Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Juli 2009

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

> Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

> Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 28. Oktober 2009

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
\Rightarrow	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Eriauterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – Imsterau	
Imst – A12	18
Karwendel West	21
Innsbruck – Andechsstrasse (Reichenau)	23
Innsbruck – Fallmerayerstrasse (Zentrum)	26
Innsbruck – Sadrach	30
Nordkette	32
Mutters – Gärberbach A13	35
Hall in Tirol – Sportplatz	38
Vomp – Raststätte A12	41
Vomp – An der Leiten	44
Zillertaler Alpen	47
Brixlegg – Innweg	49
Kramsach – Angerberg	52
Kundl – A12	55
Wörgl – Stelzhamerstrasse	58
Kufstein – Praxmarerstrasse	61
Kufstein – Festung	64
Lienz – Amlacherkreuzung	
Lienz – Sportzentrum	
Beurteilungsunterlagen	
aus Gesetzen, Verordnungen und Richtlinien	72
IC I Überenber Herren	
IG-L Überschreitungen Auflistung der Überschreitungen nach IG-L	7.4
Authstung der Oberschleitungen nach IG-L	

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert
max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

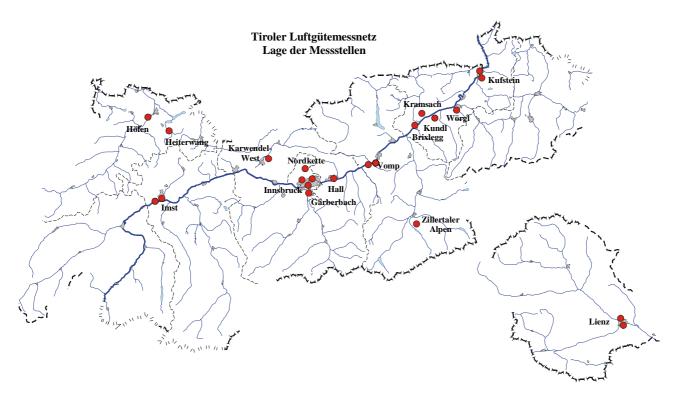
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE												
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО					
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-					
Heiterwang – Ort / B179	985 m	-	•/-	•	•	-	-					
Imst – Imsterau	717 m	-	•/-	•	•	-	-					
Imst – A12	719 m	-	•/-	•	•	-	-					
Karwendel – West	1749 m	-	-/-	-	-	•	-					
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-					
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	-	•					
Innsbruck – Sadrach	678 m	-	-/-	-	-	•	-					
Nordkette	1958 m	-	-/-	•	•	•	-					
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-					
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-					
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-					
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-					
Zillertaler Alpen	1955 m	-	-/-	-	-	•	-					
Brixlegg – Innweg	519 m	•	•/-	-	-	-	-					
Kramsach – Angerberg	602 m	-	•/-	•	•	•	-					
Kundl – A12	507 m	-	-/-	•	•	-	-					
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	-	-					
Kufstein – Praxmarerstrasse	498 m	•	•/-	•	•	-	-					
Kufstein – Festung	550 m	-	-/-	-	-	•	-					
Lienz – Amlacherkreuzung	675 m	•	•/-	•	•	-	•					
Lienz – Sportzentrum	677 m	-	-/-	-	-	•	-					

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten Juli 2009

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	03	CO
HÖFEN					Р	
Lärchbichl		1			M	
HEITERWANG						
Ort / B179						
IMST						
Imsterau						
IMST				Ö		
A12						
KARWENDEL					ZP	
West		1			M	
INNSBRUCK					P	
Andechsstrasse						
INNSBRUCK				Ö		
Fallmerayerstrasse	1					
INNSBRUCK					ZP	
Sadrach					M	
NORDKETTE					ΖP	
					M	
MUTTERS				Ö		
Gärberbach A13						
HALL IN TIROL				Ö		
Sportplatz						
VOMP				Ö		
Raststätte A12						
VOMP				Ö		
An der Leiten						
ZILLERTALER					ZP	
ALPEN					M	
BRIXLEGG	1					
Innweg						
KRAMSACH					P	
Angerberg					M	
KUNDL				Ö		
A12						
WÖRGL						
Stelzhamerstrasse						
KUFSTEIN						
Praxmarerstrasse						
KUFSTEIN					P	
Festung					M	
LIENZ			-	Ö		
Amlacherkreuzung	1					
LIENZ					ZP	
Sportzentrum					M	

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
12.	Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
	Überschreitung des im IG-L genannten Tageszielwertes von 50µg/m³ für PM10. Der PM10-Tages grenzwert gem.
IP	Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen
	erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
IG	Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der
	Informationsschwelle gemäß Ozongesetz.
1	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle
	gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz,
۷)	Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Juli 2009

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit insgesamt 22 Messstationen. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM10 und PM2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o.a. enthaltenen gesetzlichen Grenz- und Zielwerte österreichischer Gesetze sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie von Staubniederschlagsmessungen sind in den Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Sehr wechselhaft präsentierte sich der Juli 2009. Von den Temperaturen her gab es einen steten Wechsel an zu warmen und zu kühlen Tagen. Die Monatsbilanz wies somit verbreitet normale Temperaturen auf, stellenweise war es bis knapp über 1 Grad zu warm. Hitzepol war Kössen, wo am 23.7. bis zu 35,9 Grad gemessen wurden. In Innsbruck gab es 16 Sommertage (=Maximum von mindestens 25 Grad) sowie 5 Tropentage (=Maximum von mindestens 30 Grad), dies entspricht ganz dem Soll.

Die Niederschlagssummen entsprachen ebenfalls in weiten Teilen des Landes der Norm. Orte mit 20 bis 50 % mehr an Niederschlag gab es vor allem nahe dem Alpenhauptkamm. Auffallend war die Häufigkeit des Niederschlages. Zwischen 17 und 23 Regentage wurden an allen Niederschlagsstationen verzeichnet, im Schnitt um 3 mehr als normal. Zählt man auch noch die Tage mit nicht messbaren Niederschlagsmengen dazu, so verbleiben beispielsweise in Innsbruck nur 4 Julitage, an denen es völlig trocken geblieben ist.

Es gab auch einige Unwetter im Juli. Das markanteste war sicher am 23. Juli. Am Abend dieses heißesten Tages des Jahres zogen Gewitterlinien über viele Teile Österreichs. In Tirol waren vor allem die Bezirke Kufstein und Kitzbühel betroffen, wo strichweise Tennisball-große Hagelschosse fielen. Die Monatsumme an Blitzentladungen entsprach hingegen ziemlich der Norm: Es gab rund 8.800 Blitze in Tirol, im Vergleich dazu waren es im Juli 2007 über 14.000 Blitze, im Juli 2006 nur 3.700.

Ein klares Manko an Sonnenschein gab es vor allem im Gebirge. An den Wetterstationen in den Tälern war die Summe der Sonnenscheindauer normal bis leicht unternormal. Sonniger war es in Osttirol.

Luftschadstoffübersicht

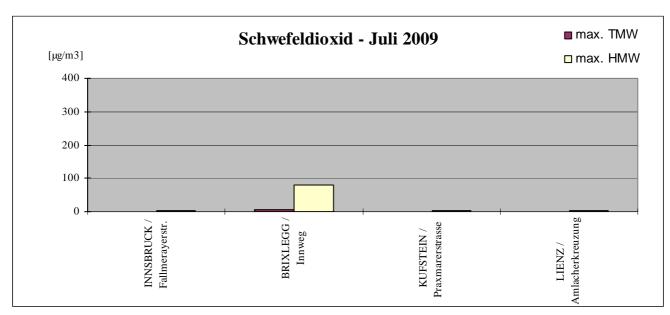
Das wechselhafte Wetter wirkte sich günstig auf die Luftschadstoffbelastung aus, insbesondere bei Ozon kam es zu keinem Aufschaukeln der Belastung, da eine anhaltende Hitzeperiode ausblieb.

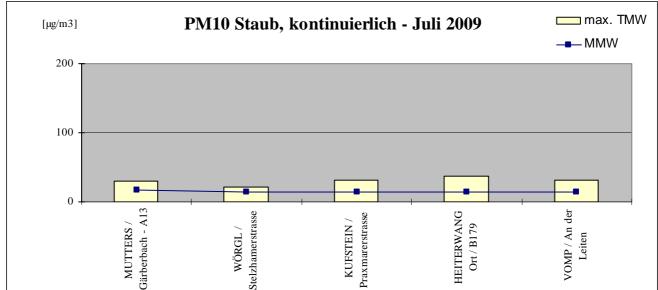
Die **Schwefeldioxid**-Konzentrationen gingen im Vergleich zum Vormonat sogar noch etwas zurück. Der maximale Halbstundenmittelwert lag außer in BRIXLEGG/Innweg, wo mit $80~\mu\text{g/m}^3$ eine vielfach höhere Konzentration gemessen wurde, an allen Messstellen bei $3~\mu\text{g/m}^3$. Die Grenzwerte gemäß IG-L (Immissionsschutzgesetz-Luft) bzw. zweiter Verordnung gegen forstschädliche Luftverunreinigungen sind eingehalten.

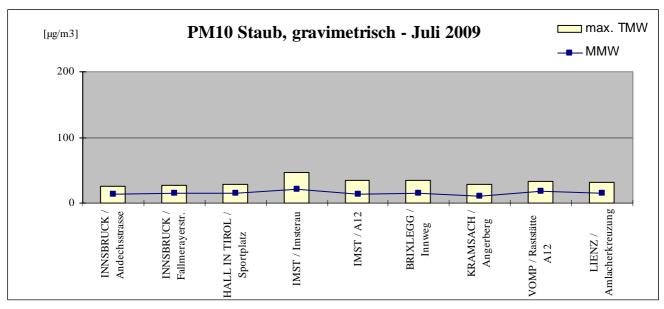
Bei **PM10** sind für den Berichtsmonat keine Überschreitungen des Tagesgrenzwertes von $50\,\mu\text{g/m}^3$ gemäß IG-L auszuweisen. Die höchsten Feinstaubimmissionen wurden an der Messstelle IMST/Imsterau mit einem Monatsmittelwert von $21\,\mu\text{g/m}^3$ und einem maximalen Tagesmittelwert von $46\,\mu\text{g/m}^3$ festgestellt.

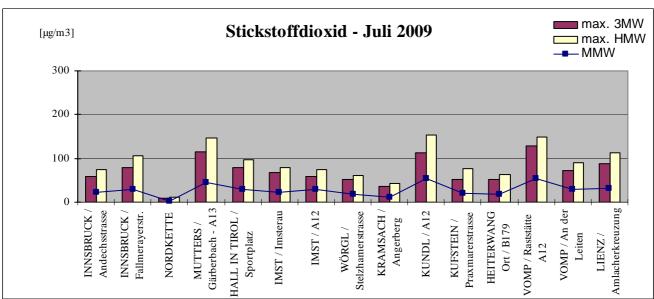
Der Belastungsschwerpunkt bei den **Stickoxiden** lag eindeutig bei den autobahnnahen Messstellen VOMP/Raststätte A12, KUNDL/A12 und MUTTERS/Gärberbach A13.

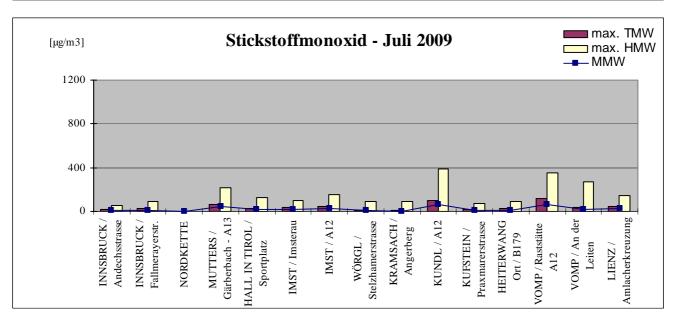
Die **Stickstoffmonoxid**-Immissionen lagen auf geringem Niveau, die Kriterien gemäß VDI-Richtlinie 2310 (1000 μ g/m³ als Halbstundenmittelwert sowie 500 μ g/m³ als Tagesmittelwert) sind bei allen Messstandorten deutlich eingehalten.

