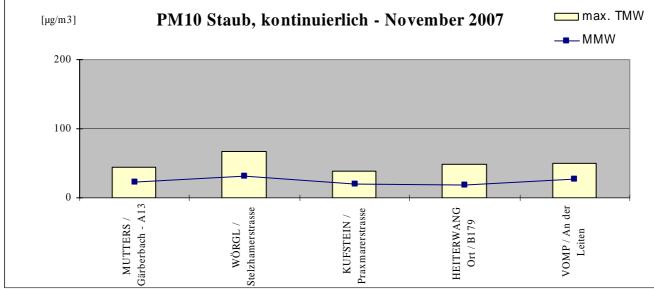
Luftschadstoffübersicht

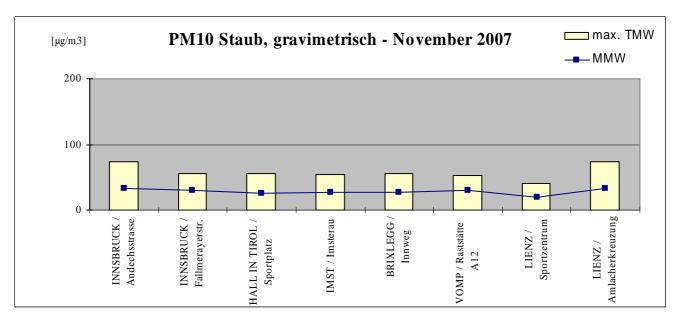
Das bereits winterliche Wetter im November schlägt sich besonders bei den Feinstaub- und Stickoxidimmissionen nieder.

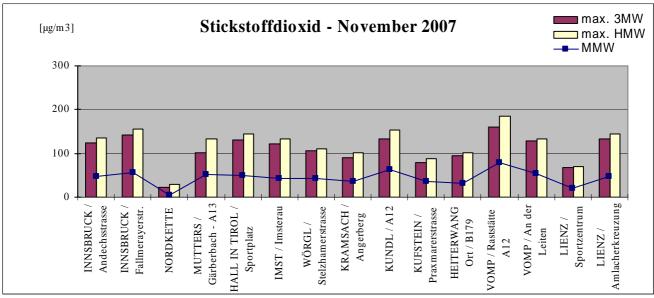
So wurden im November an 8 der 13 **PM10**-Messsstellen Überschreitungen des Tagesgrenzwertes von $50\,\mu g/m^3$ festgestellt. Mit 6 Tagen über dem Grenzwert war die Messstelle WÖRGL/Stelzhamerstraße gefolgt von den Messstellen INNSBRUCK/Andechsstraße und LIENZ/Amlacherkreuzung mit jeweils 4 Überschreitungen am häufigsten überschritten. Damit sind bereits Ende November an der Messstelle INNSBRUCK/Andechsstraße die 30 zulässigen Grenzwertüberschreitungen pro Kalenderjahr erreicht.

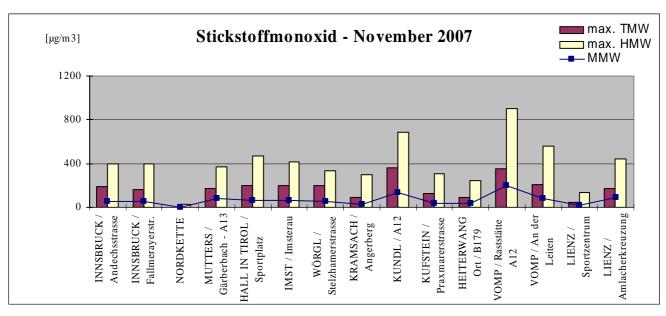
Bei **Stickstoffmonoxid** lag insbesondere an den verkehrsnahen Standorten VOMP/Raststätte A 12 und KUNDL/A 12 der Belastungsschwerpunkt. Mit einem maximalen Tagesmittelwert von 358 μ g/m³ (KUNDL/A 12) und Halbstundenmittelwert von 898 μ g/m³ (VOMP/Raststätte A 12) sind die Grenzwerte laut VDI-Richtlinie jedoch eingehalten.

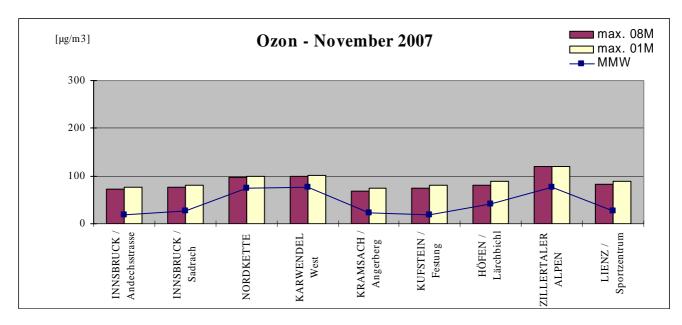

Bei **Stickstoffdioxid** wurde ebenfalls der höchste maximale Halbstundenmittelwert mit 186 μ g/m³ an der Messstelle VOMP/Raststätte A 12 gemessen und somit der Grenzwert von 200 μ g/m³ laut IG-L noch eingehalten. Der auf dem Tagesmittelwert basierende Zielwert laut IG-L beziehungsweise die Immissionsgrenzkonzentration zum Schutz des Menschen laut ÖAW (Österreichische Akademie der Wissenschaften) von 80 μ g/m³ wurde an den Messstellen HALL IN TIROL/Sportplatz, INNSBRUCK/Fallmerayerstraße, KUNDL/A 12 und VOMP/Raststätte A 12 überschritten. Auch bei der Immissionsgrenzkonzentration zum Schutz der Ökosysteme laut ÖAW wurde an der Messstelle KRAMSACH/Angerberg eine Überschreitung festgestellt. Bei den übrigen Messstellen ist dieses Kriterium - abgesehen von der Messstelle NORDKETTE - nicht relevant.

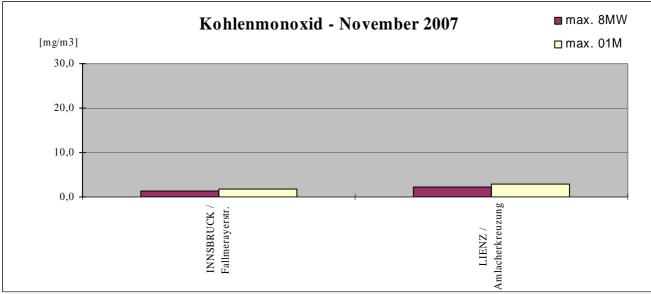

Entsprechend der Jahreszeit ist die **Ozon**belastung gering, wenngleich an der Messstelle ZILLERTALER ALPEN mit einem maximalen Achtstundenmittelwert von 119 μ g/m³ der Zielwert von 120 μ g/m³ laut Ozongesetz fast erreicht wurde. Dadurch ist jedoch die wirkungsbezogene Immissionsgrenzkonzentration laut ÖAW zum Schutz des Menschen an dieser Messstelle nicht eingehalten. Die Kriterien laut ÖAW zum Schutz der Vegetation konnten an keiner Messstelle erfüllt werden.


Der höchste Tagesmittelwert bei den **Schwefeldioxidmessungen** wurden an der Messstelle INNSBRUCK/Fallmerayerstraße mit $13~\mu\text{g/m}^3$ gemessen. Der höchste Halbstundenmittelwert wurde mit $63~\mu\text{g/m}^3$ an der Messstelle BRIXLEGG/Innweg registriert. Damit wurden die Grenzwerte nach dem IG-L deutlich unterschritten.

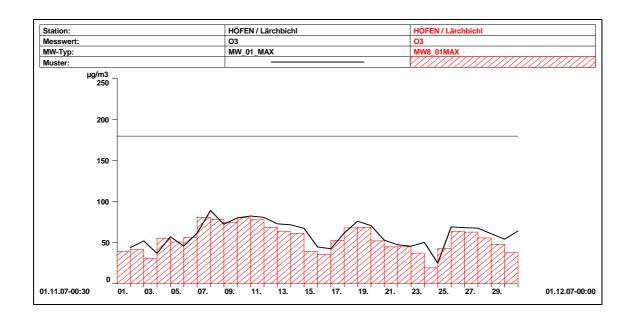

Bei **Kohlenmonoxid** war die Belastung im Berichtsmonat ebenfalls gering. Der maximale Achtstundenmittelwert von 2,2 mg/m³ an der Messstelle LIENZ/Amlacherkreuzung blieb klar unter dem Grenzwerte von 10 mg/m³ laut IG-L.


Stationsvergleich





Zeitraum: NOVEMBER 2007 Messstelle: HÖFEN / Lärchbichl


	SC)2	PM10	PM10	NO		NO2		_		03			_	co			
			kont.	grav.														
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$		μg/m³			mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max		
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW		
01.									39	39	44	47	47					
02.									42	42	52	53	53					
03.									31	31	37	38	39					
So 04.									55	55	57	57	59					
05.									51	51	46	47	47					
06.									56	56	62	62	63					
07.									81	81	89	90	91					
08.									79	80	72	72	73					
09.									75	75	80	80	80					
10.									80	80	83	83	83					
So 11.									78	78	81	81	81					
12.									69	69	73	76	78					
13.									64	64	72	72	72					
14.									62	62	68	68	68					
15.									39	39	45	45	45					
16.									36	36	43	43	43					
17.									53	53	62	62	62					
So 18.									68	68	76	76	77					
19.									69	68	71	71	71					
20.									52	52	53	53	54					
21.									45	45	47	47	48					
22.									45	45	46	46	48					
23.									37	37	50	50	51					
24.									19	19	25	25	25					
So 25.									43	43	69	69	70					
26.									64	64	68	68	69					
27.									63	63	68	68	70					
28.									56	56	61	64	65					
29.									48	48	54	54	55					
30.									38	38	64	64	65					

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						91	
Max.01-M						89	
Max.3-MW							
Max.08-M							
Max.8-MW						81	
Max.TMW						72	
97,5% Perz.							
MMW						42	
GLJMW							

Zeitraum: **NOVEMBER 2007** Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO							
Gesetzliche Alarm-, Grenz- und Zielwerte	Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte													
IG-L: Grenzwerte menschliche Gesundheit													
IG-L: Zielwerte menschliche Gesundheit													
IG-L: Zielwerte Ökosysteme, Vegetation													
OZONGESETZ: Alarmschwelle					0								
OZONGESETZ: Informationsschwelle					0								
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0								
2. VO gegen forstschädliche Luftverunreinigungen													
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					12								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0								
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert													

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

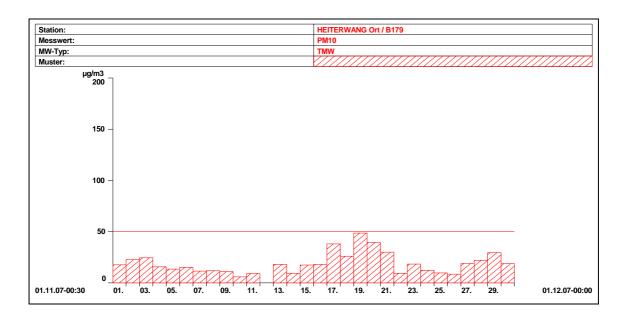
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

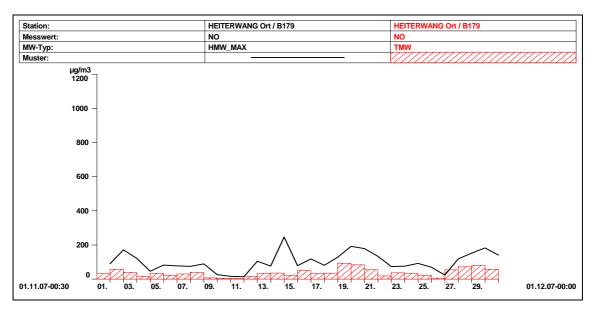
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

