Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Dezember 2011

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

> Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

> Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 22. Februar 2012

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
\Rightarrow	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – A12	15
Innsbruck – Andechsstrasse (Reichenau)	18
Innsbruck – Fallmerayerstrasse (Zentrum)	22
Innsbruck – Sadrach	26
Nordkette	29
Mutters – Gärberbach A13	31
Hall in Tirol – Sportplatz	34
Vomp – Raststätte A12	37
Vomp – An der Leiten	40
Brixlegg – Innweg	43
Kramsach – Angerberg	46
Kundl – A12	49
Wörgl – Stelzhamerstrasse	52
Kufstein – Praxmarerstrasse	55
Kufstein – Festung	58
Lienz – Amlacherkreuzung	60
Lienz – Tiefbrunnen	64
Beurteilungsunterlagen aus Gesetzen, Verordnungen und Richtlinien	66
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	68

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert
max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

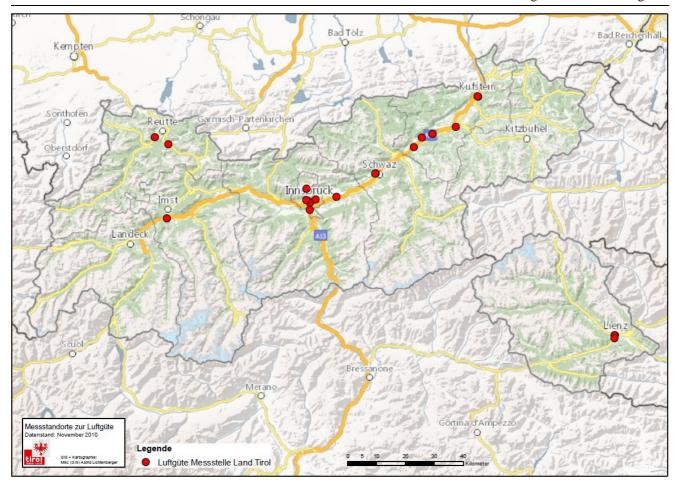
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen % Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

	BESTÜCKUNGSLISTE											
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО					
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-					
Heiterwang – Ort / B179	985 m	-	•/-	•	•	•	-					
Imst – A12	719 m	-	•/-	•	•	-	-					
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-					
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	-	•					
Innsbruck – Sadrach	678 m	-	-/-	•	•	•	-					
Nordkette	1958 m	-	-/-	-	-	•	-					
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-					
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-					
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-					
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-					
Brixlegg – Innweg	519 m	•	•/-	-	-	-	-					
Kramsach – Angerberg	602 m	-	-/-	•	•	•	-					
Kundl – A12	507 m	-	-/-	•	•	-	-					
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	•	-					
Kufstein – Praxmarerstrasse	498 m	•	•/-	•	•	-	-					
Kufstein – Festung	550 m	-	-/-	-	-	•	-					
Lienz – Amlacherkreuzung	675 m	•	•/-	•	•	-	•					
Lienz – Tiefbrunnen	681 m	-	-/-	-	-	•	-					

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten DEZEMBER 2011

Bezeichnung der Messstelle	SO2	1) PM10 2)	NO	NO2 1)	O3 ¹⁾	CO
HÖFEN					P	
Lärchbichl						
HEITERWANG				Ö	P	
Ort / B179						
IMST				IG IZ Ö		
A12				M		
INNSBRUCK		IP		IZ Ö	P	
Andechsstrasse				M		
INNSBRUCK		IP		IZ Ö		
Fallmerayerstrasse				M		
INNSBRUCK				Ö	P	
Sadrach						
NORDKETTE					P	
MUTTERS				IZ Ö		
Gärberbach A13				M		
HALL IN TIROL		IP		IG IZ Ö		
Sportplatz				M		
VOMP		IP		IG IZ Ö		
Raststätte A12				M		
VOMP		IP		IZ Ö		
An der Leiten				M		
BRIXLEGG						
Innweg						
KRAMSACH				Ö	P	
Angerberg						
KUNDL				IZ Ö		
A12				M		
WÖRGL				Ö	P	
Stelzhamerstrasse						
KUFSTEIN				Ö		
Praxmarerstrasse						
KUFSTEIN					P	
Festung						
LIENZ		IP		IZ Ö		
Amlacherkreuzung				M		
LIENZ					P	
Tiefrbunnen						