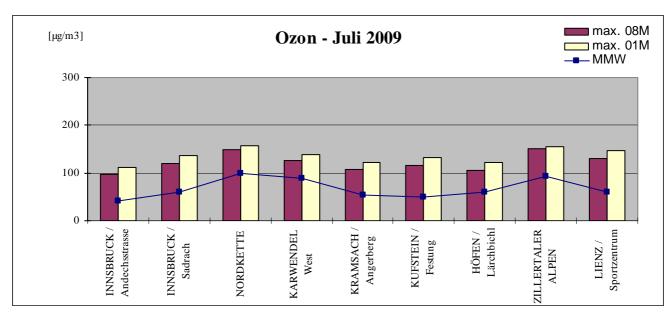

Die höchsten **Stickstoffdioxid**-Kurzzeitwerte wurden in KUNDL/A12 gemessen; mit 153 μ g/m³ als Halbstundenmittelwert und 75 μ g/m³ als Tagesmittelwert wurde jedoch weder der Grenz- noch der Zielwert gemäß IG-L erreicht. Das Luftqualitätskriterium der ÖAW (Österreichische Akademie der Wissenschaften) zum Schutz der Vegetation wurde an 8 der insgesamt 15 Messstandorte überschritten.

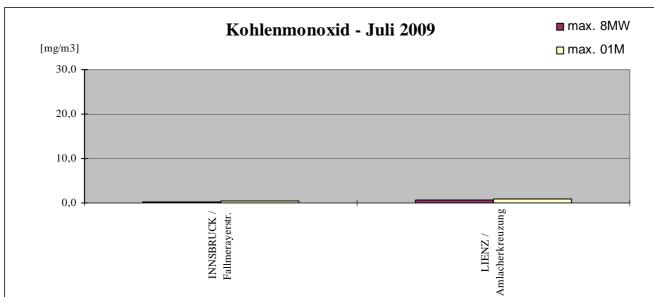

Die **Ozon**belastung ist für ein Monat im Hochsommer als gering einzustufen. Die Informationsschwelle (180 μ g/m³ als Einstundenmittelwert) gemäß Ozongesetz wurde klar nicht erreicht. Der Zielwert (120 μ g/m³ als Achtstundenmittelwert)


wurde bei den 6 Talstationen lediglich an den Standorten INNSBRUCK/Sadrach und LIENZ/Sportzentrum jeweils an einem Tag überschritten. Hingegen traten bei allen Bergstationen Zielwertüberschreitungen auf, wobei an der Station NORDKETTE mit 11 Überschreitung mit Abstand die meisten Überstreitungen zu verzeichnen waren. Die strengeren wirkungsbezogenen Kriterien laut ÖAW zum Schutz der Vegetation sind an keiner Messstelle eingehalten, während die Kriterien zum Schutz des Menschen nur am Standort INNSBRUCK/Andechsstraße eingehalten sind.


Mit maximalen **Kohlenmonoxid**-Achtstundenmittelwerten von $0.3~\text{mg/m}^3$ an der Messstelle INNSBRUCK/Fallmerayerstraße und $0.7~\text{mg/m}^3$ an der Messstelle LIENZ/Amlacherkreuzung wurde der Grenzwert laut IG-L von $10~\text{mg/m}^3$ deutlich eingehalten.


Stationsvergleich

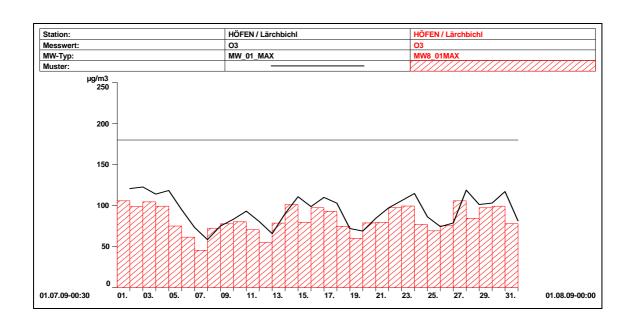




MONATSBERICHT JULI 2009 Seite 9

Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2		03					СО			
		_	kont.	grav.													
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
01.									106	106	121	123	124				
02.									99	99	123	123	125				
03.									105	105	114	114	120				
04.									99	99	118	120	121				
So 05.									75	75	95	95	96				
06.									62	62	73	73	74				
07.									45	46	58	59	61				
08.									72	72	75	76	77				
09.									78	79	83	84	84				
10.									80	80	93	93	94				
11.									71	71	80	80	82				
So 12.									55	55	66	67	69				
13.									79	79	90	90	91				
14.									101	102	111	111	112				
15.									79	79	99	100	103				
16.									97	98	110	110	111				
17.									93	93	103	103	103				
18.									75	76	72	72	74				
So 19.									60	60	69	69	69				
20.									79	79	84	84	86				
21.									80	81	97	98	99				
22.									97	97	106	106	107				
23.									99	100	115	115	122				
24.									77	79	86	88	91				
25.									69	69	74	74	75				
So 26.									75	76	79	79	81				
27.									106	107	119	119	120				
28.									84	85	101	101	103				
29.									97	97	103	103	103				
30.									99	99	117	119	120				
31.									78	78	81	81	82				


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						125	
Max.01-M						123	
Max.3-MW							
Max.08-M							
Max.8-MW						107	
Max.TMW						84	
97,5% Perz.							
MMW				-		59	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					7	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: HEITERWANG Ort / B179

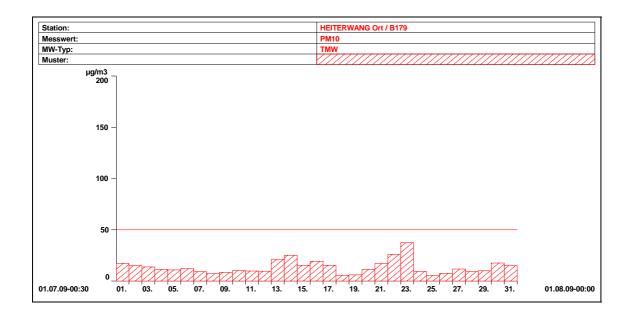
	SC	02	PM10 kont.	PM10	NO		NO2			NO2 O3			03			со	_
	μg	/m3	μg/m³	grav. μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³		
	μg	max	μg/III	μg/III			max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	max HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
01.			17		76	16	40	62									
02.			15		37	19	35	38									
03.			14		39	24	53	61									
04.			11		27	15	41	48									
So 05.			11		49	18	51	55									
06.			12		66	20	53	56									
07.			9		63	22	55	56									
08.			7		44	16	33	39									
09.			9		58	16	29	32									
10.			10		47	20	44	48									
11.			10		31	18	31	38									
So 12.			10		34	18	41	42									
13.			21		70	15	37	38									
14.			25		72	24	44	56									
15.			15		40	19	51	55									
16.			19		70	16	32	36									
17.			15		49	23	61	64									
18.			5		68	27	57	60									
So 19.			6		59	14	38	42									
20.			11		61	16	31	34									
21.			17		86	25	50	52									
22.			26		68	27	50	53									
23.			37		36	19	47	55									
24.			9		76	17	38	46									
25.			5		36	15	33	42									
So 26.			8		34	11	25	26									
27.			12		51	19	42	49									
28.			9		42	17	41	50									
29.			10		55	15	32	38									
30.			18		47	27	50	60									
31.			15		29	15	33	34									

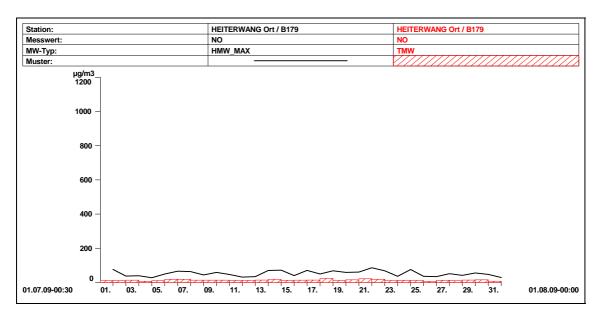
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				86	64		
Max.01-M					61		
Max.3-MW					52		
Max.08-M							
Max.8-MW							
Max.TMW		37		23	27		
97,5% Perz.							
MMW		14		13	19		
Gl.JMW					29		

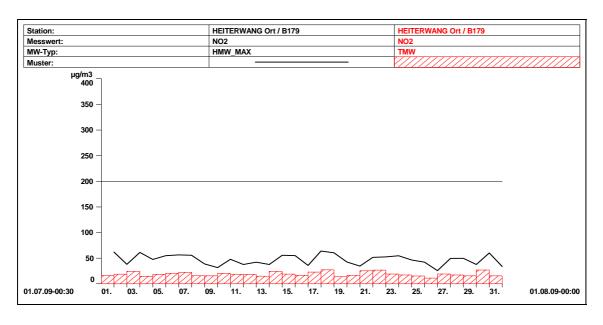
Messstelle: HEITERWANG Ort / B179

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI l	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: JULI 2009 Messstelle: IMST / Imsterau

	SC	02	PM10	PM10	NO		NO2		03				СО	_		
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	1		μg/m³				mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				17	64	22	54	57								
02.				16	46	24	62	66								
03.				15	43	26	41	43								
04.				13	26	17	27	31								
So 05.				10	23	12	30	31								
06.				15	92	28	57	62								
07.				17	81	30	65	72								
08.				11	56	22	46	58								
09.				8	44	15	31	34								
10.				16	86	31	71	77								
11.				6	26	14	22	27								
So 12.	_			9	20	16	28	30								
13.				26	67	23	37	42								
14.				31	61	24	44	48								
15.				31	74	29	56	68								
16.				29	100	18	38	44								
17.				34	76	35	78	79								
18.				7	66	24	58	61								
So 19.				9	23	12	31	33								
20.				24	70	22	36	45								
21.				25	52	25	41	48								
22.				40	63	30	62	66								
23.				46	62	26	46	64								
24.				16	25	20	49	49								
25.				20	51	19	36	49								
So 26.				9	19	12	40	44								
27.				25	43	22	38	42								
28.				24	53	19	48	48								
29.				35	44	23	48	53								
30.				30	44	19	45	49								
31.				26	28	22	37	40								

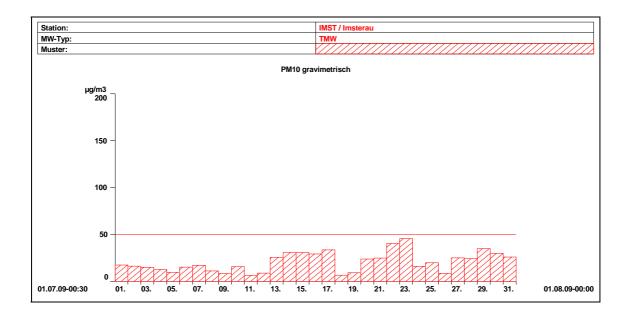
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				100	79		
Max.01-M					78		
Max.3-MW					67		
Max.08-M							
Max.8-MW							
Max.TMW			46	33	35		
97,5% Perz.							
MMW			21	14	22		
Gl.JMW					36		

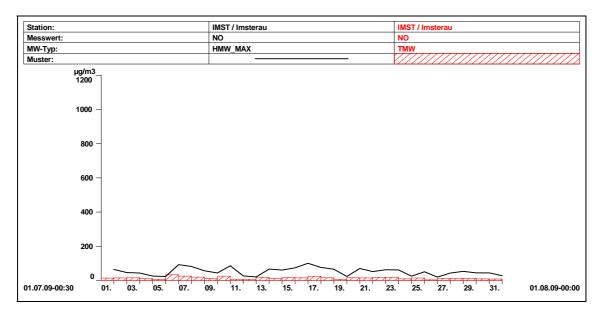
0

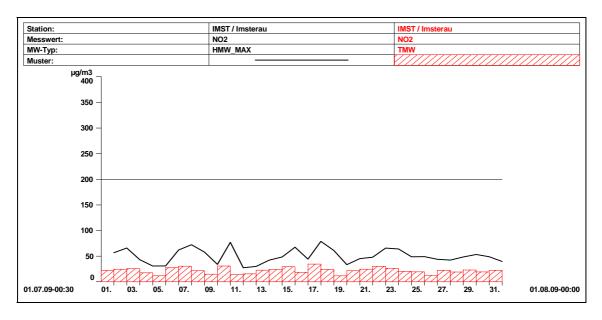
Zeitraum: JULI 2009 Messstelle: IMST / Imsterau