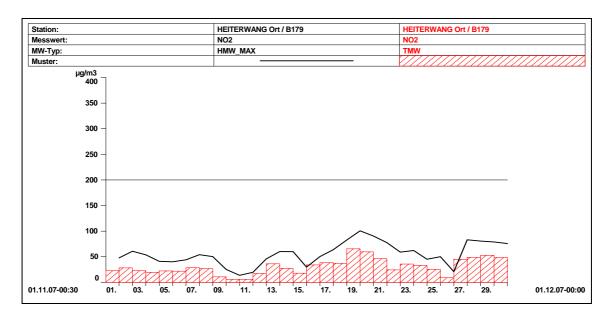
Messstelle: HEITERWANG Ort / B179

	SC)2	PM10	PM10	NO		NO2	_			03			_	co	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$ $\mu g/m^3$ mg/m^3		$\mu g/m^3$		$\mu g/m^3$				
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			18		90	23	45	48								
02.			23		171	28	60	61								
03.			24		121	23	46	54								
So 04.			16		46	20	36	41								
05.			13		82	22	40	40								
06.			15		77	22	42	44								
07.			12		75	29	49	54								
08.			12		89	27	42	50								
09.			11		27	11	21	25								
10.			6		16	6	11	14								
So 11.			9		14	6	14	20								
12.					104	17	37	46								
13.			18		77	36	56	60								
14.			9		247	27	57	60								
15.			17		79	18	29	30								
16.			18		118	34	49	50								
17.			38		81	38	54	64								
So 18.			26		128	37	82	83								
19.			49		192	66	97	101								
20.			39		179	60	88	90								
21.			30		134	46	70	78								
22.			9		74	24	53	59								
23.			18		76	36	61	62								
24.			12		92	33	44	45								
So 25.			10		69	26	46	50								
26.			9		24	9	19	21								
27.			19		118	45	73	83								
28.			22		152	49	78	81								
29.			30		182	53	77	79								
30.			19		141	49	67	76								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		29		30	30		
Verfügbarkeit		98%		98%	98%		
Max.HMW				247	101		
Max.01-M					97		
Max.3-MW					95		
Max.08-M							
Max.8-MW							
Max.TMW		49		92	66		
97,5% Perz.							
MMW		19		37	31		
Gl.JMW					26		


Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				8		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

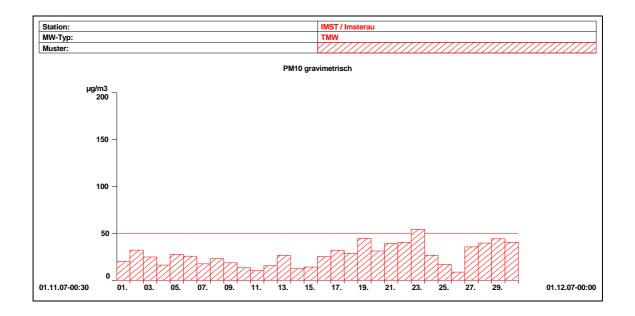

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

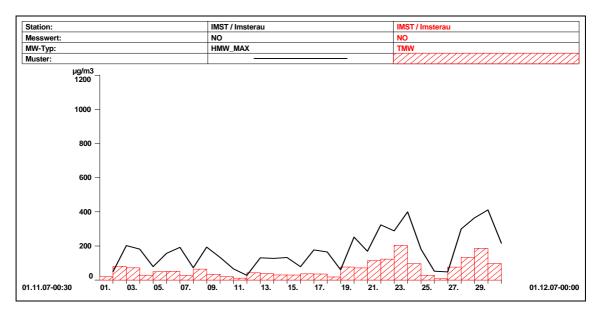
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

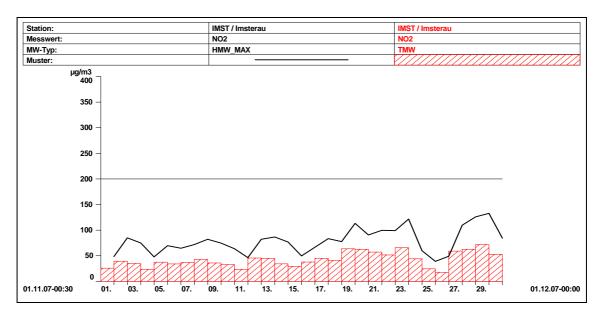
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007 Messstelle: IMST / Imsterau

	SC)2	PM10	PM10	NO		NO2				03	_			co	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				20	49	26	40	49								
02.				32	202	39	76	85								
03.				25	182	35	70	75								
So 04.				16	79	24	43	48								
05.				28	157	38	67	70								
06.				26	192	34	63	65								
07.				17	73	37	68	72								
08.				23	193	43	78	82								
09.				19	133	36	69	75								
10.				13	66	33	60	64								
So 11.				10	28	24	44	46								
12.				16	131	46	74	82								
13.				27	127	45	83	87								
14.				12	132	34	74	77								
15.				14	79	29	47	50								
16.				25	177	38	61	67								
17.				32	165	45	75	84								
So 18.				29	60	41	73	78								
19.				45	252	64	107	113								
20.				31	169	63	88	91								
21.				39	323	57	87	100								
22.				40	288	52	99	99								
23.				54	400	66	116	122								
24.				27	181	44	58	60								
So 25.				17	52	25	39	39								
26.				9	48	18	48	49								
27.				36	300	59	101	110								
28.				40	365	63	123	126								
29.				44	411	72	128	133								
30.				40	216	53	83	84								


	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				411	133		
Max.01-M					128		
Max.3-MW					121		
Max.08-M							
Max.8-MW							
Max.TMW			54	203	72		
97,5% Perz.	•	-					
MMW		-	27	63	43		
Gl.JMW	•				36		


Zeitraum: **NOVEMBER 2007** Messstelle: IMST / Imsterau

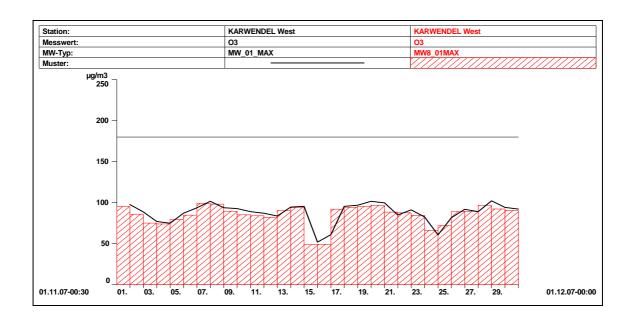

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO						
Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte				0								
IG-L: Grenzwerte menschliche Gesundheit		1		0								
IG-L: Zielwerte menschliche Gesundheit		1		0								
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.								
OZONGESETZ: Alarmschwelle												
OZONGESETZ: Informationsschwelle												
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen												
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				16								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert	_		0									

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007 Messstelle: KARWENDEL West

	SC)2	PM10	PM10	NO		NO2		-	_	03			_	СО	
			kont.	grav.												_
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									95	95	98	98	98			
02.									86	86	89	89	89			
03.									75	75	77	77	78			
So 04.									74	74	75	75	76			
05.									79	79	87	91	92			
06.									85	85	94	94	94			
07.									99	99	102	102	102			
08.									98	98	94	96	95			
09.									90	90	93	95	96			
10.									85	85	89	89	90			
So 11.									84	84	87	87	87			
12.									82	82	84	84	84			
13.									90	90	95	95	95			
14.									94	94	95	96	96			
15.									49	49	52	52	52			
16.									49	49	61	61	78			
17.									92	92	95	95	95			
So 18.									94	94	97	97	97			
19.									95	95	102	102	103			
20.									97	97	100	105	106			
21.									88	89	85	85	85			
22.									88	88	91	91	91			
23.									84	85	82	85	83			
24.									66	66	61	65	65			
So 25.									72	72	82	82	82			
26.									89	89	92	92	93			
27.									89	89	89	89	89			
28.									97	97	102	102	104			
29.									92	92	94	94	94			
30.									90	90	92	92	93			


	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						106	
Max.01-M						102	
Max.3-MW							
Max.08-M							
Max.8-MW						99	
Max.TMW						94	
97,5% Perz.							
MMW						77	
Gl.JMW	•						

Zeitraum: NOVEMBER 2007 Messstelle: KARWENDEL West

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO							
Gesetzliche Alarm-, Grenz- und Zielwerte	Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte													
IG-L: Grenzwerte menschliche Gesundheit													
IG-L: Zielwerte menschliche Gesundheit													
IG-L: Zielwerte Ökosysteme, Vegetation													
OZONGESETZ: Alarmschwelle					0								
OZONGESETZ: Informationsschwelle					0								
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0								
2. VO gegen forstschädliche Luftverunreinigungen													
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0								
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert													

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

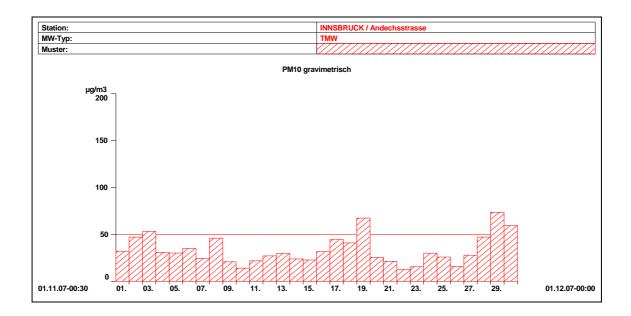
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

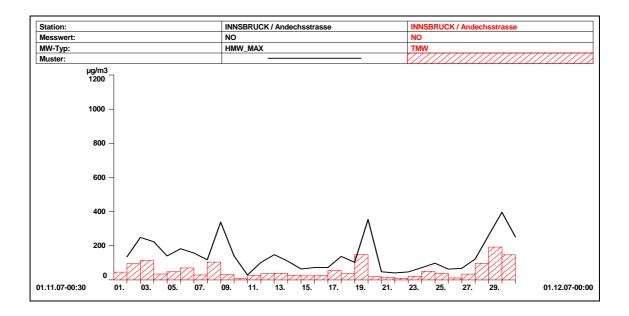
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