	Grenzwerte und Zielwerte der im Anhang enthaltenen Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum Schutz von
IZ	Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
ΙP	Überschreitung des im IG-L genannten Ziel- und Grenzwertes. Da für beide Kriterien auch eine auf das Kalenderjahr gültige
IF	Perzentilregelung gilt, wird die Ausweisung allfälliger Überschreitungen im Jahresbericht vorgenommen.
Z	Überschreitung des Zielwertes zum Schutz der menschlichen Gesundheit für Ozon
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem. Immissionsschutzgesetz Luft
IG	(BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der Informationsschwelle gemäß Ozongesetz.
	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss
1	Ozongesetz
1)	Die Ausweisung von Überschreitungen von Langzeitgrenzwerten/-zielwerten sowie Perzentilregelungen wird im Jahresbericht
1)	vorgenommen.
2)	In Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird
2)	PM10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Dezember 2011

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit derzeit 19 Messstationen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2), Ozon (O3) und Feinstaub (PM10 und PM2,5) sowie über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o. a. Gesetze enthaltenen gesetzlichen Grenz- und Zielwerte sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie der Eintragsmessungen (über den nassen Niederschlag und Grobstaubniederschlag) werden in Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Die Umstellung der Wetterlage von blockierenden Hochdrucklagen aus dem November auf niederschlagsreiche Nordwestlagen passierte gleich in den ersten Dezembertagen und war anhaltend und markant. Nordwestwetterlagen mit viel Niederschlag an der Alpennordseite und trockenen sowie sonnigen Verhältnissen an der Alpensüdseite zogen sich durch den ganzen Dezember 2011.

Abgesehen von den Bergregionen war der Dezember 2011 in Nordtirol um 1 bis 2 Grad zu warm, in Osttirol betrug die Abweichung bis zu 3 Grad. Innsbruck war bei einer Monatsmitteltemperatur von 0,3 °C um 1,3 Grad zu warm, Lienz hatte bei -1,2 °C Monatsmittel eine positive Abweichung von 2,9 Grad. Die tiefsten Temperaturen des Monats wurden alle am Morgen des 20. Dezember gemessen, mit -21,6 °C erreichte St. Jakob im Def. die niedrigste Temperatur. Die höchste Temperatur wurde mit Hilfe eines Föhndurchbruchs am 5. Dezember mit 13,3 °C in Mayrhofen registriert. Die zu milden Verhältnisse ließen nur wenige Eistage (Tageshöchsttemperatur unter 0 °C) zu. In Innsbruck wurde mit 2 Eistagen nur die Hälfte der normal üblichen 4 erreicht, in Lienz gar nur 3 statt der üblichen 13.

Mit den doppelten bis dreifachen Niederschlagsmengen in Nordtirol gilt der Dezember 2011 als der niederschlagsreichste seit 1991. In der Landeshauptstadt wurden mit 105 mm knapp 200 % der normalen Niederschlagsmenge erreicht. Imst war mit 121 mm, das entspricht knapp der dreifachen durchschnittlichen Niederschlagsmenge, der relativ nasseste Ort Tirols. In Osttirol wurde abseits des Hauptkammes wetterlagenbedingt nur etwa die Hälfte des mittleren Dezemberniederschlags gemessen. Nach dem schneearmen November wurde an der Alpennordseite die Schneebilanz im Dezember deutlich ausgeglichen. In Innsbruck beim Flughafen summierte sich mit 64 cm Neuschnee fast das Dreifache auf, in einem Durchschnittsdezember sind es nur 26 cm. Mehr als das Dreifache an Neuschnee gab es in St. Anton mit 188 cm statt normal 58 cm. Den höchsten Neuschneezuwachs gab es in Hochfilzen mit 260 cm.