Anzahl der Tage mit Grenzwertüberschreitungen

		1)				
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

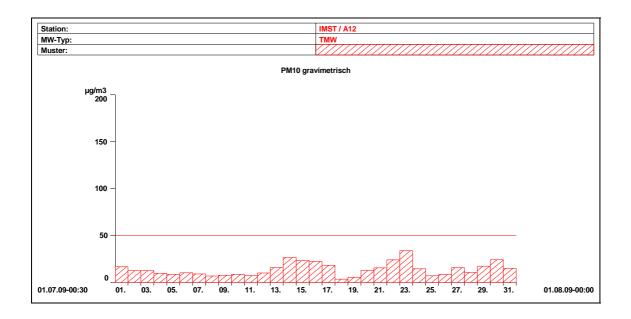
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

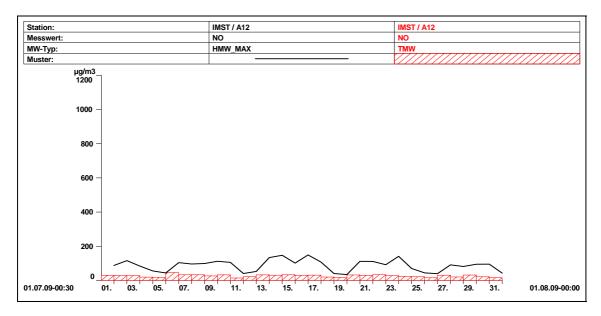
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

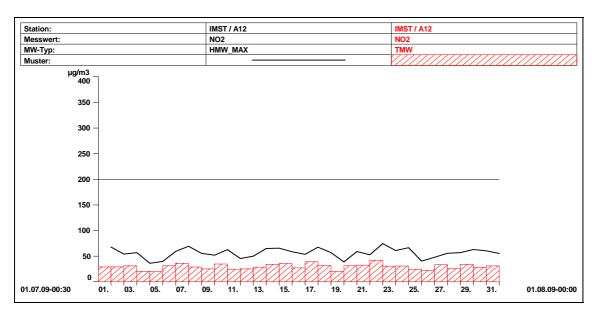
Zeitraum: JULI 2009 Messstelle: IMST / A12

	SO)2	PM10	PM10	NO		NO2	_			03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				17	87	29	57	68								
02.				13	116	29	52	54								
03.				13	84	31	49	57								
04.				10	55	21	32	36								
So 05.				9	44	20	35	40								
06.				10	104	31	51	59								
07.				9	96	36	65	69								
08.				7	99	29	51	55								
09.				8	112	25	51	52								
10.				9	106	35	60	63								
11.				7	40	25	37	45								
So 12.				10	53	25	46	50								
13.				16	133	29	55	65								
14.				26	147	34	60	66								
15.				23	101	36	54	59								
16.				22	149	27	50	54								
17.				18	107	39	67	68								
18.				4	40	32	53	57								
So 19.				6	34	20	35	39								
20.				13	112	31	49	59								
21.				16	111	32	47	53								
22.				24	92	42	67	75								
23.				34	141	30	54	61								
24.				14	70	31	62	67								
25.				7	44	25	40	40								
So 26.				8	40	22	46	48								
27.				16	91	33	55	56								
28.				11	81	26	57	57								
29.				17	95	34	62	63								
30.				24	95	28	59	60								
31.				15	43	31	52	55								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				149	75		
Max.01-M					67		
Max.3-MW					59		
Max.08-M							
Max.8-MW							
Max.TMW			34	45	42		
97,5% Perz.							
MMW			14	27	30		
Gl.JMW					45		


Zeitraum: JULI 2009 Messstelle: IMST / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

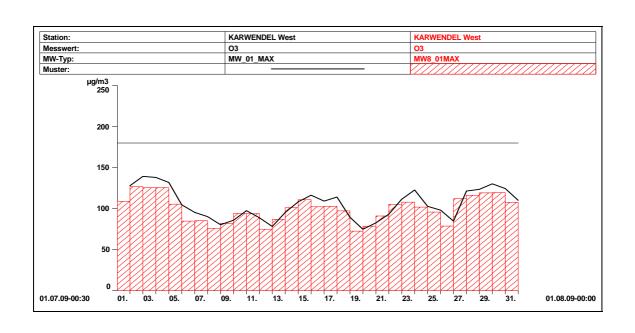
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West

	SC)2	PM10	PM10	NO	_	NO2		_		03	_			СО	_
	_		kont.	grav.												-
	μg	/m³	μg/m³	μg/m³	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									112	112	128	128	129			
02.									127	127	139	143	146			
03.									125	127	138	140	147			
04.									126	126	132	132	135			
So 05.									105	107	105	105	106			
06.									85	86	95	95	96			
07.									85	86	90	91	95			
08.									76	76	80	80	82			
09.									82	82	86	86	86			
10.									94	94	97	98	98			
11.									94	94	89	90	91			
So 12.									75	75	78	79	81			
13.									87	87	95	95	96			
14.									101	101	108	109	112			
15.									111	111	116	117	120			
16.									102	102	109	109	110			
17.									103	103	114	116	119			
18.									97	97	89	90	91			
So 19.									73	72	75	75	76			
20.									79	79	83	83	83			
21.									91	91	93	94	94			
22.									105	105	111	111	112			
23.									108	108	123	123	123			
24.									102	104	103	103	104			
25.									96	95	98	98	103			
So 26.									79	79	85	85	85			
27.									112	112	121	121	122			
28.									116	116	123	123	124			
29.									119	119	130	130	131			
30.									119	120	124	125	126			
31.									108	108	110	110	111			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						147	
Max.01-M						139	
Max.3-MW							
Max.08-M							
Max.8-MW						127	
Max.TMW						115	
97,5% Perz.							
MMW						88	
Gl.JMW							

Messstelle: KARWENDEL West


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz				_		
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					3	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					17	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

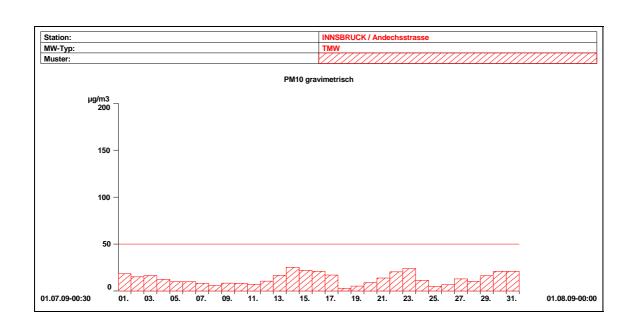
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

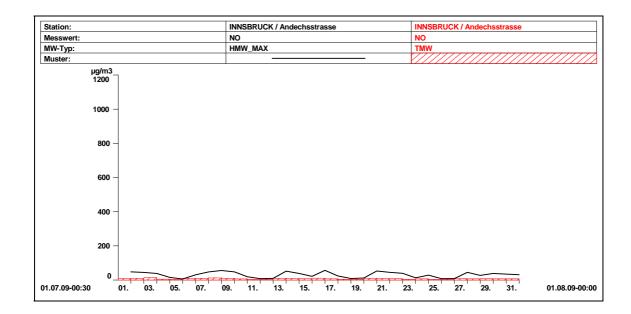
	SO)2	PM10	PM10	NO	_	NO2				03				СО	_
			kont.	grav.					_							
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	I			mg/m³	
Too	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
Tag	1 IVI VV	TIVIW	1 101 00											0-1VI VV	01-101	LIM W
01.				18	48	24	39	44	75	75	89	89	91			
02.				15	44	24	41	42	93	94	109	110	112			
03.				16	38	38	66	67	59	61	52	52	60			
04.				12	16	20	26	27	71	71	79	82	82			
So 05.				10	6	14	21 46	25 49	72	72	85	87	88			
06. 07.				10	30 48	27 28	73	75	41 45	42 45	57 65	57 65	58 68			
07.				8	48 56	28	39	40		59		66	68			
08.				6	36 48	20	36	38	59 60	61	66 64	64	67			
10.				8	46 19	22	36	43	53	53	63	63	63			
11.				7	8	15	21	24	55 69	53 69	76	77	79			
So 12.				11	10	18	29	31	46	46	53	53	54			
13.				17	52	23	33	38	62	62	71	71	73			
14.				25	39	33	55 55	59	78	78	91	91	91			
15.				22	22	30	46	58	51	51	70	70	71			
16.				21	57	23	31	33	80	80	88	89	90			
17.				17	24	25	51	53	85	85	93	94	98			
18.				3	9	21	31	35	78	79	68	68	69			
So 19.				5	12	16	35	38	58	58	66	66	66			
20.				9	53	20	33	33	60	60	71	71	72			
21.				14	45	27	55	56	75	75	87	87	87			
22.				20	39	32	56	62	82	82	97	99	101			
23.				24	13	14	34	36	98	98	111	112	112			
24.				11	29	23	37	44	75	79	67	67	67			
25.				5	8	14	30	32	62	62	69	70	70			
So 26.				7	8	15	29	32	71	71	79	79	79			
27.				13	45	25	39	40	82	82	93	93	94			
28.				10	27	26	67	72	64	64	70	71	74			
29.				16	38	25	56	64	81	81	93	93	94			
30.				21	35	30	51	68	74	74	96	96	97			
31.				21	31	25	42	49	61	61	71	71	71			

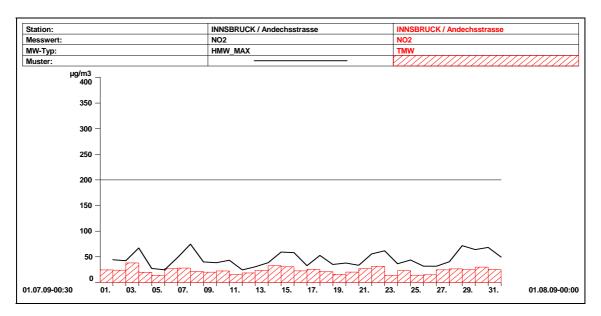
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				57	75	112	
Max.01-M					73	111	
Max.3-MW					59		
Max.08-M							
Max.8-MW						98	
Max.TMW			25	14	38	80	
97,5% Perz.							
MMW		·	13	7	23	41	·
Gl.JMW					38		

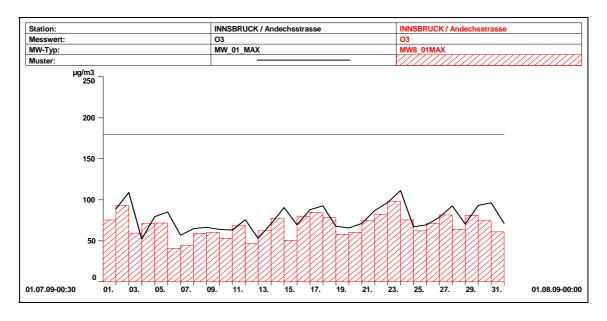

Messstelle: INNSBRUCK / Andechsstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz				
Alarmschwelle			0	
Informationsschwelle			0	
langfristiger Zielwert menschliche Gesundheit			0	
2. VO gegen forstschädliche Luftverunreinigungen				


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	23						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	0						
ÖAW: SO2-Kriterium für Siedlungsgebiete											
VDI-RL 2310: NO-Grenzwert			0								


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

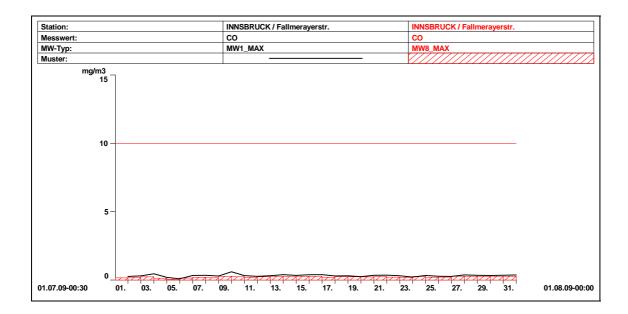
Messstelle: INNSBRUCK / Fallmerayerstrasse