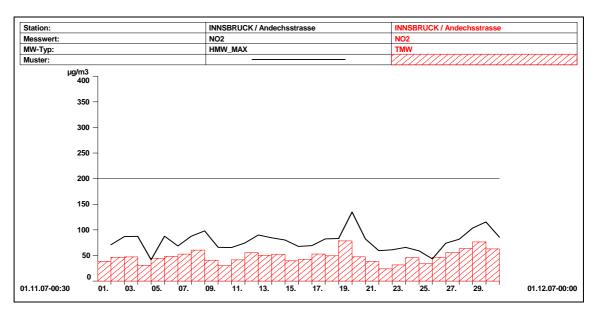
Messstelle: INNSBRUCK / Andechsstrasse

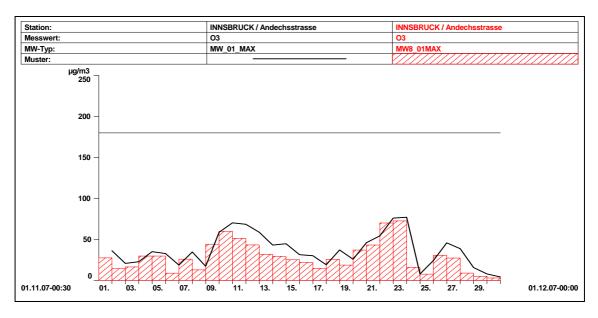
	SC)2	PM10	PM10	NO		NO2			_	03	-		_	СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$			1	μg/m³	1			mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				32	135	39	70	71	27	28	36	36	37			
02.				47	248	46	83	87	14	14	21	21	21			
03.				53	224	47	85	87	16	16	23	23	24			
So 04.				31	140	31	41	42	30	30	35	35	36			
05.				30	182	45	80	88	30	30	33	33	34			
06.				35	157	48	66	69	9	9	19	19	20			
07.				24	118	53	86	88	26	26	35	35	36			
08.				46	338	61	87	98	13	13	17	17	18			
09.				21	140	41	65	66	44	44	59	59	61			
10.				14 22	29 102	30 41	59 70	65 74	60 51	60 52	70 68	70 68	71 69			
So 11.				27	102	55	90	90	43	45	59	59	60			
13.				30	110	50	90 77	85	32	31	43	43	48			
14.				24	64	53	76	80	29	30	45	45	49			
15.				23	72	40	64	68	25	25	31	31	32			
16.				32	72	43	67	69	22	22	30	30	31			
17.				44	138	53	80	82	15	15	19	20	21			
So 18.				41	103	49	78	83	26	26	37	37	38			
19.				67	354	78	134	135	19	19	26	26	28			
20.				26	47	47	80	82	37	36	46	46	46			
21.				21	41	38	58	59	43	43	54	54	56			
22.				12	47	24	55	61	70	70	76	76	77			
23.				15	71	32	60	66	73	73	77	77	77			
24.				30	98	46	58	59	16	17	8	9	9			
So 25.				26	63	34	43	43	8	8	24	24	28			
26.				16	68	47	71	74	31	31	46	51	53			
27.				28	123	55	81	82	27	27	39	39	42			
28.				47	260	64	96	103	9	9	16	16	16			
29.				74	396	76	114	116	5	5	8	8	9			
30.				59	252	63	84	86	3	3	4	4	4			

_	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				396	135	77	
Max.01-M					134	77	
Max.3-MW					125		
Max.08-M							
Max.8-MW						73	
Max.TMW			74	193	78	51	
97,5% Perz.							
MMW			33	54	48	18	
Gl.JMW					40		


Messstelle: INNSBRUCK / Andechsstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO						
Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte				0								
IG-L: Grenzwerte menschliche Gesundheit		4		0								
IG-L: Zielwerte menschliche Gesundheit		4		0								
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.								
OZONGESETZ: Alarmschwelle					0							
OZONGESETZ: Informationsschwelle					0							
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0							
2. VO gegen forstschädliche Luftverunreinigungen												
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				22	2							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	0							
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

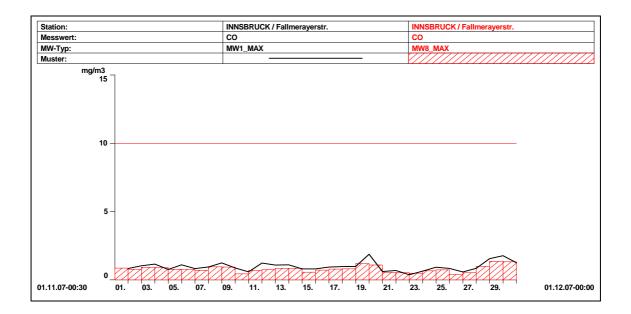

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

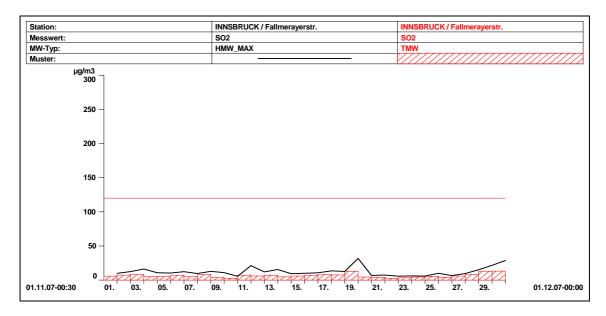
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

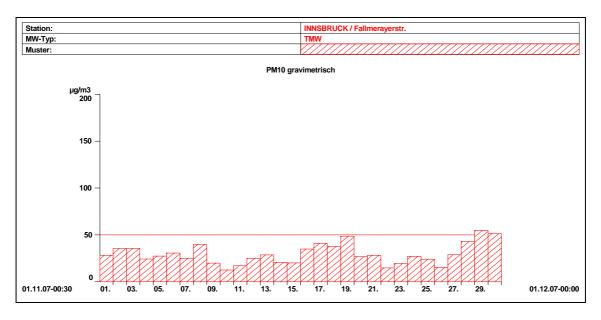
Messstelle: INNSBRUCK / Fallmerayerstrasse

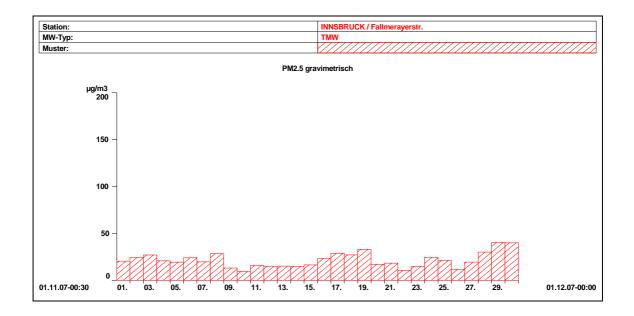
	SC	02	PM10	PM25	NO		NO2				03				co	
			grav.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	T			$\mu g/m^3$				mg/m³	T
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	6	10	28	20	129	43	81	84						0.9	0.8	0.9
02.	7	12	35	24	237	54	98	109						0.8	1.0	1.1
03.	8	16	36	27	170	52	96	101						0.9	1.2	1.2
So 04.	5	11	24	21	87	33	45	49						0.9	0.7	0.7
05.	5	10	27	19	232	53	97	106						0.8	1.1	1.3
06.	7	12	31	24	178	55	84	91						0.8	0.8	0.9
07.	5	10	25	20	142	69	97	106						0.7	0.8	1.1
08.	8	13	40	28	302	70	103	108						1.0	1.2	1.4
09.	4	11	20	13	169	43	82	87						0.9	0.9	0.9
10.	3	5	13	9	43	37	69	76						0.4	0.6	0.7
So 11.	7	21	17	16	142	48	76	78						0.7	1.2	1.3
12.	6	12	25	15	203	65	113	129						0.8	1.1	1.1
13.	7	15	29	15	164	63	103	111						0.8	1.1	1.1
14.	5	9	21	15	140	58	93	98						0.8	0.8	0.9
15.	6	10	20	16	108	49	74	75						0.6	0.8	1.0
16.	7	11	35	23	130	58	86	90						0.7	0.9	1.1
17.	8	14	41	29	128	63	94	96						0.8	1.0	1.1
So 18.	8	13	38	27	115	57	102	102						0.8	1.0	1.0
19.	13	32	49	33	397	84	150	156						1.2	1.8	2.0
20.	4	7	27	17	72	58	91	93						1.1	0.6	0.6
21.	4	7	28	18	111	51	87	90						0.5	0.7	0.7
22.	2	6	15	11	54	34	59	63						0.5	0.3	0.4
23.	3	6	19	15	74	45	64	70						0.5	0.6	0.7
24.	4	6	27	25	124	52	73	76						0.7	0.9	0.9
So 25.	5	10	24	21	89	39	48	51						0.7	0.8	0.9
26.	4	7	15	12	80	57	85	99						0.4	0.6	0.7
27.	6	10	29	19	128	70	90	95						0.5	0.8	1.0
28.	8	15	43	30	305	73	113	132						1.0	1.2	1.7
29.	13	22	55	40	337	84	136	136						1.4	1.8	1.9
30.	13	29	51	40	325	72	103	111						1.3	1.3	1.5

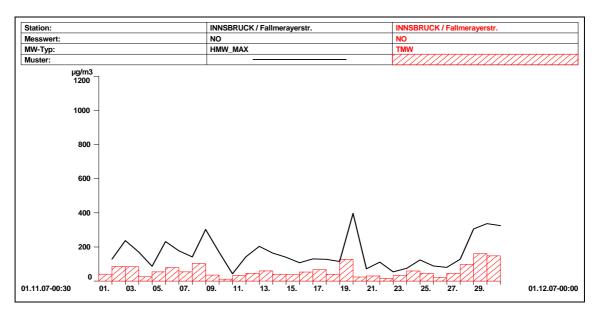
	SO2	PM10	PM25	NO	NO2	03	со
		grav.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30	30	30	30		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	32			397	156		
Max.01-M					150		1.8
Max.3-MW	26				141		
Max.08-M							
Max.8-MW							1.4
Max.TMW	13	55	40	161	84		
97,5% Perz.	17						
MMW	6	30	21	58	56	-	0.5
Gl.JMW	_				45		

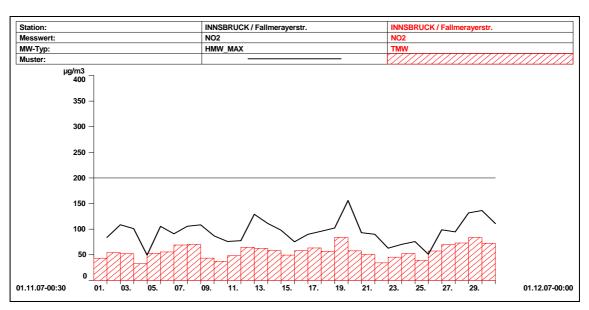

Messstelle: INNSBRUCK / Fallmerayerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	2		0		0
IG-L: Zielwerte menschliche Gesundheit		2		2		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
						·
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				26		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				2		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

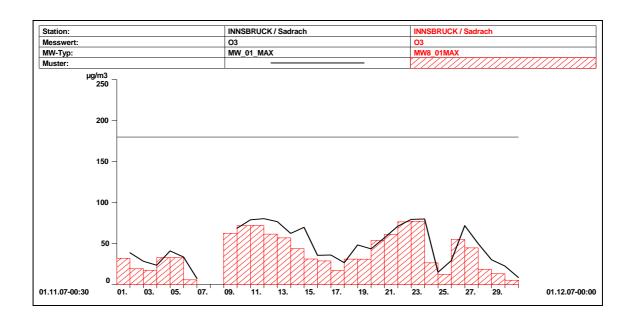

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Zeitraum: NOVEMBER 2007 Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO		NO2		_	_	03			_	СО	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$			ı	$\mu g/m^3$	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									32	32	39	40	41			
02.									19	19	28	30	30			
03.									18	18	24	24	24			
So 04.									33	33	41	41	41			
05.									33	33	34	35	36			
06.									6	6	7	10	12			
07.																
08.																
09.									63	63	69	69	69			
10.									72	72	79	80	80 81			
So 11.									72	73	80	80				
12. 13.									62 57	62 58	77 62	77 62	77 63			
14.									44	38 44	70	70	71			
15.									31	31	36	36	37			
16.									29	29	36	36	37			
17.									17	17	27	27	27			
So 18.									31	31	48	50	50			
19.									31	31	44	44	44			
20.									54	54	57	59	60			
21.									61	61	71	71	72			
22.									76	77	80	80	80			
23.									77	78	80	80	81			
24.									27	29	15	15	16			
So 25.									12	12	29	29	33			
26.									55	54	72	72	72			
27.									45	46	50	50	51			
28.									18	18	30	30	31			
29.									13	13	23	25	26			
30.									5	5	9	9	10			