Das Mehr an Niederschlag brachte Einbußen an Sonnenschein in Nordtirol. 57 Sonnenstunden in Innsbruck bedeuten ein Minus von 20 %. Osttirol hingegen bekam am meisten Sonne ab, Lienz war mit 80 Sonnenstunden, ein Plus von fast 70 %, der absolut sonnigste Ort Tirols. Ein Sturmtief über Deutschland sorgte am 16. Dezember für Windspitzen am Patscherkofel von 161 km/h aus Süd. Die dazugehörige Kaltfront aus diesem Tief rauschte mit Böen um 90 km/h aus West über Innsbruck.

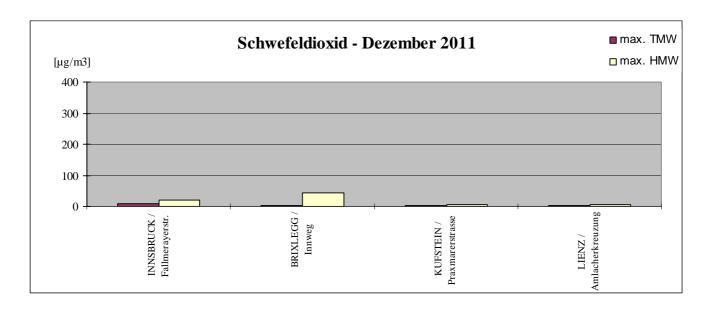
Luftschadstoffübersicht

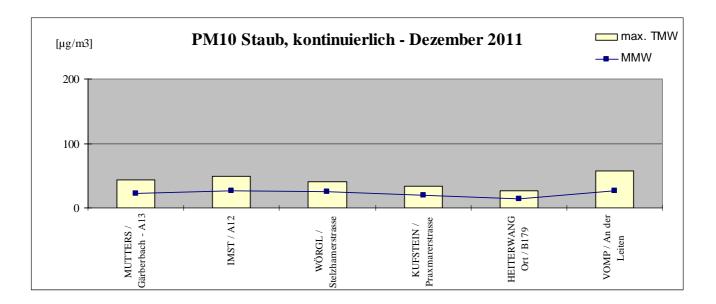
Die winterlichen Witterungsverhältnisse führten zu erhöhten Luftschadstoffimmissionen, eine markante Belastungsperiode blieb aber aus.

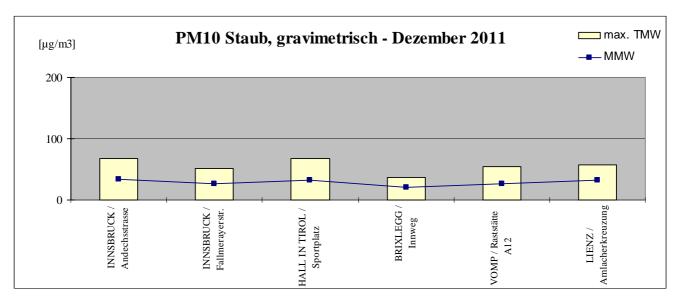
Bei **Schwefeldioxid** wurden die Grenzwerte zum Schutz der menschlichen Gesundheit - $200\,\mu g/m^3$ als Halbstundenmittelwert beziehungsweise $120\,\mu g/m^3$ als Tagesmittelwert - gemäß IG-L (Immissionsschutzgesetz-Luft) sowie die Grenzwertvorgaben gemäß 2. Forstverordnung deutlich eingehalten. Der maximale Tagesmittelwert entfiel mit $10\,\mu g/m^3$ auf die Messstelle INNSBRUCK/Fallmerayerstraße und der maximale Halbstundenmittelwert mit $43\,\mu g/m^3$ auf die Messstelle BRIXLEGG/Innweg.