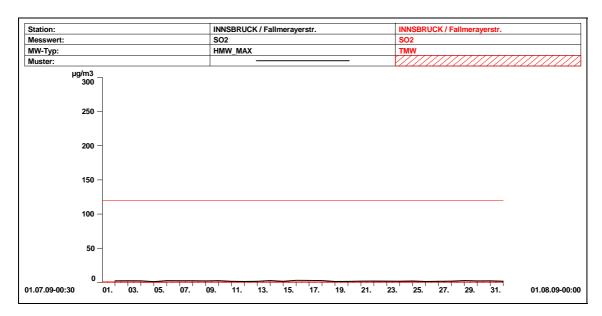
	SO)2	PM10	PM25	NO		NO2		_		03	_			со	_
			grav.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	2	20	11	52	37	59	68						0.2	0.3	0.4
02.	1	3	17	10	56	33	57	57						0.2	0.3	0.3
03.	1	2	19	11	88	46	88	105						0.2	0.4	0.7
04.	1	1	14	8	32	23	35	37						0.1	0.2	0.2
So 05.	1	3	12	7	9	18	40	50						0.1	0.1	0.2
06.	1	2	13	7	64	40	74	84						0.2	0.3	0.5
07.	1	2	10	5	70	37	74	75						0.2	0.3	0.4
08.	1	2	7	3	89	29	54	60						0.2	0.3	0.3
09.	1	3	10	4	65	26	45	56						0.3	0.5	0.8
10.	1	2	10	5	38	30	47	56						0.2	0.3	0.4
11.	1	1	9	4	22	22	35	40						0.2	0.3	0.3
So 12.	1	2	12	7	14	23	47	47						0.2	0.3	0.3
13.	1	3	20	11	58	33	53	55						0.3	0.4	0.4
14.	1	2	27	16	49	33	60	65						0.3	0.3	0.4
15.	1	3	24	15	35	38	69	79						0.3	0.4	0.4
16.	1	3	22	14	50	26	42	50						0.3	0.4	0.5
17.	1	3	16	9	29	27	54	55						0.2	0.3	0.4
18.	1	1	4	2	32	27	46	51						0.3	0.3	0.4
So 19.	1	2	6	3	12	17	34	39						0.2	0.2	0.3
20.	1	2	11	5	49	27	42	52						0.2	0.3	0.4
21.	1	2	15	8	43	32	66	69						0.3	0.4	0.4
22.	1	2	20	11	28	32	58	63						0.2	0.3	0.4
23.	1	2	27	12	15	19	36	36						0.2	0.2	0.2
24.	1	2	14	8	33	29	47	48						0.3	0.3	0.4
25.	1	1	7	4	28	19	33	34						0.2	0.3	0.3
So 26.	1	2	7	4	14	16	36	37						0.2	0.3	0.3
27.	1	2	14	8	44	28	51	68						0.3	0.4	0.4
28.	1	3	11	6	33	31	59	61						0.3	0.3	0.4
29.	1	2	17	10	43	32	68	72						0.3	0.3	0.3
30.	1	2	21	12	42	34	62	64						0.3	0.4	0.4
31.	1	2	23	14	40	33	59	66						0.3	0.4	0.4

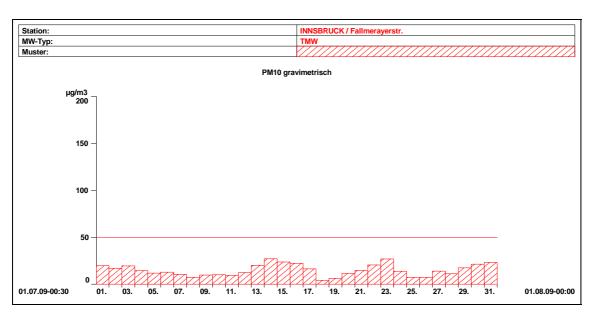
	SO2	PM10	PM25	NO	NO2	03	СО
		grav.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	31	31	31	31	31		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	3			89	105		
Max.01-M					88		0.5
Max.3-MW	2				79		
Max.08-M							
Max.8-MW							0.3
Max.TMW	1	27	16	24	46		
97,5% Perz.	2						
MMW	1	15	8	12	29		0.2
Gl.JMW					43		

Messstelle: INNSBRUCK / Fallmerayerstrasse

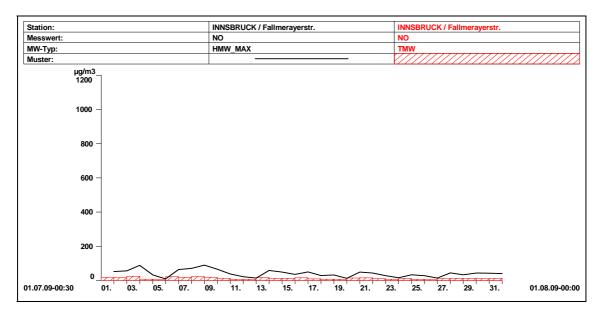
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						


2. VO gegen forstschädliche Luftverunreinigungen	0/0			
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	e)		
ÖAW: Zielvorstellungen Pflanzen Ökosysteme			2	


(ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1							
ÖAW: SO2-Kriterium für Siedlungsgebiete	0										
VDI-RL 2310: NO-Grenzwert			0								

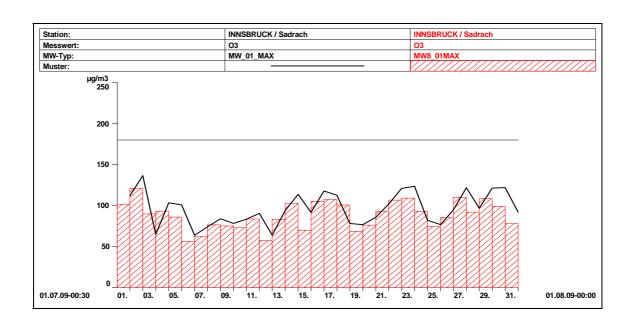

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO	NO2					03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									102	102	112	112	114			
02.									121	121	137	138	140			
03.									90	92	65	66	73			
04.									93	93	103	103	104			
So 05.									86	86	101	102	104			
06.									56	58	64	64	67			
07.									63	63	74	74	80			
08.									77	77	84	84	85			
09.									75	75	78	80	80			
10.									73	73	83	83	84			
11.									84	84	90	91	93			
So 12.									57	62	64	64	65			
13.									83	83	94	94	94			
14.									103	103	114	115	115			
15.									70	70	92	92	94			
16.									105	106	118	118	118			
17.									107	107	113	114	119			
18.									101	102	78	81	79			
So 19.									69	69	77	77	77			
20.									76	76	86	88	89			
21.									93	93	102	103	104			
22.									107	107	121	121	122			
23.									109	109	124	125	125			
24.									93	96	82	82	84			
25.									74	75	77	77	78			
So 26.									86	86	95	95	95			
27.									110	110	122	123	124			
28.									92	91	97	97	98			
29.									108	108	121	122	122			
30.									99	99	122	124	125			
31.									78	78	92	93	94			


	SO2	PM10	PM10	NO	NO2	03	СО
	ug/m³	kont.	grav.	u a/m3	11 a/m3	11 g/m3	mg/m³
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	IIIg/III
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						140	
Max.01-M						137	
Max.3-MW							
Max.08-M							
Max.8-MW						121	
Max.TMW						93	
97,5% Perz.							
MMW						60	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					11	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

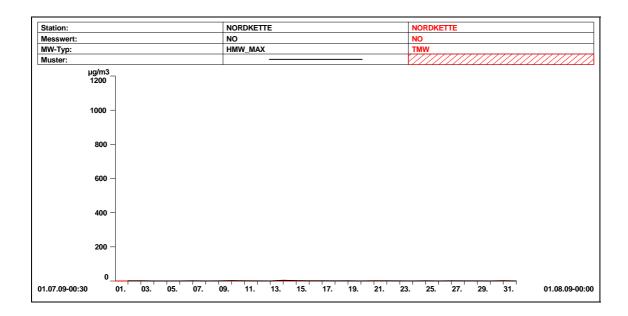
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

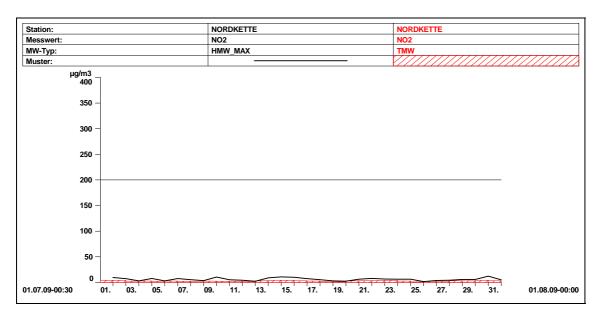
Zeitraum: JULI 2009 Messstelle: NORDKETTE

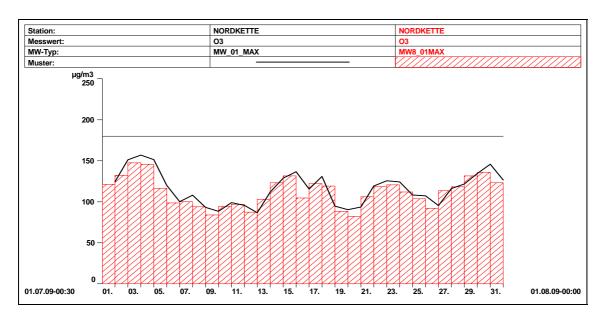
	SO)2	PM10	PM10	NO		NO2	_		О3				co			
			kont.	grav.													
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
01.					1	4	8	10	121	121	125	125	127				
02.					1	4	6	7	132	133	151	151	152				
03.					0	3	3	3	148	147	157	157	158				
04.					1	3	6	8	146	146	151	153	152				
So 05.					1	2	3	3	116	117	120	121	122				
06.					2	3	6	8	99	98	100	101	102				
07.					1	2	4	5	100	100	108	108	108				
08.					1	1	2	3	94	94	93	93	94				
09.					2	3	8	11	84	84	88	89	90				
10.					2	2	5	5	94	94	99	99	99				
11.					1	2	4	4	97	97	96	98	99				
So 12.					0	2	2	2	87	88	87	87	87				
13.					4	3	7	9	103	103	112	112	113				
14.					2	4	8	11	123	123	129	129	130				
15.					1	4	9	10	132	132	137	137	137				
16.					2	3	7	7	105	105	116	116	116				
17.					1	3	4	5	122	121	131	131	131				
18.					2	1	3	3	119	120	95	100	95				
So 19.					1	1	2	2	88	89	90	91	91				
20.					1	3	6	6	82	82	94	94	95				
21.					1	3	5	8	106	106	119	119	120				
22.					1	4	6	7	118	119	126	127	130				
23.					1	4	6	6	121	121	124	125	125				
24.					1	3	6	6	112	112	108	109	109				
25.					0	1	1	2	104	104	107	107	108				
So 26.					1	2	4	4	92	92	95	95	97				
27.					1	2	4	4	114	114	116	116	116				
28.					1	3	6	6	118	118	122	122	123				
29.					1	3	6	6	132	132	135	135	136				
30.					2	4	11	12	136	136	146	147	149				
31.					1	3	5	5	123	124	127	127	131				

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				4	12	158	
Max.01-M					11	157	
Max.3-MW					9		
Max.08-M							
Max.8-MW						147	
Max.TMW				1	4	139	
97,5% Perz.							
MMW				0	3	100	
Gl.JMW					4		

Zeitraum: JULI 2009 Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					11	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	21	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