	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						26	
Verfügbarkeit						89%	
Max.HMW						81	
Max.01-M						80	
Max.3-MW							
Max.08-M							
Max.8-MW						78	
Max.TMW						61	
97,5% Perz.							
MMW						27	
Gl.JMW							

Zeitraum: NOVEMBER 2007 Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONOPOZEZ II I II					0	
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					7	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

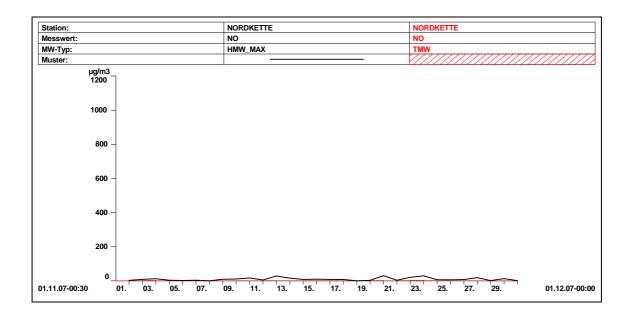
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

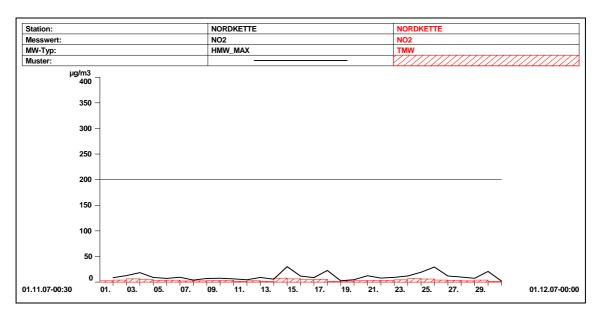
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

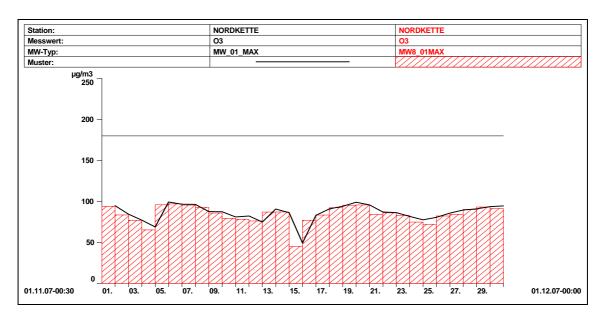
Zeitraum: NOVEMBER 2007 Messstelle: NORDKETTE

	SO	02	PM10	PM10	NO		NO2				03			_	СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$	ı		1	μg/m³	1			mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					3	3	8	9	94	94	95	95	95			
02.					9	4	11	13	84	84	84	85	85			
03.					13	6	18	18	77	77	77	77	78			
So 04.					4	5	9	9	65	65	69	70	70			
05.					2	4	6	7	96	96	99	99	102			
06.					4	4	8	9	97	97	97	97	97			
07.					1	2	4	4	95	95	96	97	97			
08.					9	2	7	7	93	93	88	88	90			
09.					11	3	7	8	86	86	87	88	89			
10.					17	4	6	6	79	79	81	82	82			
So 11.					5	2	4	5	78	78	82	82	83			
12.					29	3	7	9	76	76	75	75	76			
13.					16	1	3	6	87	87	91	91	91			
14.					9 10	8 6	26 11	30 12	87 45	87 45	86 49	89 49	87 50			
15. 16.					9	5	7	9	77	77	83	83	84			
17.					8	5 5	22	23	83	83	91	91	91			
So 18.					1	1	2	3	92	92	94	94	95			
19.					3	2	3	5	95	95	99	99	100			
20.					30	3	11	12	96	96	96	96	96			
21.					4	3	7	8	84	84	87	87	87			
22.					21	3	9	9	86	86	86	87	86			
23.					30	4	9	12	83	83	82	82	82			
24.					7	7	19	19	75	75	78	78	78			
So 25.					6	6	27	29	72	72	81	81	82			
26.					8	4	10	12	82	82	86	86	86			
27.					19	3	7	10	84	87	90	90	90			
28.					2	2	6	7	90	90	91	91	92			
29.					13	4	18	21	93	93	94	94	94			
30.					2	1	2	2	91	91	95	95	95			

	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30	30	
Verfügbarkeit				98%	98%	98%	
Max.HMW				30	30	102	
Max.01-M					27	99	
Max.3-MW					23		
Max.08-M							
Max.8-MW						97	
Max.TMW				3	8	91	
97,5% Perz.							
MMW				1	4	75	
Gl.JMW					4		


Zeitraum: **NOVEMBER 2007** Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

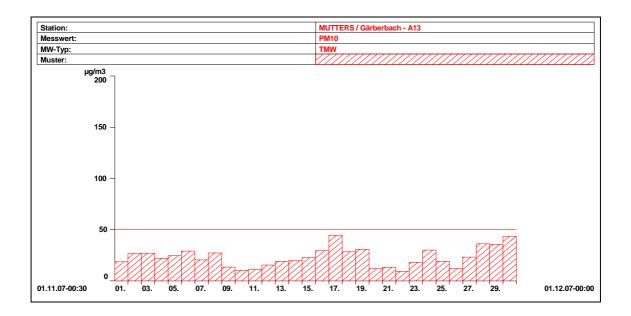
Messstelle: MUTTERS / Gärberbach - A13

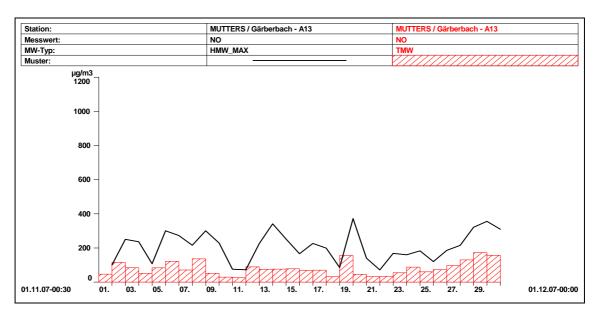
	SC)2	PM10	PM10	NO	_	NO2		_		03		_		СО	_
		, ,	kont.	grav.	/ 2	_	/ 2		_		/ 2				/ 2	
	μg		μg/m³	μg/m³	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
	1 101 00	TIMIW		1 101 00			74		00-101	0-1VI VV	01-W	1-101 00	TIVIVV	0-1VI VV	01-101	TIVIW
01. 02.			19 27		101 251	41 50	74 99	77 100								
03.			27		236	43	88	92								
So 04.			22		108	43	75	82								
05.			25		301	51	90	90								
06.			29		273	54	97	102								
07.			20		216	59	77	87								
08.			27		301	63	87	91								
09.			13		229	41	72	75								
10.			10		75	38	58	61								
So 11.			11		73	36	65	69								
12.			15		226	58	102	111								
13.			19		341	54	118	132								
14.			20		252	62	98	108								
15.			23		166	52	76	81								
16.			29		227	52	88	93								
17.			45		199	56	93	95								
So 18.			28		85	47	81	87								
19.			31		372	69	103	111								
20.			12		140	42	74	82								
21.			13		71	37	66	75								
22.			9		168	50	93	94								
23.			18		160	45	75	83								
24.			30		183	53	69	69								
So 25.			19		120	42	57	63								
26.			12		186	61	98 99	102								
27.			23		215	66		111								
28.			36		321	57	87	97								
29.			36		356	60 50	92	95 97								
30.			44		310	58	82	87								

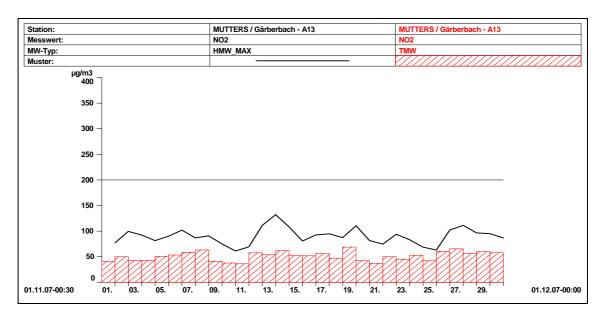
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				372	132		
Max.01-M					118		
Max.3-MW					101		
Max.08-M							
Max.8-MW							
Max.TMW		45		172	69	-	
97,5% Perz.							
MMW		23		80	51		
GLJMW					51		

Messstelle: MUTTERS / Gärberbach - A13

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

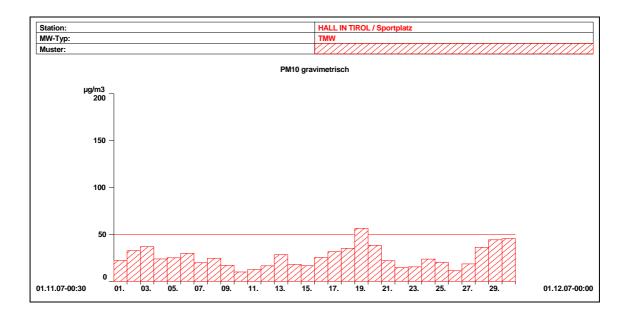
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

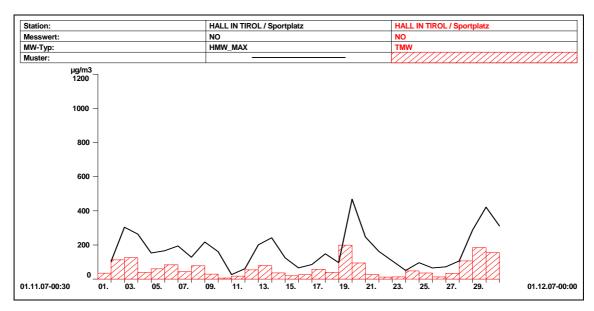
 $Messstelle: \quad HALL\ IN\ TIROL\ /\ Sportplatz$

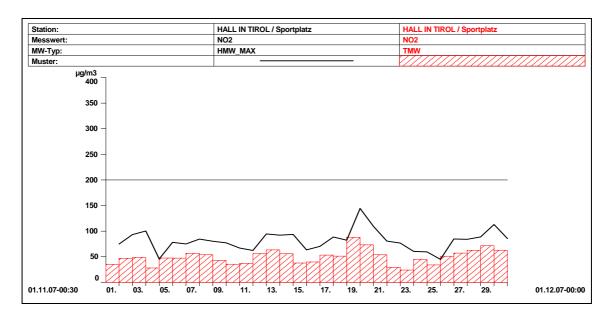
	SC	02	PM10	PM10	NO		NO2			_	03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu \text{g/m}^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				22	104	35	74	75								
02.				33	304	47	93	93								
03.				37	264	49	92	100								
So 04.				24	153	28	45	46								
05.				25	166	47	75	78								
06.				30	194	47	73	75								
07.				20	128	57	83	85								
08.				25	217	54	74	80								
09.				17	161	43	71	77								
10.				10	26	36	67	67								
So 11.				12	61	37	61	62								
12.				16	201	56	92	95								
13.				28	242	64	92	92								
14.				18	125	56	90	94								
15.				17	66	38	60	63								
16.				25	85	40	68	70								
17.				32	149	53	77	89								
So 18.				35	96	51	81	82								
19.				56	469	88	141	144								
20.				38	246	73	104	109								
21.				22	162	54	80	81								
22.				15	107	30	76	77								
23.				15	51	24	60	61								
24.				24	96	45	58	60								
So 25.				20	65	34	41	45								
26.				11	72	51	78	85								
27.				19	106	57	81	84								
28.				36	287	63	86	89								
29.				44	422	72	106	113								
30.				45	312	63	84	86								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				469	144		
Max.01-M					141		
Max.3-MW					131		
Max.08-M							
Max.8-MW							
Max.TMW			56	199	88		
97,5% Perz.							
MMW			26	62	50		
Gl.JMW					43		