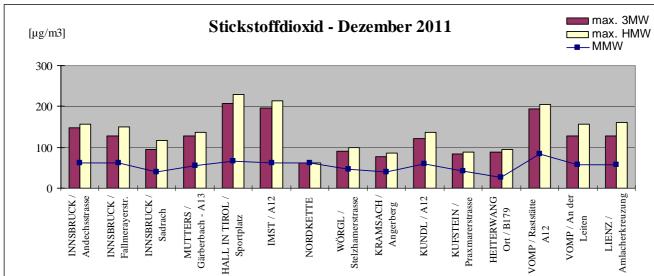
An 6 der 12 **PM10**-Messstellen wurde der Tagesgrenzwert laut IG-L von $50\,\mu g/m^3$ zumindest einmal überschritten. Mit 7 Überschreitungen wurden die meisten Überschreitungen am Standort INNSBRUCK/Andechsstraße verzeichnet. Die endgültige Ausweisung der Anzahl an Tagesgrenzwertüberschreitungen gemäß IG-L für das Jahr 2011 erfolgt nach Abzug allfälliger Winterdienstbeiträge im Jahresbericht 2011.

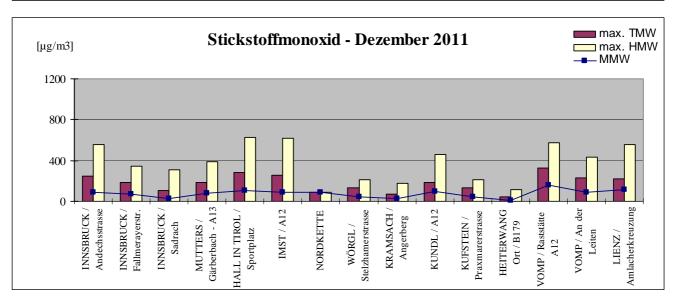
Mit $22 \,\mu g/m^3$ lag der **PM2.5**-Monatsmittelwert an der Messstelle INNSBRUCK/Fallmerayerstraße knapp unterhalb der Belastung des Vormonats.

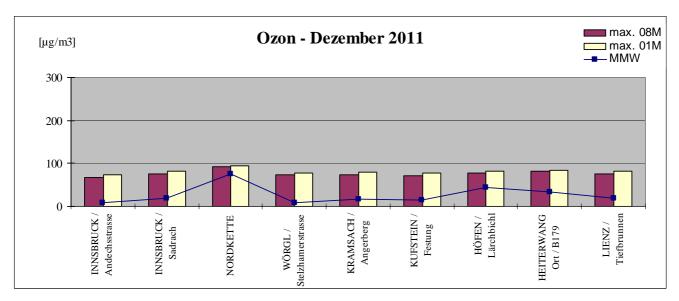

Die Messstelle VOMP/Raststätte A12 war mit einem Monatsmittelwert von 161 μ g/m³ und 324 μ g/m³ als Tagesmittelwert hinsichtlich **Stickstoffmonoxid** die am höchsten belastete Messstelle; die höchste Kurzzeitspitze wurde jedoch an der Messstelle HALL IN TIROL/Sportplatz mit 629 μ g/m³ gemessen. Die Grenzwerte laut VDI-Richtlinie 2310 (1000 μ g/m³ als Halbstundenmittelwert beziehungsweise 500 μ g/m² als Tagesmittelwert) wurden damit überall eingehalten.