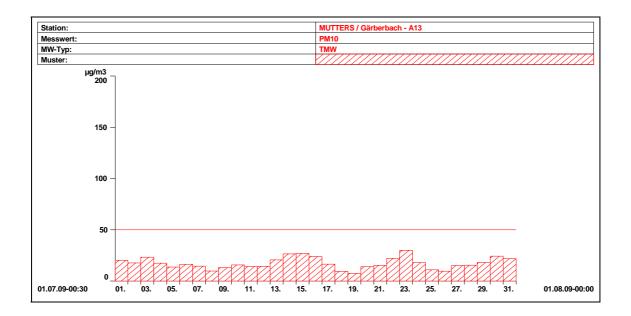
Messstelle: MUTTERS / Gärberbach - A13

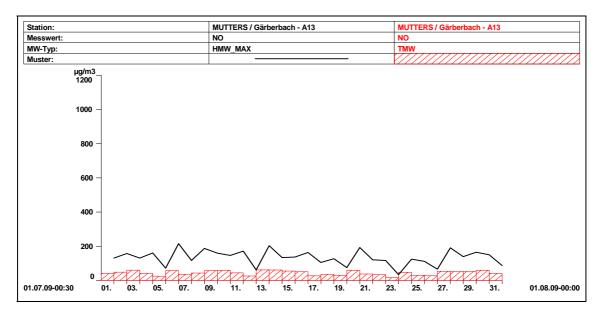
	SO2		PM10	PM10	NO	_	NO2		_		03	_			co	_
		, ,	kont.	grav.	/ 2		/ 2		-		/ 2				/ 2	
	μg		μg/m³	μg/m³	μg/m³		μg/m³			l	μg/m³	1			mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
	1101 00	11101 00		1101 00					00-101	O-1V1 VV	01-101	1-101 00	11101 00	O-1V1 VV	01-101	11101 00
01. 02.			20		131	45	89	101								
03.			18 23		157 131	50 58	117 107	133 120								
04.			17		161	38 44	91	98								
So 05.			14		72	31	73	75								
06.			16		215	38	58	77								
07.			15		117	42	38 77	88								
07.			10		187	36	63	68								
09.			13		160	44	89	96								
10.			16		146	53	92	96 96								
11.			14		171	33 46	92 85	91								
So 12.			14		61		69	71								
13.			21		203	31	101	116								
						47		130								
14.			26		133	59	122 104	109								
15.			27 24		137 164	54 44	110	115								
16.																
17.			17		105	44	107	115								
18.			10		127	50	89	108								
So 19. 20.			7 14		75 193	31 42	78 94	79 96								
					193	36	90	108								
21.			15 22			42	90 74	86								
22.			30		117 34		74 44	50								
23.			18		124	29 48	87									
24.								106								
25.			11		112	35	62	73								
So 26.			10		66	35	79	84								
27.			15		191	51	139	147								
28.			15		139	53	97	103								
29.			18		165	49	134	143								
30.			24		150	63	115	120								
31.			22		87	49	87	89								

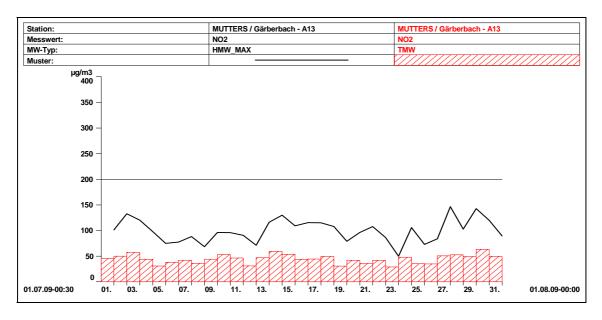
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	μg/m³	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				215	147		
Max.01-M					139		
Max.3-MW					116		
Max.08-M							
Max.8-MW							
Max.TMW		30		62	63		
97,5% Perz.							
MMW		17		44	44	-	
Gl.JMW					49		

Messstelle: MUTTERS / Gärberbach - A13

SO2	PM10 1)	NO	NO2	03	CO
			0		
	0		0		
	0		0		
			n.a.		
		0	0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Ozongesetz									
Alarmschwelle									
Informationsschwelle									
langfristiger Zielwert menschliche Gesundheit									
2. VO gegen forstschädliche Luftverunreinigungen									


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				24					
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1					
ÖAW: SO2-Kriterium für Siedlungsgebiete									
VDI-RL 2310: NO-Grenzwert			0						


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

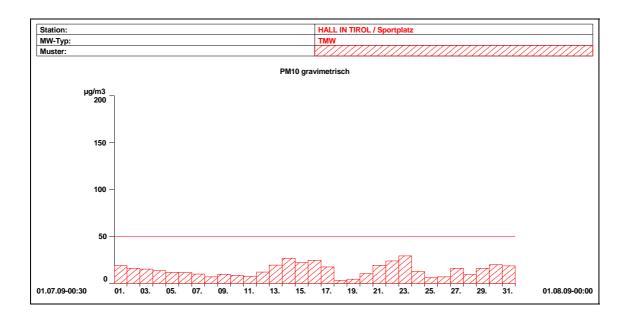
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

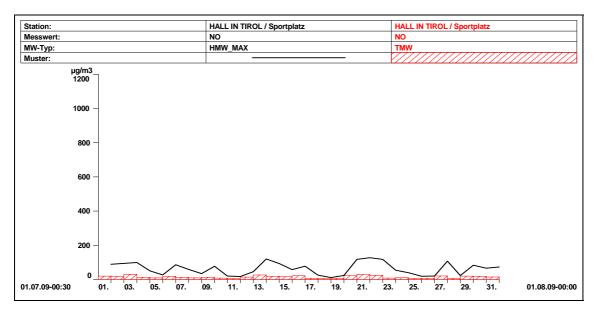
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

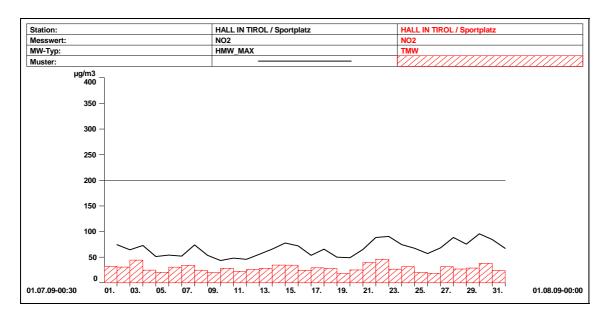
 $Messstelle: \quad HALL\ IN\ TIROL\ /\ Sportplatz$

	SC	02	PM10	PM10	NO		NO2		_		03				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				19	89	32	69	74								
02.				16	94	31	60	64								
03.				15	99	44	68	73								
04.				14	50	25	49	51								
So 05.				12	26	21	49	54								
06.				12	86	30	49	52								
07.				10	59	34	71	74								
08.				7	34	24	48	54								
09.				10	77	20	36	43								
10.				9	20	28	45	48								
11.				8	17	22	43	46								
So 12.				12	45	26	50	56								
13.				20	119	28	65	66								
14.				27	93	35	75	78								
15.				22	57	34	62	72								
16.				25	78	24	49	54								
17.				18	25	29	55	66								
18.				3	11	28	48	50								
So 19.				5	23	18	47	49								
20.				10	117	25	65	65								
21.				19	127	39	78	88								
22.				24	117	46	78	90								
23.				29	54	27	68	74								
24.				13	39	31	63	67								
25.				6	18	20	50	57								
So 26.				7	20	18	67	68								
27.				16	107	31	78	88								
28.				9	23	27	63	75								
29.				16	83	29	85	96								
30.				20	66	38	83	84								
31.				19	73	24	60	67								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				127	96		
Max.01-M					85		
Max.3-MW					79		
Max.08-M							
Max.8-MW							
Max.TMW			29	30	46		
97,5% Perz.							
MMW			15	14	29		
Gl.JMW					42		


Messstelle: HALL IN TIROL / Sportplatz


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				6		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

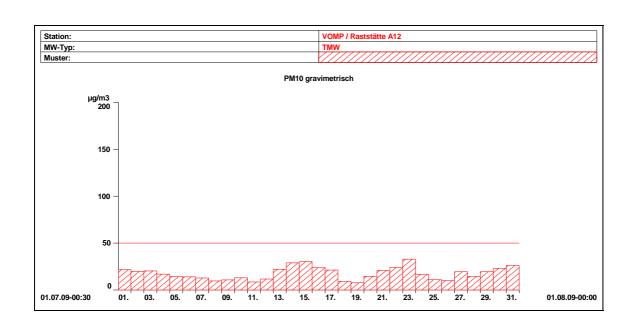
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

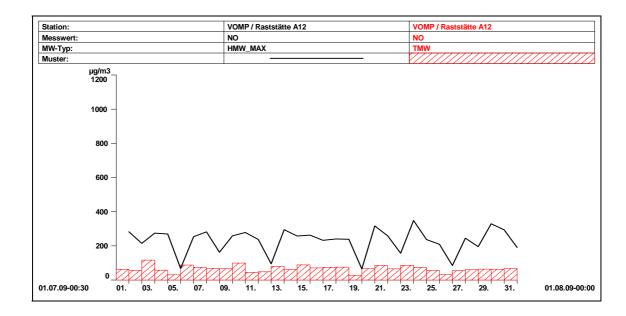
	SC	02	PM10	PM10	NO		NO2	_			03	_			СО	_
	_		kont.	grav.												_
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	_		ı	$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				22	283	53	108	119								
02.				20	215	53	104	106								
03.				20	274	67	105	116								
04.				17	270	47	63	72								
So 05.	_			14	68	35	58	71								
06.				14	253	51	114	118								
07.				13	282	51	103	117								
08.				10	163	45	88	93								
09.				11	259	41	72	88								
10.				13	278	65	103	118								
11.				9	237	46	78	87								
So 12.				12	95	40	61	81								
13.				22	295	53	103	105								
14.				29	258	64	98	105								
15.				30	263	65	96	103								
16.				24	233	51	82	94								
17.				21	240	69	113	127								
18.				9	239	65	137	141								
So 19.				8	65	33	57	72								
20.				15	317	48	92	103								
21.				21	258	59	112	130								
22.				24	157	63	135	137								
23.				33	349	68	131	148								
24.				17	237	59	93	98								
25.				11	209	50	77	81								
So 26.				10	85	37	63	73								
27.				19	245	55	114	120								
28.				14	195	55	97	103								
29.				19	329	53	109	114								
30.				23	294	57	87	104								
31.				26	191	60	90	97								

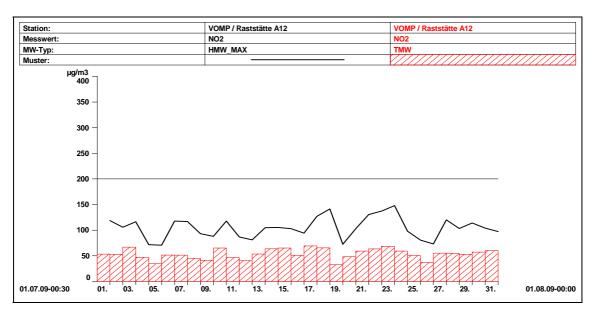
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				349	148		
Max.01-M					137		
Max.3-MW					128		
Max.08-M							
Max.8-MW							
Max.TMW			33	117	69		
97,5% Perz.							
MMW			18	67	54		
Gl.JMW					65		


Messstelle: VOMP / Raststätte A12

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz			
Alarmschwelle			
Informationsschwelle			
langfristiger Zielwert menschliche Gesundheit			
2. VO gegen forstschädliche Luftverunreinigungen			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

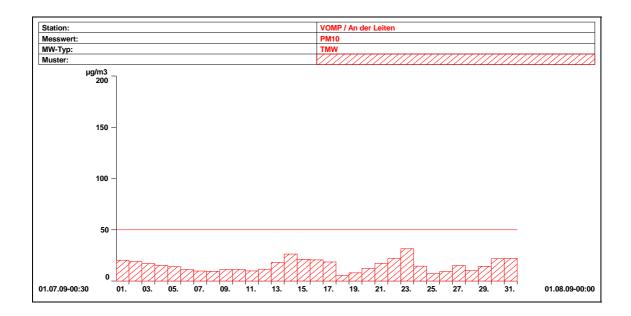
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

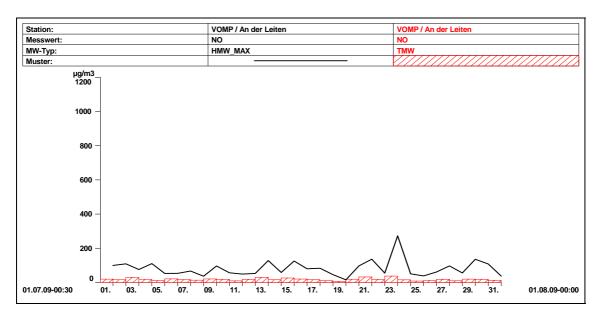
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