Zeitraum: **NOVEMBER 2007**


Messstelle: HALL IN TIROL / Sportplatz


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: <u>Grenzwerte</u> menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		1		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				21		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

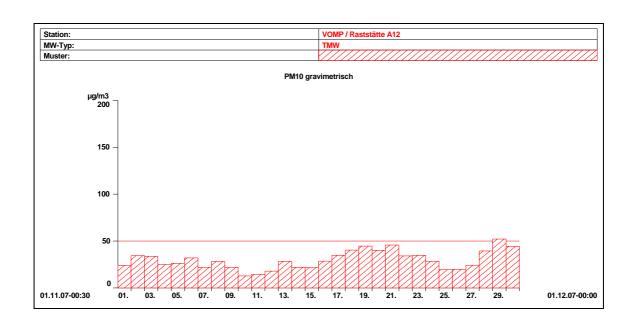
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007 Messstelle: VOMP / Raststätte A12

	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg/	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	_		T	$\mu g/m^3$				mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				24	277	50	110	122								
02.				34	687	67	111	121								
03.				34	558	65	113	129								
So 04.				25	149	49	90	93								
05.				26	491	70	119	132								
06.				32	515	80	141	142								
07.				22	626	96	149	154								
08.				28	617	94	132	148								
09.				22	574	94	183	186								
10.				13	473	77	127	131								
So 11.				14	129	66	93	94								
12.				18	457	99	151	161								
13.				28	465	101	147	148								
14.				22	601	89	160	170								
15.				22	680	73	144	153								
16.				29	537	76	133	136								
17.				35	480	72	107	112								
So 18.				40	180	69	144	150								
19.				45	555	94	176	176								
20.				40	613	100	157	158								
21.				46	694	102	159	168								
22.				34	734	86	164	165								
23.				35	366	79	116	121								
24.				29	395	64	91	97								
So 25.				20	155	41	76	78								
26.				20	480	101	143	151								
27.				24	591	91	150	155								
28.				39	505	77	134	138								
29.				52	898	97	170	178								
30.				44	624	86	129	140								

	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				898	186		
Max.01-M					183		
Max.3-MW					160		
Max.08-M							
Max.8-MW							
Max.TMW			52	350	102		
97,5% Perz.							
MMW			30	195	80		
Gl.JMW					65		

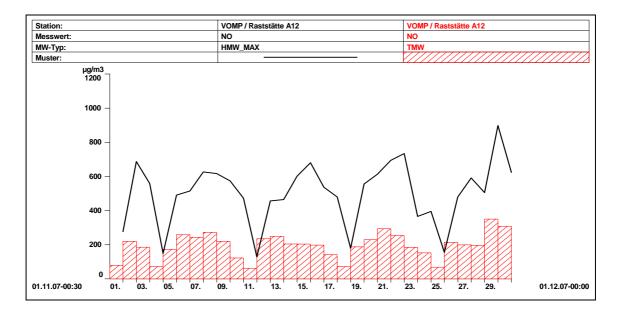
Zeitraum: NOVEMBER 2007 Messstelle: VOMP / Raststätte A12

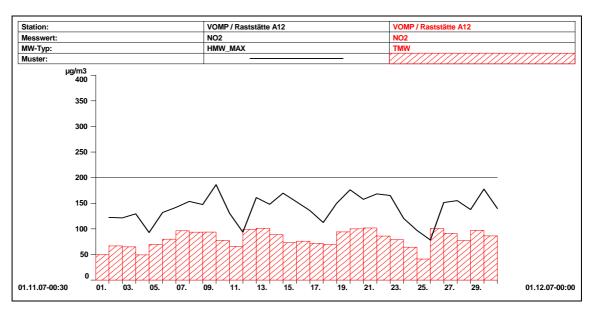

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		14		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				14		
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert


0



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

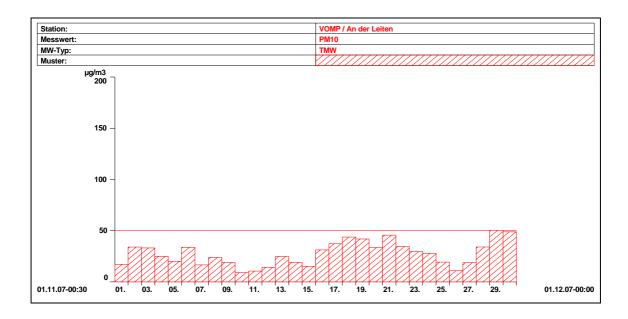
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

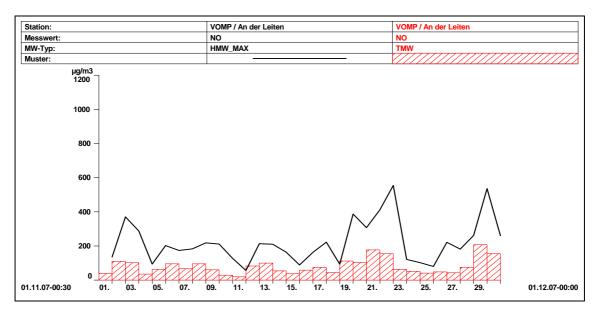
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

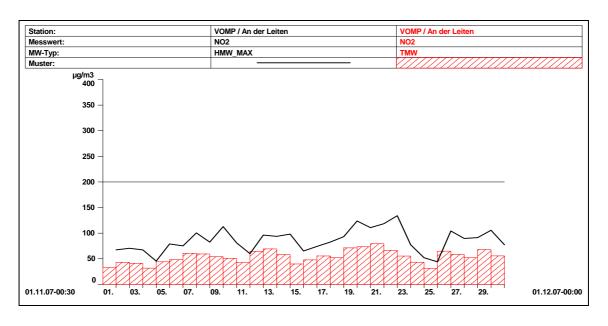
Zeitraum: NOVEMBER 2007 Messstelle: VOMP / An der Leiten

	SO)2	PM10	PM10	NO		NO2	_	_	_	03	_		_	CO	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			17		135	33	63	67								
02.			34		371	43	69	71								
03.			33		287	41	67	67								
So 04.			25		94	32	44	45								
05.			20		202	44	78	79								
06.			34		174	48	72	75								
07.			17		183	61	95	100								
08.			24		218	59	77	82								
09.			19		211	54	102	113								
10.			9		128	51	76	81								
So 11.			11		56	43	58	60								
12.			14		214	65	90	96								
13.			25		210	69	92	94								
14.			19		164	58	91	98								
15.			15		89	40	62	65								
16.			31		162	48	73	74								
17.			37		222	56	79	83								
So 18.			44		93	52	90	93								
19.			42		387	71	118	124								
20.			33		307	74	106	111								
21.			46		411	79	106	119								
22.			34		555	66	132	134								
23.			30		121	55	75	77								
24.			28		102	43	51	52								
So 25.			19		80	31	43	44								
26.			11		222	65	93	104								
27.			19		182	59	83	90								
28.			34		261	52	88	91								
29.			50		536	68	98	106								
30.			49		260	56	75	77								

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				555	134		
Max.01-M					132		
Max.3-MW					129		
Max.08-M							
Max.8-MW							
Max.TMW		50		207	79		
97,5% Perz.							
MMW		27		80	54		
GLJMW					43		


Zeitraum: **NOVEMBER 2007** Messstelle: VOMP / An der Leiten


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				26		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007 Messstelle: ZILLERTALER ALPEN

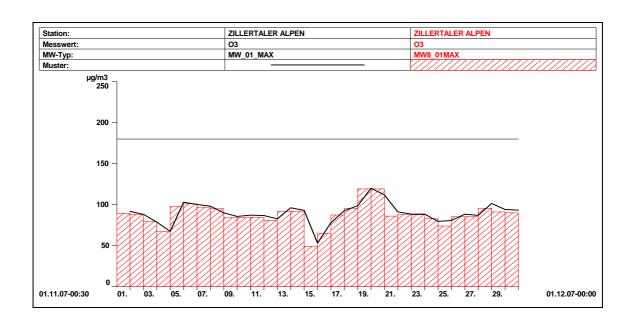
	SC)2	PM10	PM10	NO	_	NO2				03		_		СО	
	_		kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									89	89	92	92	93			
02.									88	88	88	88	88			
03.									79	79	79	79	79			
So 04.	_					_			67	67	67	67	68			
05.									97	97	103	103	103			
06.									101	101	100	101	101			
07.									97	97	98	98	99			
08.									95	95	90	90	90			
09.									84	85	86	86	87			
10.									84	84	87	87	87			
So 11.									85	85	87	87	87			
12.									81	81	83	83	83			
13.									91	91	96	96	96			
14.									92	92	93	93	93			
15.									49	49	53	53	54			
16.									65	66	78	78	78			
17.									87	88	93	93	93			
So 18.									95	95	99	99	99			
19.									119	118	120	120	120			
20.									119	119	112	118	117			
21.									86	86	91	91	91			
22.									88	88	88	88	89			
23.									88	88	88	89	89			
24.									83	83	79	81	80			
So 25.									74	74	81	82	82			
26.									85	85	88	89	89			
27.									85	85	87	87	87			
28.									95	95	101	101	102			
29.									91	91	94	94	94			
30.									90	90	93	93	94			

	SO2	PM10 kont.	PM10	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						120	
Max.01-M						120	
Max.3-MW							
Max.08-M							
Max.8-MW						119	
Max.TMW						105	
97,5% Perz.							
MMW						77	
Gl.JMW							

3

Zeitraum: NOVEMBER 2007 Messstelle: ZILLERTALER ALPEN

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	

ÖAW: Richtwerte Mensch, Vegetation (nur NO2)

ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

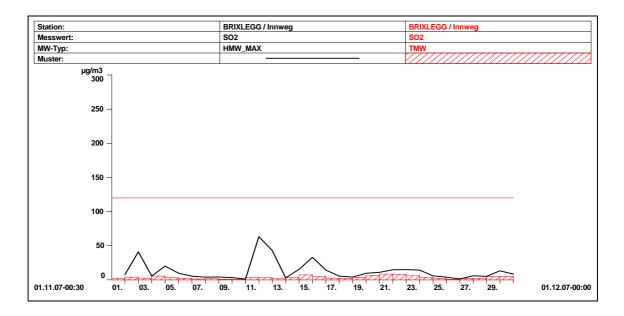
 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

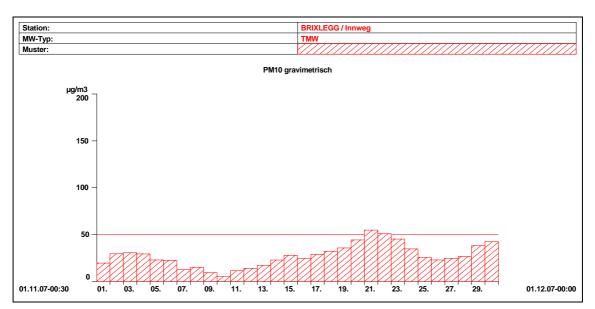
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: NOVEMBER 2007 Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO	_	NO2				03	_			СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	I
	T) ())	max	T) ()	TD 4337	max	T 131	max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	8		20												
02.	4	41		30												
03.	2	6		31												
So 04.	6	20		29												
05.	3	10		23												
06.	2	5		23												
07.	1	4		13												
08.	2	4		15												
09.	1	3		9												
10.	1	1		6												
So 11.	3	63		11												
12.	3	43		14												
13.	2	3		17												
14.	3	16		23												
15.	7	33		28												
16.	5	14		24												
17.	3 2	6		29												
So 18.		4		32												
19.	4	10		36												
20. 21.	6 8	11 15		44 55												
21.	8			55 51												
23.	6	15 14		45												
24.	4	6		35												
So 25.	2	4		26												
26.	1	1		23												
26.	2	6		25 25												
28.	2	5		25 27												
28. 29.	5	13		38												
II.																
30.	5	9		42												