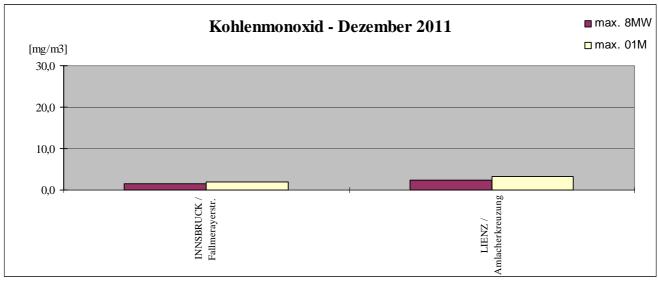

Bei **Stickstoffdioxid** wurden an den Messstellen IMST/A12, VOMP/Raststätte A12 sowie HALL IN TIROL/Sportplatz Überschreitungen des Kurzzeitgrenzwertes von $200\,\mu\text{g/m}^3$ gemäß IG-L verzeichnet. Zielwertüberschreitungen beziehungsweise Überschreitungen der Immissionsgrenzkonzentration zum Schutz des Menschen laut ÖAW (Österreichische Akademie der Wissenschaften) von $80\,\mu\text{g/m}^3$ als Tagesmittelwert wurden sogar an 9 der 14 Messstellen verzeichnet. Die meisten Zielwertüberschreitungen gab es an der Messstelle VOMP/Raststätte A12 mit 18 vor der Messstelle in Hall mit 7. Die wirkungsbezogene Immissionsgrenzkonzentration zum Schutz der Ökosysteme laut ÖAW wurde an allen Messstellen überschritten.


Bedingt durch das niedrige Strahlungsangebot im Dezember lagen die **Ozon**konzentrationen auf einem tiefen Niveau. Der maximale Achtstundenmittelwert, gemessen an der Messstelle NORDKETTE, lag mit 94 μ g/m³ klar unter dem im Ozongesetz festgelegten Zielwert von 120 μ g/m³. Die wirkungsbezogenen Immissionsgrenzkonzentrationen laut ÖAW zum Schutz des Menschen wurden ebenfalls im gesamten Messnetz eingehalten. Die Kriterien zum Schutz der Vegetation gemäß ÖAW wurden hingegen an allen 9 Ozonmessstellen überschritten.


Bei der Schadstoffkomponente **Kohlenmonoxid** wurden die festgesetzten Grenzwerte an den beiden Messstellen deutlich unterschritten. Der höchste Achtstundenmittelwert wurde mit 2,5 mg/m³ an der Messstelle LIENZ/Amlacherkreuzung gemessen.

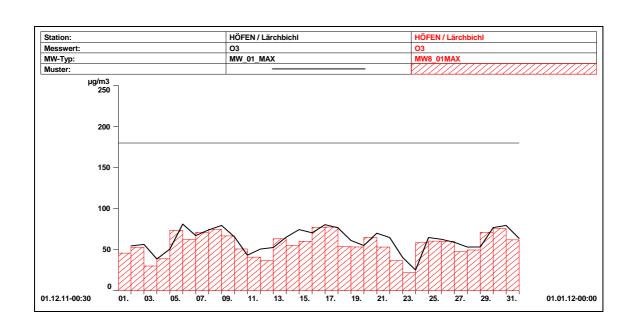

Stationsvergleich





Zeitraum: DEZEMBER 2011 Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO	_	NO2		_		03				СО	_
			kont.	grav.					_					_		
	μg	m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$			1	μg/m³	1			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									46	46	54	54	57			
02.									53	53	56	56	57			
03.									30	30	39	39	42			
So 04.									39	39	51	52	55			
05.									74	74	81	81	82			
06.									62	62	67	67	68			
07.									71	71	74	74	74			
08.									75	75	80	80	81			
09.									67	67	65	71	71			
10.									51	51	43	43	44			
So 11.									41	41	51	51	52			
12.									36	37	53	53	56			
13.									63	63	65	65	66			
14.									55	56	74	74	76			
15.									60	60	70	71	77			
16.									77	77	80	81	81			
17.									78	78	77	77	78			
So 18.									54	54	61	61	62			
19.									53	53	55	57	57			
20.									65	65	70	71	71			
21.									53	53	65	65	67			
22.									36	36	40	42	42			
23.									22	22	25	25	25			
24.									59	58	65	65	67			
So 25.									60	60	63	63	63			
26.									60	60	59	59	59			
27.									47	47	53	53	53			
28.									49	49	53	53	56			
29.									71	71	77	77	77			
30.									76	76	79	80	80			
31.									62	62	64	64	64			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						82	
Max.01-M						81	
Max.3-MW							
Max.08-M							
Max.8-MW						78	
Max.TMW						75	
97,5% Perz.							
MMW						45	
Gl.JMW							