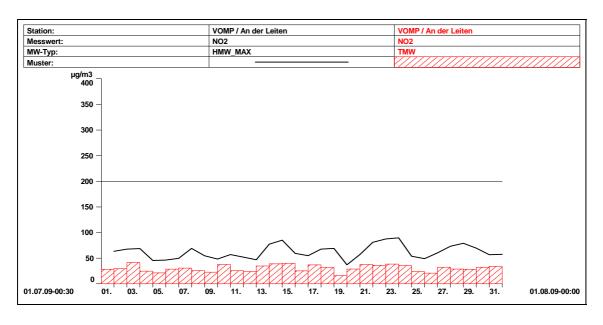
Messstelle: VOMP / An der Leiten

	SC)2	PM10	PM10	NO		NO2				03		_		со	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			20		99	28	52	63								
02.			19		109	29	61	68								
03.			17		76	41	54	69								
04.			15		110	25	41	46								
So 05.			14		52	21	43	46								
06.			11		53	29	47	50								
07.			10		67	31	68	69								
08.			10		36	26	52	55								
09.			11		96	23	44	48								
10.			11		56	38	51	57								
11.			10		49	25	45	52								
So 12.			12		53	24	44	47								
13.			18		128	35	67	77								
14.			26		58	39	81	85								
15.			21		125	40	58	59								
16.			21		80	25	55	55								
17.			19		83	37	62	68								
18.			5		46	32	58	69								
So 19.			8		15	16	28	37								
20.			12		97	29	55	57								
21.			17		136	38	75	81								
22.			22		54	36	84	88								
23.			31		273	38	79	90								
24.			15		50	36	53	54								
25.			7		38	24	38	49								
So 26.			9		61	21	55	60								
27.			15		97	32	66	73								
28.			10		55	29	65	79								
29.			14		135	28	52	70								
30.			22		108	32	51	57								
31.			22		37	34	55	58								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				273	90		
Max.01-M					84		
Max.3-MW					73		
Max.08-M							
Max.8-MW							
Max.TMW		31		37	41		
97,5% Perz.							
MMW		15		18	30		
Gl.JMW					42		


Messstelle: VOMP / An der Leiten


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				5		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

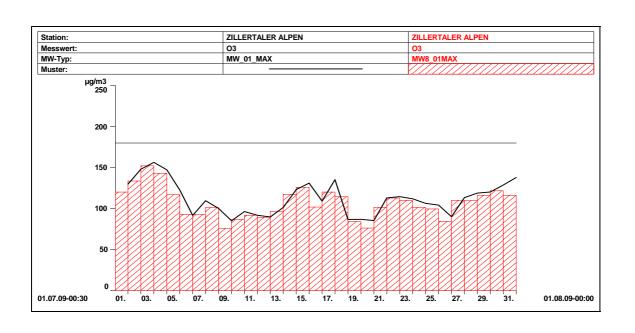
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN

	SO)2	PM10	PM10	NO		NO2		_	_	03		_	_	СО	_
	ша	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³			$\mu g/m^3$					mg/m³	
	μg	max	μg/III	μg/III	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									120	120	130	130	131			
02.									134	134	148	148	150			
03.									152	152	156	157	159			
04.									143	143	147	147	149			
So 05.									117	117	123	123	124			
06.									93	93	92	93	94			
07.									93	93	110	110	110			
08.									101	101	100	102	102			
09.									76	76	85	85	94			
10.									87	87	96	96	98			
11.									92	92	92	94	93			
So 12.									89	89	90	90	91			
13.									96	96	101	101	103			
14.									117	117	123	124	124			
15.									126	126	131	131	131			
16.									102	102	109	109	116			
17.									120	120	135	135	136			
18.									115	114	87	87	87			
So 19.									84	84	87	88	89			
20.									76	76	85	85	86			
21.									102	102	113	113	113			
22.									113	113	115	115	115			
23.									110	110	112	113	112			
24.									101	101	106	106	107			
25.									100	100	104	105	106			
So 26.									84	84	90	90	91			
27.									110	110	113	114	114			
28.									110	110	119	119	121			
29.									116	116	120	121	122			
30.									122	121	129	130	134			
31.									116	118	138	138	142			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						159	
Max.01-M						156	
Max.3-MW							
Max.08-M							
Max.8-MW						152	
Max.TMW						136	
97,5% Perz.							
MMW						93	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN


Anzahl der Tage mit Grenzwertüberschreitungen

8						
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					5	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					20	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: BRIXLEGG / Innweg

	SC)2	PM10	PM10	NO	_	NO2	_	03				со	-		
		, ,	kont.	grav.	/ 2		/ 2		_						/ 2	
	μg		μg/m³	$\mu g/m^3$	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	2	9	11.11	16	1111111	111111	01 1/1	111/1	00 111	0 1.1.	01 1.1	1 111111	11111111	0 11111	01 1/1	11111
02.	3	24		17												
03.	1	3		11												
04.	1	3		13												
So 05.	1	3		11												
06.	1	3		8												
07.	2	12		10												
08.	2	9		6												
09.	4	65		11												
10.	1	4		9												
11.	1	3		8												
So 12.	1	3		10												
13.	2	17		18												
14.	3	15		26												
15.	2	3		21												
16.	2	18		20												
17.	4	31		19												
18.	2	30		4												
So 19.	3	80		8												
20.	3	10		13												
21.	1	3		17												
22.	2	18		21												
23.	2	5		34												
24.	3	23		18												
25.	2	15		8												
So 26.	4	44		10												
27.	2	19		16												
28.	5	58		15												
29.	2	3		17												
30.	2	16		23												
31.	5	42		28												

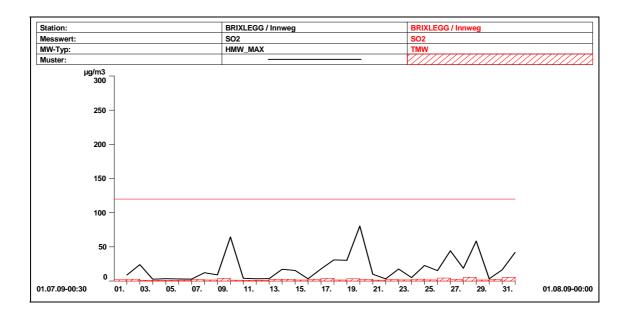
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	80						
Max.01-M							
Max.3-MW	32						
Max.08-M							
Max.8-MW							
Max.TMW	5		34				
97,5% Perz.	12						
MMW	2		15				
Gl.JMW							

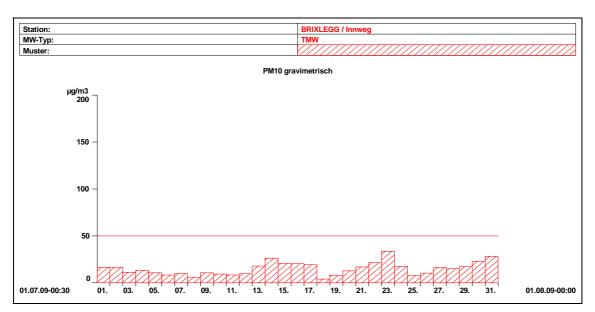
Messstelle: BRIXLEGG / Innweg

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
G-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	0				
Zielwerte menschliche Gesundheit		0				
Zielwerte Ökosysteme, Vegetation	0					
Dzongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
2. VO gegen forstschädliche Luftverunreinigungen Wirkungsbezogene Grenzwerte	0/0					

OAW: Zielvorstellungen Pilanzen, Okosysteme			Ĺ
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)			
ÖAW: SO2-Kriterium für Siedlungsgebiete	0		


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

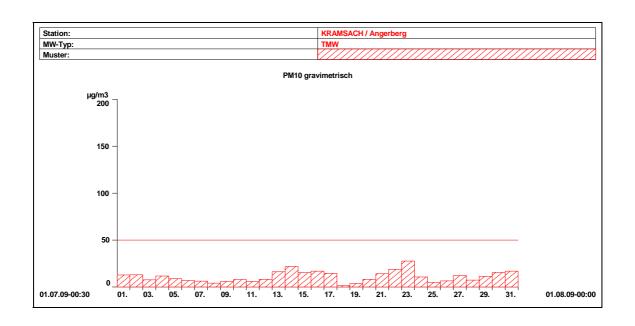
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

	SO2		PM10	PM10	NO	NO2			03				_	co		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				13	44	9	23	29	91	91	102	102	104			
02.				13	16	13	34	36	92	92	120	120	120			
03.				8	4	13	22	22	82	82	91	91	97			
04.				12	11	12	25	25	84	85	107	107	110			
So 05.				9	9	9	19	26	65	68	79	84	84			
06.				7	89	14	32	34	54	54	59	59	60			
07.				6	33	13	28	30	61	61	78	78	80			
08.				4	15	10	30	31	67	66	71	71	72			
09.				6	15	9	18	19	72	72	87	87	88			
10.				8	10	14	29	32	66	66	73	73	75			
11.				6	12	11	26	34	65	65	84	84	85			
So 12.				8	8	12	24	35	44	45	45	45	46			
13.				16	22	13	21	22	71	71	82	82	84			
14.				22	61	15	39	41	103	103	114	114	115			
15.				15	6	12	20	29	85	88	93	93	93			
16.				17	58	14	22	25	93	93	101	102	102			
17.				14	19	15	35	42	90	90	106	108	108			
18.				1	2	8	14	18	72	72	83	84	85			
So 19.				4	5	7	13	16	58	58	62	62	65			
20.				8	24	10	18	20	68	68	73	73	75			
21.				14	13	14	20	26	93	93	105	108	109			
22.				19	9	15	28	30	108	108	122	122	122			
23.				28	12	13	27	31	107	107	120	125	126			
24.				11	27	14	29	34	90	94	71	71	75			
25.				5	9	7	25	27	69	69	75	75	76			
So 26.				6	7	7	16	18	81	81	84	84	84			
27.				12	28	14	29	30	104	104	113	113	113			
28.				7	5	9	22	27	96	95	101	101	102			
29.				11	20	13	21	23	99	99	108	108	109			
30.				15	26	16	41	42	93	94	103	111	112			
31.				17	41	16	25	27	65	65	70	70	71			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				89	42	126	
Max.01-M					41	122	
Max.3-MW					36		
Max.08-M							
Max.8-MW						108	
Max.TMW			28	7	16	80	
97,5% Perz.							-
MMW			11	3	12	53	-
Gl.JMW					25		

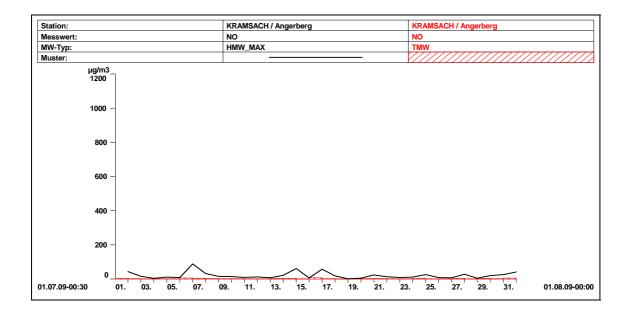
Messstelle: KRAMSACH / Angerberg

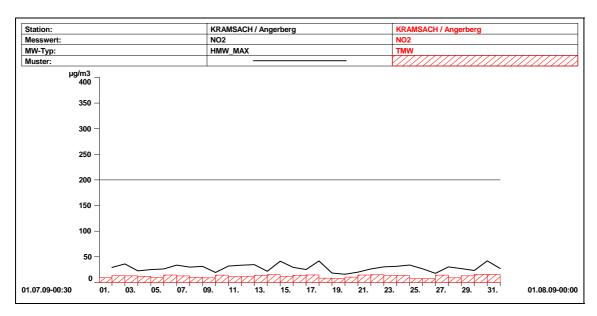

Anzahl der Tage mit Grenzwertüberschreitungen

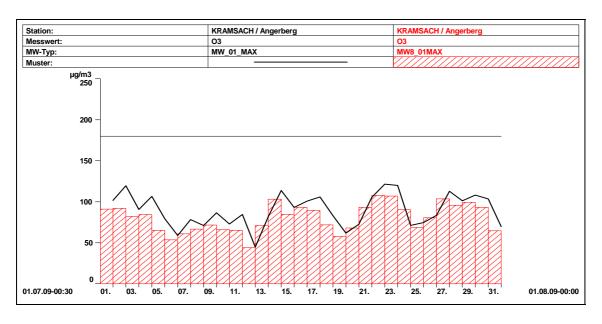
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	4	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert


0




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: JULI 2009 Messstelle: KUNDL / A12