	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30		30				
Verfügbarkeit	98%		100%				
Max.HMW	63						
Max.01-M							
Max.3-MW	29						
Max.08-M							
Max.8-MW							
Max.TMW	8		55				
97,5% Perz.	12						
MMW	4		27				
GLIMW							


Zeitraum: **NOVEMBER 2007** Messstelle: BRIXLEGG / Innweg

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0					
IG-L: Grenzwerte menschliche Gesundheit	0	2				
IG-L: Zielwerte menschliche Gesundheit		2				
IG-L: Zielwerte Ökosysteme, Vegetation	0					
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

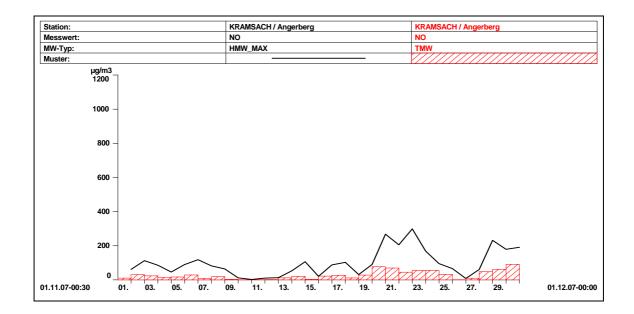
Zeitraum: NOVEMBER 2007

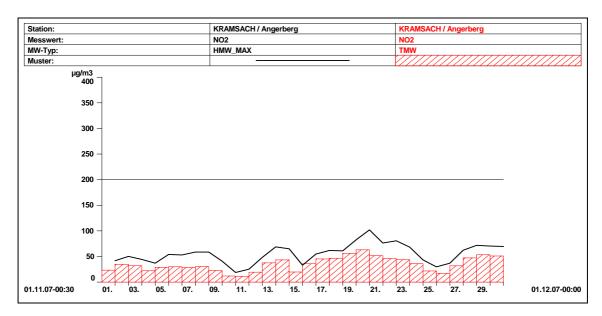
 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

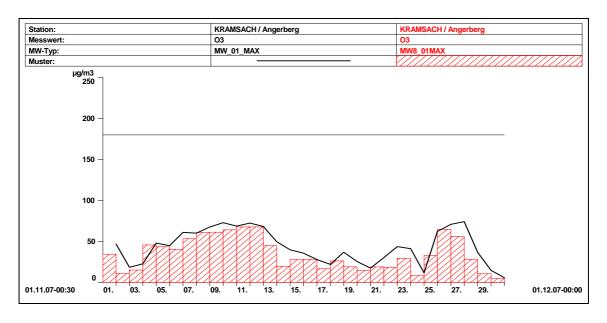
	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$	1	1		mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					62	23	41	42	34	34	47	47	48			
02.					113	35	50	50	11	11	18	18	20			
03.					86	32	44	44	15	15	23	23	24			
So 04.					46	22	37	37	46	46	48	49	51			
05.					89	29	45	54	43	44	45	47	47			
06.					118	30	45	53	40	40	61	63	64			
07.					82	28	58	59	53	54	60	60	63			
08.					64	30	57	59	61	61	68	68	68			
09.					12	23	40	41	61	62	73	75	75			
10.					2	12	17	19	64	64	69	70	71			
So 11.					11	11	23	25	68	68	72	72	74			
12.					13	20	44	48	68	68	68	71	74			
13.					52	38	66	69	45	45	50	52	52			
14.					106	43	62	65	20	20	40	40	44			
15.					21	20	29	33	28	28	36	38	40			
16.					88	36	53	55	28	28	28	31	31			
17.					103	45	60	62	17	17	22	23	24			
So 18.					31	46	61	61	26	26	37	38	40			
19.					90	56	82	83	19	21	26	29	29			
20.					268	63	98	102	14	15	17	19	19			
21.					206	52	76	76	19	19	30	38	42			
22.					299	46	68	81	18	18	44	44	46			
23.					168	44	65	68	29	30	41	41	41			
24.					95	36	43	43	8	8	12	12	12			
So 25.					66	22	29	30	33	33	62	64	69			
26.					8	17	35	37	65	65	71	72	74			
27.					61	32	56	62	56	55	74	74	75			
28.					232	47	67	72	28	31	37	37	39			
29.					179	53	69	70	11	11	15	15	15			
30.					191	51	66	70	5	5	6	6	7			

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30	30	
Verfügbarkeit				98%	98%	98%	
Max.HMW				299	102	75	
Max.01-M					98	74	
Max.3-MW					90		
Max.08-M							
Max.8-MW						68	
Max.TMW				91	63	61	
97,5% Perz.							
MMW				28	35	22	
Gl.JMW					25		

Zeitraum: **NOVEMBER 2007**


Messstelle: KRAMSACH / Angerberg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				11	6	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

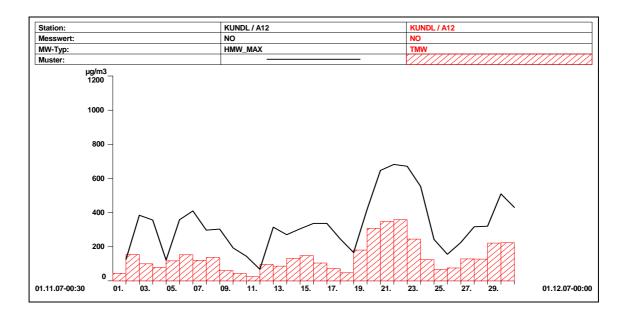

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

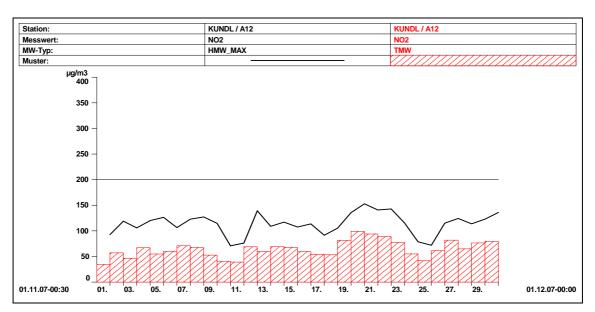
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007 Messstelle: KUNDL / A12

	SO)2	PM10	PM10	NO		NO2		_		03	_			СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³			T .	μg/m³	ı			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					126	35	84	93								
02.					385	57	107	119								
03.					356	46	102	106								
So 04.					122	67	116	120			_					
05.					358	55	107	126								
06.					410	60	91	106								
07.					297	71	117	123								
08.					303	68	113	127								
09.					193	53	97	115								
10.					144	41	69	71								
So 11.					68	39	69	76			_					_
12.					315	69	121	139								
13.					271	60	97	109								
14.					305	69	100	117								
15.					337	68	105	108								
16.					337	60	100	114								
17.					246	54	85	91								
So 18.					166	53	84	105								
19.					418	82	121	136								
20.					647	99	133	153								
21.					682	94	132	141								
22.					671	89	130	143								
23.					553	77	108	115								
24.					243	55	75	79								
So 25.					156	42	66	72								
26.					225	61	110	115								
27.					317	82	114	124								
28.					320	65	107	114								
29.					510	76	113	123								
30.					431	79	118	136								


	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30		
Verfügbarkeit				98%	98%		
Max.HMW				682	153		
Max.01-M					133		
Max.3-MW					133		
Max.08-M							
Max.8-MW							
Max.TMW				358	99		
97,5% Perz.							
MMW				137	64		·
Gl.JMW					59		


Zeitraum: **NOVEMBER 2007** Messstelle: KUNDL / A12

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte		1220	2,0	1,02		
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				5		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				5		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

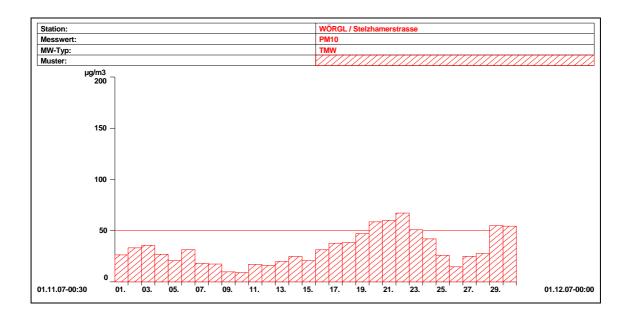
Zeitraum: NOVEMBER 2007

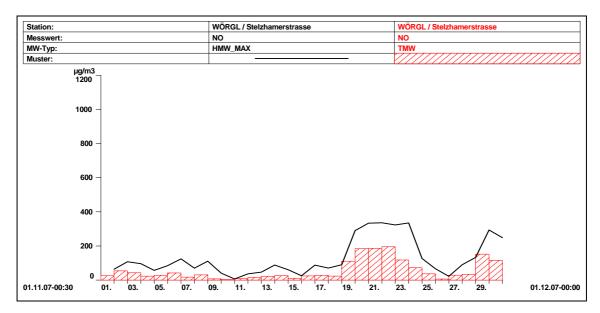
Messstelle: WÖRGL / Stelzhamerstrasse

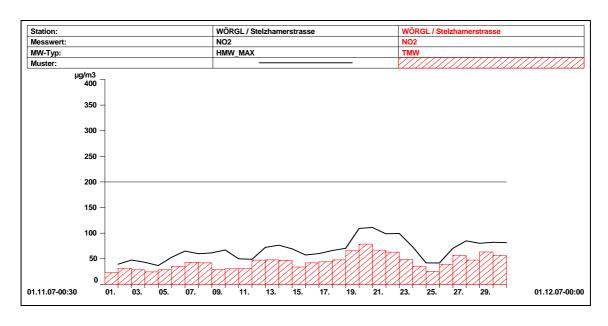
	SC	02	PM10	PM10	NO		NO2				03				co	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			26		64	23	38	39								
02.			33		107	32	46	48								
03.			36		96	28	43	43								
So 04.			27		57	24	33	37								
05.			21		85	29	50	53								
06.			31		125	35	63	65								
07.			18		70	43	57	60								
08.			17		111	42	60	62								
09.			10		41	29	63	67								
10.			9		7	30	50	50								
So 11.			17		37	31	49	49								
12.			16		47	47	72	72								
13.			20		88	48	72	77								
14.			25		61	47	67	69								
15.			21		26	34	57	57								
16.			31		88	42	59	60								
17.			38		71	44	65	66								
So 18.			38		90	48	67	71								
19.			47		290	66	105	109								
20.			59		334	79	106	111								
21.			60		336	67	98	99								
22.			67		323	63	91	99								
23.			51		335	48	67	73								
24.			42		127	36	42	42								
So 25.			26		67	25	40	42								
26.			15		22	39	68	70								
27.			25		90	57	84	85								
28.			28		133	48	79	80								
29.			55		293	63	81	82								
30.			54		248	57	78	81								

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				336	111		
Max.01-M					106		
Max.3-MW					105		
Max.08-M							
Max.8-MW							
Max.TMW		67		195	79		
97,5% Perz.							
MMW		32		56	43		
Gl.JMW					31		

Zeitraum: **NOVEMBER 2007**


Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		6		0		
IG-L: Zielwerte menschliche Gesundheit		6		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				17		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007