Zeitraum: DEZEMBER 2011 Messstelle: HÖFEN / Lärchbichl

				1		
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					12	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

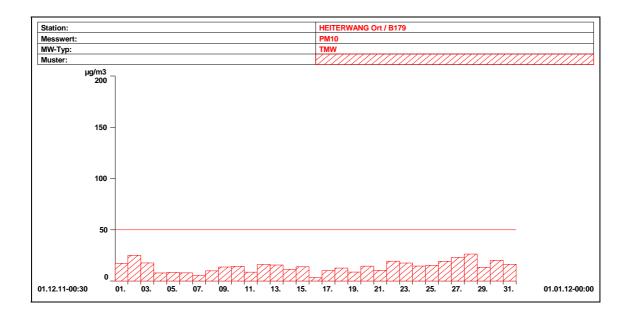
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

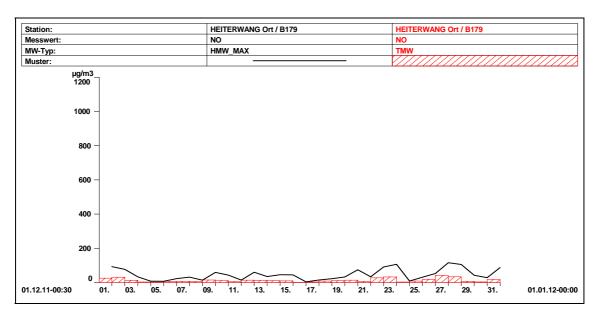
Messstelle: HEITERWANG Ort / B179

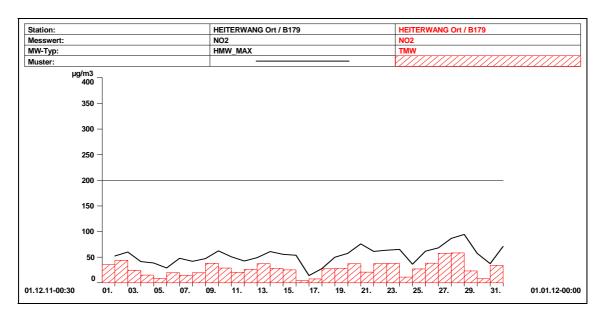
	SO)2	PM10	PM10	NO	_	NO2				03			_	СО	
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	ı		1	μg/m³	1			mg/m³	1
Too	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
Tag	1 IVI VV	TIVIW		1 IVI VV										9-1/1 //	01-101	HIVI W
01.			17		92	35	51	52 60	12	13	24	24	24			
02.			25		76	44	60		13	13	22	23	24			
03.			18		33	24	39	41	27	27	46	48	50			
So 04.			8		7	15	32	39	43	43	60	60	61			
05.			8		7	9 20	25 40	29 48	74	73	80	81 69	82			
06. 07.			8 5		22 31	20 15	37	48	58 71	59	66 78	78	68 78			
					13	20	45	42		71	78 77	77	78 77			
08. 09.			10 14		58	38	62	62	75 36	75 36	41	41	42			
10.			14		42	29	49	51	27	27	36	38	44			
So 11.			9		14	29	49	42	33	33	44	44	47			
12.			16		60	26	48	49	54	54	72	72	74			
13.			16		34	37	57	61	60	60	52	54	53			
14.			11		45	28	51	56	47	48	80	80	82			
15.			14		44	25	52	54	51	61	67	72	75			
16.			3		4	4	13	14	81	81	84	84	85			
17.			10		14	7	23	28	78	78	79	79	80			
So 18.			13		22	27	49	50	55	55	51	55	55			
19.			9		32	28	57	58	47	47	57	57	59			
20.			15		74	37	73	76	37	37	49	49	51			
21.			10		33	21	53	61	64	64	70	70	72			
22.			19		91	37	62	64	39	39	44	44	48			
23.			18		106	38	63	65	9	9	12	12	13			
24.			15		8	11	36	36	61	61	69	69	73			
So 25.			15		30	27	54	62	61	60	52	52	52			
26.			19		52	38	65	68	47	47	54	54	56			
27.			23		115	57	86	87	12	12	18	19	19			
28.			26		105	58	91	94	14	14	22	22	25			
29.			13		42	23	48	57	51	51	63	64	65			
30.			20		28	8	23	37	71	72	76	79	91			
31.			16		87	34	67	71	66	69	62	68	68			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31	31	
Verfügbarkeit		100%		98%	98%	98%	
Max.HMW				115	94	91	
Max.01-M					91	84	
Max.3-MW					88		
Max.08-M							
Max.8-MW						81	
Max.TMW		26		40	58	76	
97,5% Perz.							
MMW		14		13	27	34	
Gl.JMW					19		

Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte						


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				3	10				
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0				
ÖAW: SO2-Kriterium für Siedlungsgebiete									
VDI-RL 2310: NO-Grenzwert			0						


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011 Messstelle: IMST / A12

	SO)2	PM10	PM10	NO		NO2			_	03				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			46		421	78	152	159								
02.			49		620	99	200	213								
03.			48		212	57	79	81								
So 04.			34		149	47	85	87								
05.			15		99	49	74	78								
06.			17		156	56	92	105								
07.			16		254	67	94	104								
08.			12		106	48	87	93								
09.			27		395	79	143	161								
10.			31		191	61	79	86								
So 11.			32		111	48	73	78								
12.			29		199	54	86	88								
13.			18		169	60	97	101								
14.			36		197	67	95	96								
15.			20		132	54	71	71								
16.			14		113	54	85	88								
17.			18		71	47	89	100								
So 18.			22		91	53	90	93								
19.			25		201	68	105	107								
20.			23		129	63	88	92								
21.			27		219	65	90	93								
22.			28		290	72	114	118								
23.			19		222	58	82	90								
24.			14		115	46	70	71								
So 25.			18		49	41	69	72								
26.			22		91	49	82	91								
27.			37		469	81	184	192								
28.			39		500	91	179	185								
29.			39		327	76	133	137								
30.			12		94	52	101	108								
31.			19		67	59	87	93								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				620	213		
Max.01-M					200		
Max.3-MW					196		
Max.08-M							
Max.8-MW							
Max.TMW		49		260	99		
97,5% Perz.							
MMW		26		90	61		
Gl.JMW					45		

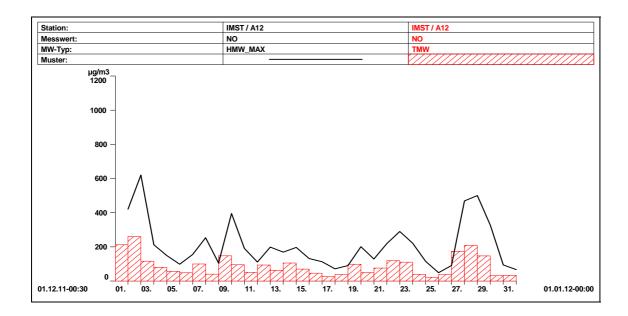
Messstelle: IMST / A12

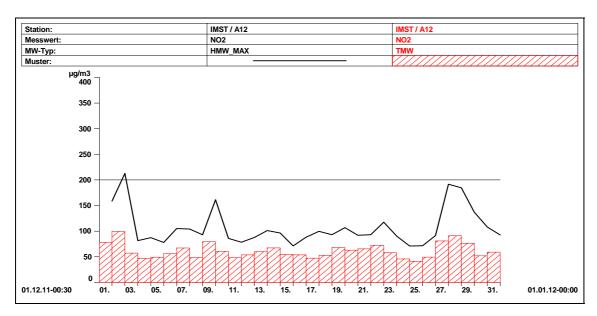
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		1		
Zielwerte menschliche Gesundheit		0		3		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI l	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3		
		1 1				