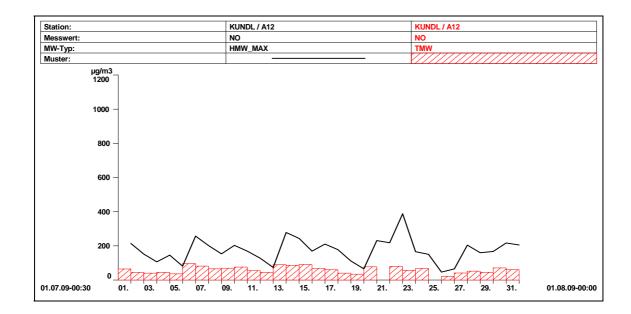
	SO	02	PM10	PM10	NO		NO2		03			_	СО			
		/2003	kont.	grav.		_									mg/m³	_
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$		$\mu g/m^3$							
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.					214	56	101	120								
02.					152	46	108	108								
03.					107	53	123	125								
04.					146	50	83	106								
So 05.					81	40	74	92								
06.					257	57	92	108								
07.					202	54	89	97								
08.					153	50	83	90								
09.					203	51	86	91								
10.					169	58	88	95								
11.					128	57	76	89								
So 12.					74	40	72	77								
13.					279	57	114	117								
14.					243	70	141	153								
15.					169	75	112	117								
16.					210	50	105	115								
17.					178	63	119	125								
18.					112	52	106	108								
So 19.					66	38	69	74								
20.					231	56	103	104								
21.					219		114	119								
22.					388	59	124	137								
23.					166	57	100	102								
24.					151	58	100	106								
25.					47		49	62								
So 26.					65	32	71	81								
27.					204	47	120	130								
28.					160	58	100	108								
29.					167	46	99	102								
30.					217	68	105	124								
31.					205	53	87	91								

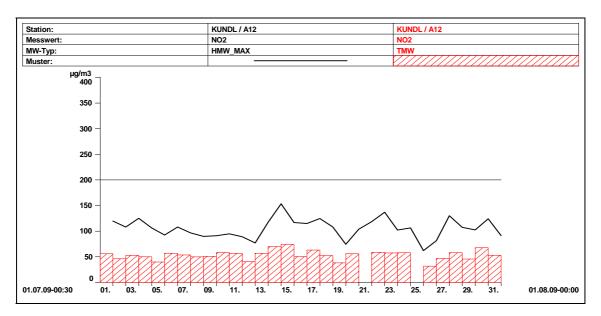
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				29	29		
Verfügbarkeit				94%	94%		
Max.HMW				388	153		
Max.01-M					141		
Max.3-MW					113		
Max.08-M							
Max.8-MW							
Max.TMW				96	75		
97,5% Perz.							
MMW				61	54		
Gl.JMW					56		

0

Zeitraum: JULI 2009 Messstelle: KUNDL / A12

Anzahl der Tage mit Grenzwertüberschreitungen


SO2	PM10 1)	NO	NO2	03	CO
			0		
			0		
			0		
			n.a.		
Richtlini	e)				
			28		
			Ü1		
		SO2 PM10 1) Richtlinie)		0 0 0 n.a.	0


VDI-RL 2310: NO-Grenzwert

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

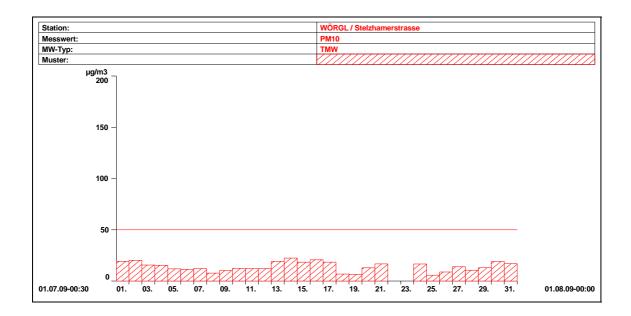
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

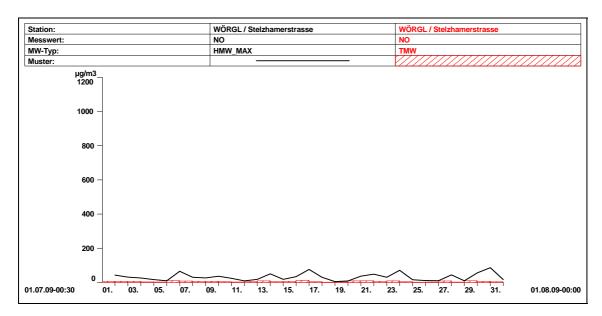
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

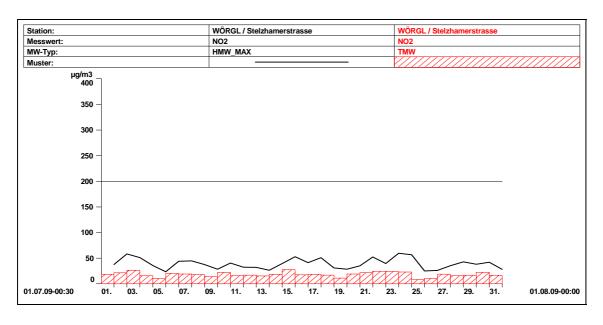
Messstelle: WÖRGL / Stelzhamerstrasse

	SO)2	PM10	PM10	NO		NO2	_			03			со		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			19		43	18	32	38								
02.			20		31	21	56	58								
03.			16		26	26	43	51								
04.			15		17	16	28	36								
So 05.			12		10	10	21	23								
06.			11		65	20	43	44								
07.			12		30	19	32	45								
08.			8		26	18	35	38								
09.			10		36	14	27	28								
10.			12		24	22	39	40								
11.			12		9	16	28	32								
So 12.			12		18	17	29	32								
13.			19		50	15	25	26								
14.			22		18	18	36	40								
15.			18		34	28	47	53								
16.			21		76	18	32	41								
17.			18		30	19	39	51								
18.			7		5	17	29	31								
So 19.			7		8	11	24	28								
20.			13		37	19	33	35								
21.			17		48	22	42	52								
22.					30	25	38	40								
23.					71	24	57	60								
24.			17		15	23	53	57								
25.			6		11	8	20	25								
So 26.			9		10	10	21	26								
27.			14		44	19	35	35								
28.			11		9	16	38	43								
29.			13		56	17	32	38								
30.			19		86	22	40	42								
31.			17		17	16	24	28								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		29		31	31		
Verfügbarkeit		98%		98%	98%		
Max.HMW				86	60		
Max.01-M					57		
Max.3-MW					51		
Max.08-M							
Max.8-MW							
Max.TMW		22		12	28		
97,5% Perz.							
MMW		15		6	18		
Gl.JMW					31		


Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

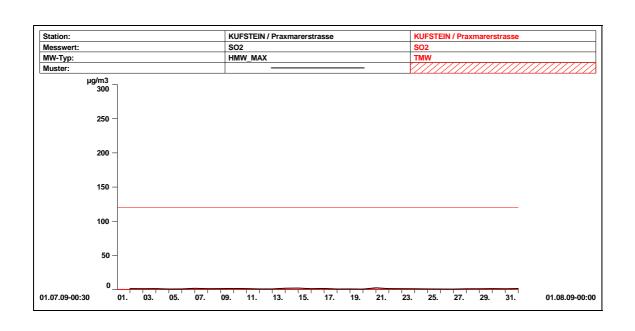
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KUFSTEIN / Praxmarerstrasse

	SO)2	PM10 kont.	PM10 grav.	NO	_	NO2		03			СО				
	μg	/m³	μg/m ³	μg/m ³	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	_
		max		, ,	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	1	20		47	19	34	42								
02.	1	1	18		29	21	32	35								
03.	1	1	14		53	29	55	65								
04.	0	1	13		23	24	36	40								
So 05.	0	1	12		16	15	29	30								
06.	1	2	14		74	27	54	58								
07.	1	1	11		50	17	37	38								
08.	1	1	8		42	19	38	43								
09.	1	2	11		47	16	36	37								
10.	1	1	11		43	25	47	50								
11.	1	1	10		15	20	33	37								
So 12.	1	1	11		15	19	34	37								
13.	1	2	17		67	18	30	32								
14.	1	2	20		34	23	39	44								
15.	1	1	17		26	25	49	55								
16.	1	2	18		49	18	27	28								
17.	1	1	16		18	19	28	32								
18.	1	1	5		23	16	30	33								
So 19.	1	1	6		11	11	18	19								
20.	1	3	12		54	20	31	37								
21.	1	1	15		32	25	38	39								
22.	1	1	22		45	32	65	76								
23.	1	1	32		28	28	52	58								
24.	1	1	11		16	16	24	27								
25.	0	1	7		18	11	25	28								
So 26.	0	1	10		8	10	16	17								
27.	1	1	15		26	21	41	41								
28.	1	1	11		21	19	47	47								
29.	1	1	12		24	15	30	31								
30.	1	1	17		24	21	43	49								
31.	1	2	17		16	19	30	34								

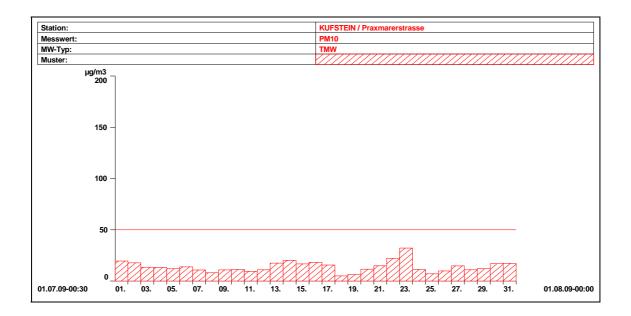
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	3			74	76		
Max.01-M					65		
Max.3-MW	2				53		
Max.08-M							
Max.8-MW							
Max.TMW	1	32		16	32		
97,5% Perz.	1						
MMW	1	14		7	20		
Gl.JMW					30		

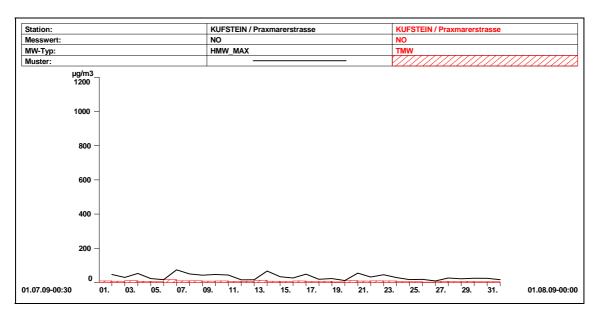
Messstelle: KUFSTEIN / Praxmarerstrasse

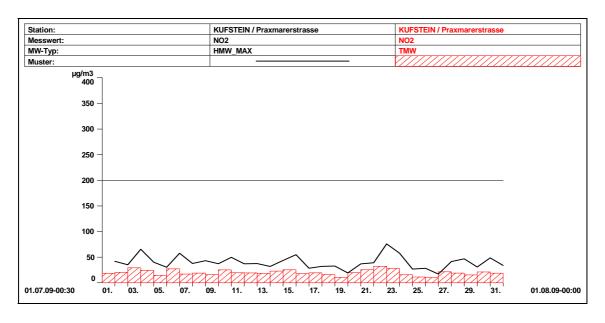

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
2. VO gegen forstschädliche Luftverunreinigungen	0/0			

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0									
ÖAW: SO2-Kriterium für Siedlungsgebiete	0												
VDI-RL 2310: NO-Grenzwert			0										