Messstelle: KUFSTEIN / Praxmarerstrasse

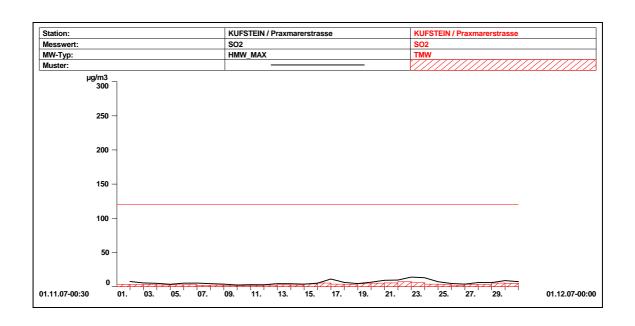
	SC)2	PM10	PM10	NO	_	NO2		_		03				СО	
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	3	7	13		36	20	36	38								
02.	3	5	19		127	28	44	45								
03.	3	5	23		111	27	39	42								
So 04.	2	3	20		62	26	40	46			_					
05.	2	5	11		33	21	41	42								
06.	3	5	18		127	32	57	62								
07.	2	4	12		84	41	61	61								
08.	2	4	14		95	40	62	65								
09.	2	2	9		32	29	50	58								
10.	2	3	5		33	22	45	55								
So 11.	1	3	6		43	22	44	48								
12.	2	4	7		51	28	56	61								
13.	3	4	15		77	42	62	64								
14.	2	4	13		76	38	68	68								
15.	4	5	10		15	22	31	37								
16.	5	11	18		41	30	48	54								
17.	4	6	29		54	41	61	63								
So 18.	3	4	32		34	45	59	60								
19.	4	6	31		148	56	81	81								
20.	5	9	29		177	58	86	87								
21.	5	10	32		220	47	63	68								
22.	7	14	38		304	49	73	78								
23.	6	13	35		203	38	51	53								
24.	4	7	24		112	33	39	40								
So 25.	3	4	17		73	22	44	48								
26.	2	4	7		48	29	77	84								
27.	3	6	12		59	45	77	80								
28.	3	6	21		75	47	68	69								
29.	5	9	30		197	53	70	70								
30.	5	7	36		183	54	67	71								

	SO2	PM10	PM10	NO	NO2	03	СО
	302	kont.		110	1102	03	
	$\mu g/m^3$	μg/m³	grav. μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage	30	30		30	30		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	14			304	87		
Max.01-M					86		
Max.3-MW	13				79		
Max.08-M							
Max.8-MW							
Max.TMW	7	38		123	58		
97,5% Perz.	9						
MMW	3	20		39	36		
GLJMW					28		

NOVEMBER 2007 Zeitraum:

Messstelle: KUFSTEIN / Praxmarerstrasse

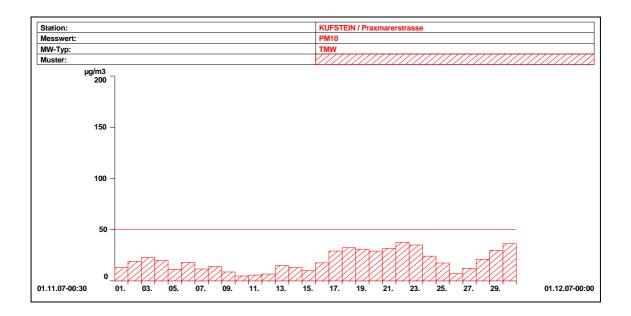
Anzahl der Tage mit Grenzwertüberschreitungen

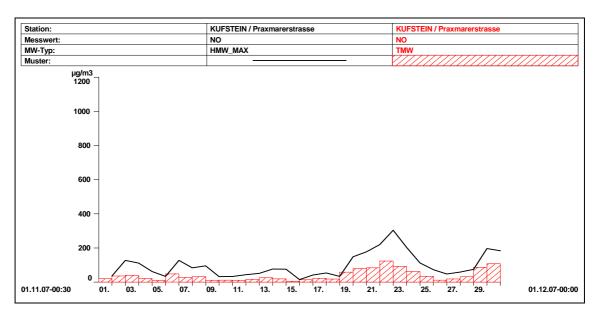

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				13		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					

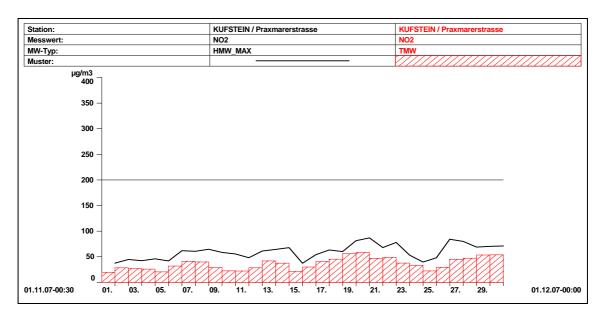
 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert


0

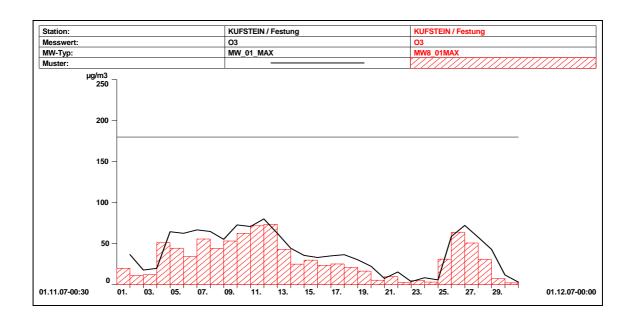



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: NOVEMBER 2007 Messstelle: KUFSTEIN / Festung


	SC)2	PM10	PM10	NO		NO2	_	_		03				co	
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									20	20	37	37	37			
02.									11	11	18	18	19			
03.									12	12	20	21	23			
So 04.									51	52	64	65	65			
05.									44	44	63	66	70			
06.									34	34	67	67	67			
07.									56	56	65	65	68			
08.									44	43	55	55	55			
09.									53	53	73	73	76			
10.									62	62	71	71	72			
So 11.									72	72	80	80	80			
12.									74	73	63	65	67			
13.									43	43	44	52	50			
14.									25	26	36	37	39			
15.									30	30	33	35	37			
16.									23	23	35	37	38			
17.									25	25	36	38	38			
So 18.									21	21	30	31	32			
19.									16	17	22	22	24			
20.									5	5	7	7	10			
21.									10	10	15	15	17			
22.									3	3	4	4	4			
23.									5	5	8	8	9			
24.									3	3	6	6	6			
So 25.									31	31	59	59	59			
26.									64	64	72	72	74			
27.									51	51	58	59	66			
28.									31	31	43	43	43			
29.									7	7	12	12	13			
30.									2	2	3	3	3			

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						80	
Max.01-M						80	
Max.3-MW							
Max.08-M							
Max.8-MW						73	
Max.TMW						58	
97,5% Perz.							
MMW						18	
GLJMW							

Zeitraum: **NOVEMBER 2007** Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OF ON OPPOPER AT A 1 II					0	
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					4	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

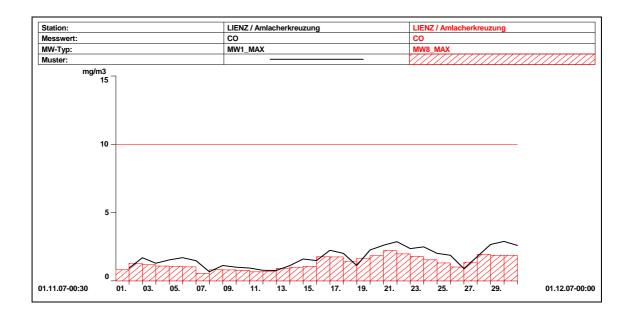
Zeitraum: NOVEMBER 2007

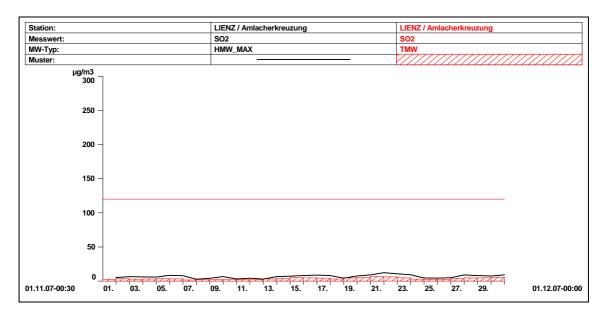
Messstelle: LIENZ / Amlacherkreuzung

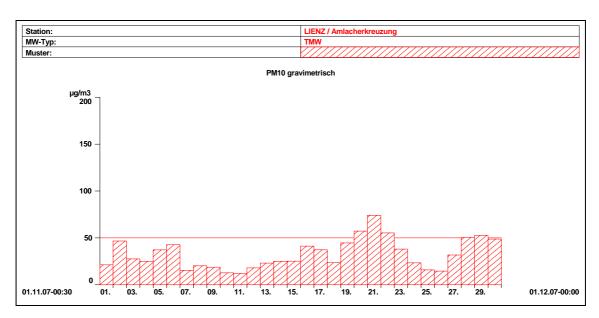
	SO	02	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	5		21	70	22	42	44						0.8	0.9	1.0
02.	4	6		47	305	42	84	97						1.3	1.7	1.8
03.	3	6		28	121	29	60	63						1.2	1.3	1.5
So 04.	3	6		25	158	36	84	88						1.1	1.5	1.7
05.	4	8		37	374	45	99	104						1.1	1.3	2.0
06.	3	8		43	404	46	83	98						1.0	1.4	1.6
07.	2	3		15	127	30	72	79						0.5	0.7	0.8
08.	2	4		20	131	44	74	85						0.8	1.1	1.3
09.	2	7		19	200	37	63	75						0.8	0.9	1.0
10.	2	3		13	91	29	68	75						0.8	0.9	1.1
So 11.	2	4		12	72	27	53	54						0.7	0.8	0.8
12.	2	3		18	121	40	67	71						0.7	0.7	0.8
13.	3	7		23	186	50	99	105						0.9	1.1	1.2
14.	4	7		25	252	49	108	117						1.0	1.5	1.9
15.	5	8		25	231	48	89	96						1.1	1.5	1.6
16.	5	9		41	255	61	110	120						1.8	2.2	2.6
17.	4	8		37	184	55	107	116						1.8	1.9	2.1
So 18.	3	4		24	123	35	60	69						1.4	1.1	1.1
19.	5	8		45	328	58	103	119						1.7	2.3	2.3
20.	5	9		57	288	67	121	121						1.8	2.6	2.9
21.	7	12		74	398	77	136	145						2.2	2.9	2.9
22.	6	11		55	445	67	114	127						2.0	2.4	2.6
23.	5	9		38	368	57	125	126						1.8	2.2	2.9
24.	3	5		23	257	40	71	80						1.5	1.9	2.1
So 25.	3	4		16	187	28	60	63						1.3	1.9	1.9
26.	3	5		15	146	42	73	88						1.0	0.9	1.0
27.	4	9		32	242	60	126	145						1.4	1.8	1.8
28.	5	8		50	365	70	123	135						1.9	2.6	2.7
29.	5	7		53	360	65	114	118						1.9	2.9	3.1
30.	5	9		49	323	65	112	117						1.9	2.5	2.7

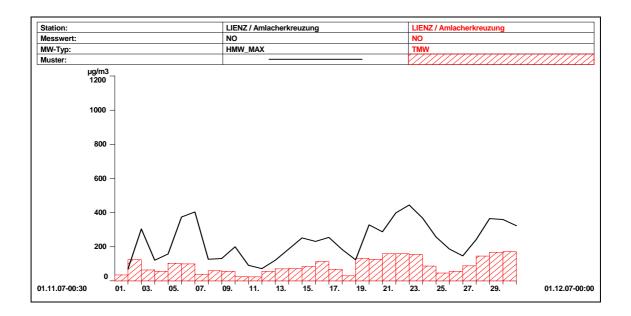
	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30		30	30	30		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	12			445	145		
Max.01-M					136		2.9
Max.3-MW	10				132		
Max.08-M							
Max.8-MW							2.2
Max.TMW	7		74	171	77		
97,5% Perz.	8						
MMW	4		33	89	47		0.9
Gl.JMW					41		

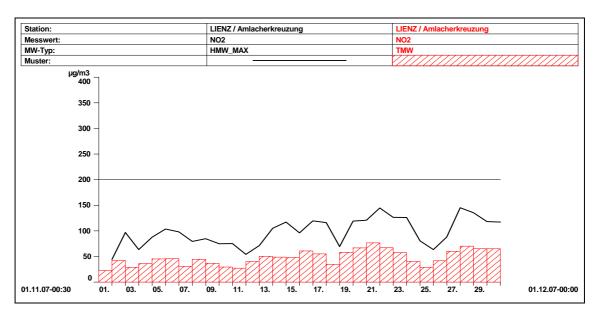
Zeitraum: **NOVEMBER 2007**


Messstelle: LIENZ / Amlacherkreuzung

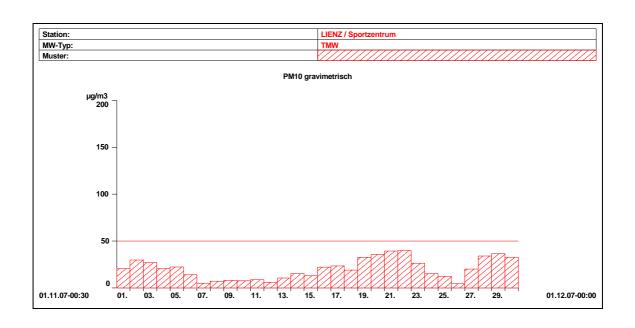

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	4		0		0
IG-L: Zielwerte menschliche Gesundheit		4		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				20		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

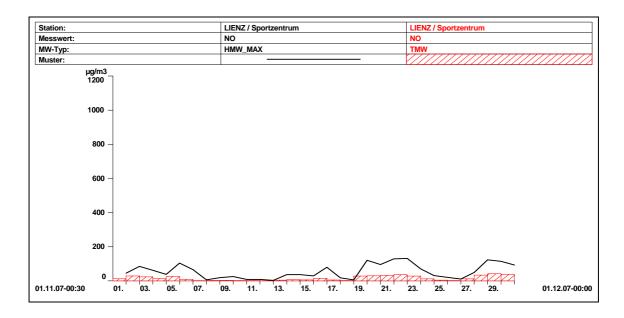

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

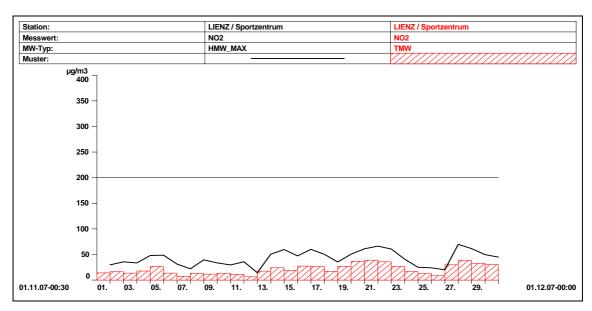
Zeitraum: NOVEMBER 2007 Messstelle: LIENZ / Sportzentrum

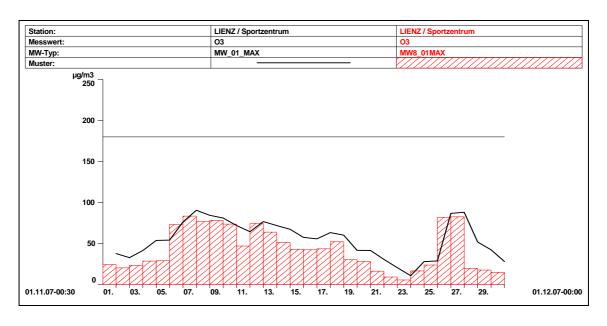

	SC)2	PM10	PM10	NO		NO2			_	03				СО	_
		_	kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³	ı		I	μg/m³	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				21	45	14	30	30	24	24	38	39	41			
02.				30	85	17	35	36	20	20	33	33	37			
03.				27	62	14	32	33	23	23	41	42	42			
So 04.				21	38	18	46	48	28	28	54	57	58			
05.				22	104	27	46	49	29	29	54	57	59			
06.				14	66	14	28	31	73	73	76	77	79			
07.				5	6	7	17	22	83	84	90	92	92			
08.				7	19	13	31	40	77	77	84	85	85			
09.				8	26	12	32	34	78	78	81	82	82			
10.				8	9	13	28	30	74	74	72	72	72			
So 11.				9	9	11	28	36	47	47	64	64	66			
12.				6	3	6	13	14	74	74	77	77	78			
13.				11	37	18	45	50	64	64	72	72	73			
14.				15	37	24	59	60	51	51	67	69	69			
15.				13	29	19	46	47	43	41	57	58	58			
16.				22	80	27	59	60	42	42	56	56	57			
17.				23	18	26	48	50	43	44	63	63	63			
So 18.				19	6	17 27	32 48	35 51	52	52	60	60 43	61 45			
19.				33	121	37	48 60	61	30 28	31	42					
20. 21.				36 39	96 129	39	64	66	28 16	28	41 31	41 31	45 31			
22.				40	132	39 36	54	61	9	16 9	20	20	22			
22.				26	71	36 27	54 40	41	5	5	11	11	12			
24.				15	31	17	25	25	16	16	28	32	36			
So 25.				12	21	13	22	24	24	24	29	29	30			
26.				4	11	9	18	20	82	81	87	87	87			
27.				20	49	30	69	70	82	82	88	89	90			
28.				34	124	39	59	61	19	19	52	52	56			
29.				37	114	32	49	50	18	18	42	43	44			
30.				33	93	30	45	45	15	15	28	28	32			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				132	70	92	
Max.01-M					69	90	
Max.3-MW					67		
Max.08-M							
Max.8-MW						84	
Max.TMW			40	42	39	75	
97,5% Perz.							
MMW			20	15	21	27	
Gl.JMW	•				12		

Zeitraum: **NOVEMBER 2007** Messstelle: LIENZ / Sportzentrum


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	9	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

	Schwefeldioxid (SO ₂)	
	April - Oktober	November - März
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³
(HMW) in den Monaten		
Die zulässige Überschreitung des Grenzwertes	s, die sich aus der Perzentilregelung ergibt, da	rf höchstens 100% des Grenzwertes betragen.
Tagesmittelwert (TMW)	0,05 mg/m ³	0,10 mg/m³
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³

II. Warnwerte für Ozon laut Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Zielwert	120 μg/m³ als Achtstundenmittelwert *)					
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.						

III. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)			August 1989: Luftqualitätskriterien Ozon (O ₃)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für $ m NO_2$ in $ m mg/m^3$			Wirkungsbezogene Immissionsgrenzkonzentrationen für $\mathrm{O_3}$ in $\mathrm{mg/m^3}$					
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode								

Die höchstzulässige Konzentration von Schwefeldioxid (SO ₂) in der freien Luft beträgt					
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten		
		Schwefeldioxid	in mg/m³ Luft		
	April - Oktober	November – März			
Tagesmittelwert	0,05	0,10	0,20		
Halbstundenmittelwert	0,07	0,15	0,20		
			Die Überschreitung dieses Halbstundenmittelwertes		
			dreimal pro Tag bis höchstens 0,50 mg/m³ gilt		
			nicht als Luftbeeinträchtigung.		

V. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

G	renzwerte in µg/m³ (ausg	genommen CO: ang	egeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **
PM_{10}				50 ***)	40
	Warı	nwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Ziel	werte in μg/m³			
Stickstoffdioxid				80	
PM_{10}				50	20

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³						
Luftschadstoff	HMW	MW3	MW8	TMW	JMW	
Schwefeldioxid					201)	
Stickstoffoxide					30	
Zielwerte in μg/m³						
Schwefeldioxid				50		
Stickstoffdioxid				80		
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)						

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)				
Tagesmittelwert	500 μg/m³			
Halbstundenmittelwert	$1000~\mu\mathrm{g/m^3}$			

ber Immissionsgrenzwert von 30 μg/m³ ist ab 1. Janner 2012 einzuhalten. Die Toleranzmarge betragt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum	WERT[µg/m3]
WÖRGL / Stelzhamerstrasse	20.11 21.11 22.11 23.11 29.11	.2007 60 .2007 67 .2007 51 .2007 55
Anzahl: 6	30.11	.2007 54

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum	WERT[µg/m	3]
IMST / Imsterau Anzahl: 1	23.11	.2007	54
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse Anzahl: 4	19.11 29.11	.2007 .2007	67 74
<pre>INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. Anzahl: 2</pre>			
HALL IN TIROL / Sportplatz Anzahl: 1	19.11	.2007	56
VOMP / Raststätte A12 Anzahl: 1	29.11	.2007	52
BRIXLEGG / Innweg BRIXLEGG / Innweg Anzahl: 2		.2007	
LIENZ / Amlacherkreuzung LIENZ / Amlacherkreuzung LIENZ / Amlacherkreuzung LIENZ / Amlacherkreuzung Anzahl: 4	21.11 22.11	.2007	74 55

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Dreistundenmittelwert > 400µg/m3

 ${\tt MESSSTELLE} \qquad \qquad {\tt Datum} \qquad {\tt WERT[\mu g/m3]}$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Tagesmittelwert > 80µg/m3

MESSSTELLE	Datum W	ERT[µg/m3]
INNSBRUCK / Fallmerayerstr.	19.11.2	2007 84
INNSBRUCK / Fallmerayerstr.		
Anzahl: 2		
UNIT IN TIPOT / Consisted labor	10 11 0	007
HALL IN TIROL / Sportplatz Anzahl: 1	19.11.2	8007 88
Alizanii. I		
VOMP / Raststätte A12	07.11.2	96
VOMP / Raststätte A12	08.11.2	94
	09.11.2	
VOMP / Raststätte A12	12.11.2	1007 99
·	13.11.2	
VOMP / Raststätte A12	14.11.2	8007 89
VOMP / Raststätte A12	19.11.2	94
	20.11.2	
VOMP / Raststätte A12	21.11.2	1007 102
	22.11.2	
VOMP / Raststätte A12	26.11.2	1007 101
	27.11.2	
VOMP / Raststätte A12	29.11.2	97
VOMP / Raststätte A12	30.11.2	8007 86
Anzahl: 14		
KUNDL / A12	19 11 2	2007 82
KUNDL / A12		2007 99
KUNDL / A12		2007 94
KUNDL / A12		8007 89
KUNDL / A12		007 82
Anzahl: 5	2,.11.2	
IIII WIII . J		

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Tagesmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.11.07-00:30 - 01.12.07-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.11.07-00:30 - 01.12.07-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.11.07-00:30 - 01.12.07-00:00

Einstundenmittelwert > $180 \mu g/m3$

 ${\tt MESSSTELLE} \qquad \qquad {\tt Datum} \qquad {\tt WERT[\mu g/m3]}$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.11.07-00:30 - 01.12.07-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!