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

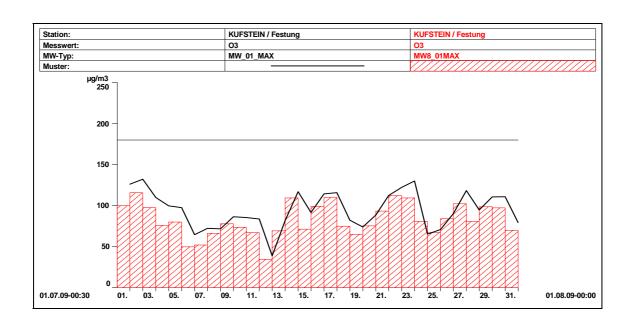


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KUFSTEIN / Festung

	SO	02	PM10	PM10	NO	NO2				03	_	_		CO		
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									100	100	126	126	126			
02.									116	116	132	132	134			
03.									98	102	110	113	115			
04.									76	76	100	100	103			
So 05.									80	80	97	100	101			
06.									50	50	65	65	74			
07.									52	52	72	72	74			
08.									66	66	72	72	75			
09.									78	78	86	88	90			
10.									73	74	85	89	90			
11.									67	69	84	84	84			
So 12.									34	34	39	39	41			
13.									69	69	82	82	83			
14.									109	110	117	117	117			
15.									71	77	92	92	94			
16.									99	99	114	114	115			
17.									110	110	116	116	117			
18.									75	75	82	84	84			
So 19.									65	65	74	74	75			
20.									75	75	88	88	89			
21.									93	93	112	112	113			
22.									112	112	122	123	124			
23.									109	109	130	130	131			
24.									80	85	65	65	72			
25.									67	67	71	71	72			
So 26.									84	84	90	90	91			
27.									102	103	118	118	121			
28.									81	81	95	95	95			
29.									99	99	111	111	112			
30.									97	97	111	112	114			
31.									70	70	79	80	80			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						134	
Max.01-M						132	
Max.3-MW							
Max.08-M							
Max.8-MW						116	
Max.TMW						72	
97,5% Perz.							
MMW	-					49	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					8	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SO)2	PM10	PM10	NO		NO2			03			со			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.		2		16	113	32	69	73						0.5	0.6	0.7
02.	1	2		16	92	32	59	66						0.5	0.6	0.7
03.	1	2		11	113	40	92	112						0.6	0.7	0.8
04.	1	1		12	63	34	69	73						0.6	0.7	0.7
So 05.	1	1		7	31	17	39	40						0.4	0.5	0.6
06.	1	2		12	140	32	64	73						0.5	0.7	0.8
07.	1	2		10	101	26	64	67						0.5	0.7	0.8
08.	1	2		7	85	26	55	69						0.5	0.5	0.6
09.	1	2		8	102	29	62	63						0.5	0.5	0.5
10.	1	2		8	90	32	65	71						0.5	0.6	0.7
11.	1	2		7	82	22	41	42						0.5	0.6	0.6
So 12.	1	1		8	38	18	33	35						0.5	0.6	0.7
13.	1	2		15	103	32	59	61						0.5	0.7	0.7
14.	1	2		22	73	26	53	57						0.5	0.5	0.6
15.	0	2		25	81	31	71	77						0.6	0.7	0.7
16.	1	2		24	110	35	75	82						0.6	0.7	0.8
17.	0	2		14	111	28	63	70						0.5	0.6	0.8
18.	0	2		6	97	27	58	69						0.5	0.7	0.8
So 19.	0	1		6	41	21	43	52						0.4	0.5	0.5
20.	1	3		14	129	34	68	70						0.5	0.6	0.6
21.	1	2		18	116	33	66	67						0.6	0.7	0.7
22.	1	2		22	116	34	75	79						0.6	0.7	0.8
23.	0	1		30	119	39	81	90						0.6	0.9	0.9
24.	0	1		31	108	40	77	82						0.6	0.7	0.9
25.	0	0		7	58	26	50	57						0.5	0.6	0.6
So 26.	0	0		8	41	20	35	42						0.5	0.6	0.9
27.	0	1		17	101	33	58	61						0.6	0.6	0.7
28.	0	1		16	108	41	74	85						0.6	0.7	0.8
29.	1	1		19	112	34	64	66						0.6	0.8	0.8
30.	1	2		21	127	37	81	89						0.6	0.7	0.8
31.	1	2		20	140	43	94	96						0.7	0.9	1.0

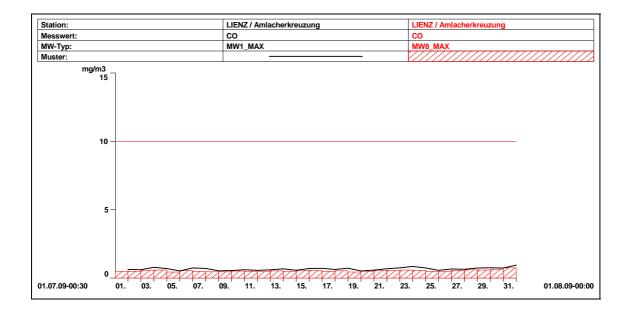
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	30		31	31	31		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	3			140	112		
Max.01-M					94		0.9
Max.3-MW	2				88		
Max.08-M							
Max.8-MW							0.7
Max.TMW	1		31	47	43		
97,5% Perz.	2						
MMW	1	-	15	30	31	-	0.4
Gl.JMW					44		

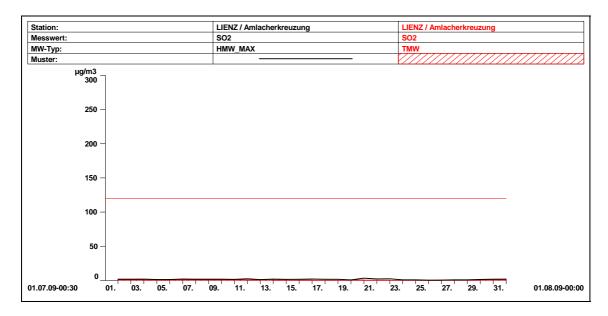
Messstelle: LIENZ / Amlacherkreuzung

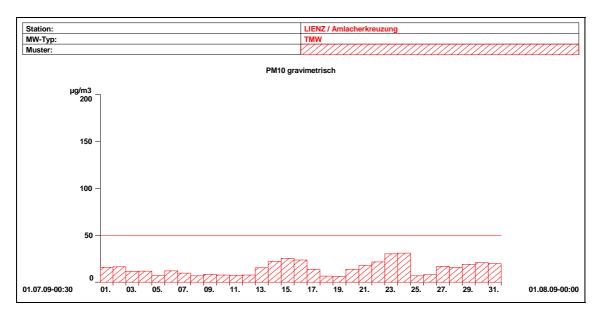
Anzahl der Tage mit Grenzwertüberschreitungen

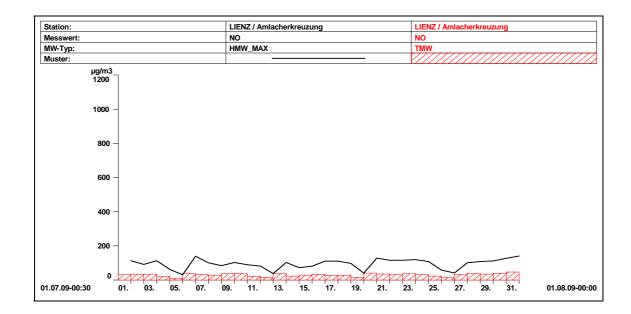
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				7		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		_
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					

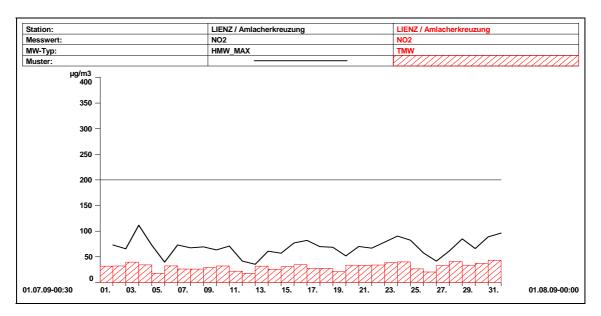
 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0

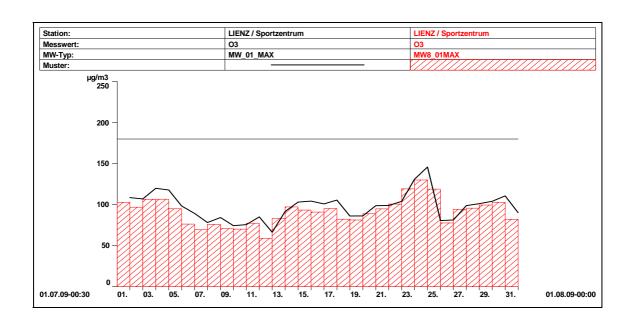

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad LIENZ \, / \, Sportzentrum$

	SC)2	PM10	PM10	NO		NO2				03	_	_		CO	
			kont.	grav.												
	μg	m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									103	104	109	109	110			
02.									97	97	107	108	113			
03.									106	106	120	121	123			
04.									107	107	118	120	124			
So 05.									95	95	98	98	100			
06.									76	78	89	89	91			
07.									69	69	78	78	79			
08.									76	76	84	84	85			
09.									71	71	74	74	75			
10.									70	70	76	77	77			
11.									77	77	85	85	85			
So 12.									59	59	66	66	68			
13.									83	83	92	92	92			
14.									97	97	103	104	106			
15.									93	93	104	104	105			
16.									91	91	101	101	103			
17.									95	95	106	106	108			
18.									82	83	86	89	91			
So 19.									81	81	86	86	86			
20.									89	90	99	99	100			
21.									95	95	99	101	102			
22.									101	101	104	105	105			
23.									119	120	131	131	131			
24.									130	130	146	146	147			
25.									119	121	81	88	85			
So 26.									78	78	81	82	82			
27.									94	94	99	99	100			
28.									96	96	101	101	102			
29.									99	99	104	104	104			
30.									103	103	111	111	112			
31.									82	86	90	91	91			


	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						147	
Max.01-M						146	
Max.3-MW							
Max.08-M							
Max.8-MW						130	
Max.TMW						91	
97,5% Perz.							
MMW			, in the second			60	·
Gl.JMW							

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	[Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					8	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Gr	Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)							
Luftschadstoff	HMW	MW3	MW8	TMW	JMW			
Schwefeldioxid	200 *)			120				
Kohlenmonoxid			10					
Stickstoffdioxid	200				30 **)			
PM_{10}				50 ***)	40			
	Aları	nwerte in μg/m³						
Schwefeldioxid		500						
Stickstoffdioxid		400						
	Ziel	werte in μg/m³						
Stickstoffdioxid				80				
PM_{10}				50	20			

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

	Gren	zwerte in µg/m³			
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid					201)
Stickstoffoxide					30
	Ziel	werte in μg/m³			
Schwefeldioxid				50	
Stickstoffdioxid				80	
1) für das Kalenderjahr und Winterhalbjahr (1.0	Oktober bis 31.März)		•	

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Zielwert	120 µg/m³ als Achtstundenmittelwert *)					
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.						

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 $\mu g/m^3$ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)							
	April - Oktober	November - März					
97,5 Perzentil für den Halbstundenmittelwert (HMW) in den Monaten	0,07 mg/m³	0,15 mg/m³					
Die zulässige Überschreitung des Grenzwertes	s, die sich aus der Perzentilregelung ergibt, da	urf höchstens 100% des Grenzwertes betragen.					
Tagesmittelwert (TMW)	0,05 mg/m³	0,10 mg/m³					
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³					

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)			August 1989: Luftqualitätskriterien Ozon (O ₃)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in $\mathrm{mg/m^3}$			Wirkungsbezogene Immissionsgrenzkonzentrationen für O_3 in $\mathrm{mg/m^3}$					
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebe	*) als Mittelwert der Siebenstundenmittelwerte in de				hrend de	r Vegetat	ionsperio	ode

Die höchstzulässige Konzentration von Schwefeldioxid (SO_2) in der freien Luft beträgt								
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten					
		l in mg/m³ Luft						
	April - Oktober November - März							
Tagesmittelwert	0,05	0,10	0,20					
Halbstundenmittelwert	0,07	0,15	0,20					
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.					

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)					
Tagesmittelwert	500 μg/m³				
Halbstundenmittelwert	1000 μg/m³				

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00
Dreistundenmittelwert > 400µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00 Tagesmittelwert > 80µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00 Tagesmittelwert > $120 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.09-00:30 - 01.08.09-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.07.09-00:30 - 01.08.09-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.07.09-00:30 - 01.08.09-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.07.09-00:30 - 01.08.09-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE	Datum	WERT[µg/m3]	
KARWENDEL West KARWENDEL West KARWENDEL West		24:00 127	
KARWENDEL West	03.07.2009-	24:00 125	
KARWENDEL West	04.07.2009-	24:00 126	
Anzahl: 3			
INNSBRUCK / Sadrach	02.07.2009-	24:00 121	
Anzahl: 1			
NORDKETTE	01.07.2009-	24:00 121	
NORDKETTE	02.07.2009-	24:00 132	
NORDKETTE		24:00 148	
NORDKETTE	04.07.2009-		
NORDKETTE	14.07.2009-	24:00 123	
NORDKETTE	15.07.2009-		
NORDKETTE	17.07.2009-		
	23.07.2009-		
NORDKETTE	29.07.2009-		
NORDKETTE		24:00 136	
NORDKETTE	31.07.2009-	24:00 123	
Anzahl: 11			
ZILLERTALER ALPEN	02.07.2009-		
ZILLERTALER ALPEN	03.07.2009-		
ZILLERTALER ALPEN	04.07.2009-		
ZILLERTALER ALPEN	15.07.2009-	24:00 126	
ZILLERTALER ALPEN	30.07.2009-	24:00 122	
Anzahl: 5			
LIENZ / Sportzentrum	24.07.2009-	24:00 130	
Anzahl: 1			