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


0

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Andechsstrasse

	SO)2	PM10	PM10	NO		NO2			_	03				СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	I			mg/m³	
Too	TMW	max	TMW	TMW	max	TMW	max	max	max 08-M	max	max	max 1-MW	max	max 8-MW	max 01-M	max
Tag	1 IVI W	HMW	1 IVI W		HMW		01-M	HMW		8-MW	01-M		HMW	8-IVI W	U1-M	HMW
01.				67	558	92	150	156	5	5	7	7	8			
02.				30	158	56	95	100	27	27	43	53	56			
03.				54 48	237	78 50	105 65	106	2	2 8	4 49	5 49	5 50			
So 04.					145	44	83	65 92	8			58	59			
06.				16 33	135 313	64	83 89	92 95	39 10	40 11	58 21	34	36			
07.				20	179	65	78	84	8	8	3	4	4			
07.				19	181	50	90	94	25	27	43	43	45			
09.				25	228	58	107	115	12	13	28	28	33			
10.				29	139	52	67	67	8	8	13	13	14			
So 11.				23	33	37	46	47	14	14	22	22	23			
12.				31	212	51	75	80	3	3	5	6	7			
13.				23	79	55	70	74	14	14	19	19	21			
14.				28	227	59	84	87	6	11	20	29	32			
15.				26	136	54	68	71	3	4	6	6	8			
16.				12	43	42	67	70	34	34	73	74	75			
17.				12	31	37	62	67	68	68	70	70	71			
So 18.				29	128	55	76	78	9	10	14	16	17			
19.				27	128	60	80	86	11	11	22	23	24			
20.				32	134	60	89	91	19	19	28	28	28			
21.				52	272	82	111	116	2	2	3	3	3			
22.				62	492	100	148	154	3	3	4	4	4			
23.				44	366	73	110	114	3	3	3	3	3			
24.				22	130	43	59	64	7	8	14	19	23			
So 25.				18	64	42	69	71	26	26	30	30	31			
26.				31	147	55	88	88	16	16	29	29	32			
27.				54	421	80	136	142	5	5	9	9	9			
28.				67	344	85	112	116	3	3	4	4	5			
29.				62	277	81	108	111	3	3	3	3	3			
30.				21	116	60	93	108	16	16	34	39	41			
31.				34	114	60	77	78	16	16	30	30	33			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				558	156	75	
Max.01-M					150	73	
Max.3-MW					148		
Max.08-M							
Max.8-MW						68	
Max.TMW			67	250	100	35	
97,5% Perz.							
MMW			34	85	61	8	
Gl.JMW					41		

5

0

0

Zeitraum: DEZEMBER 2011

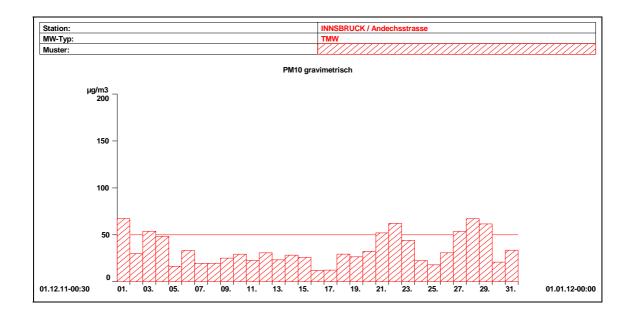
Messstelle: INNSBRUCK / Andechsstrasse

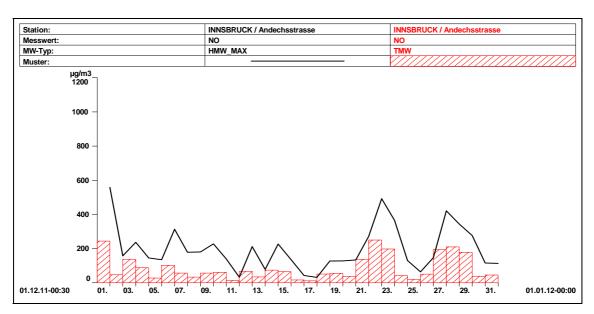
Anzahl der Tage mit Grenzwertüberschreitungen

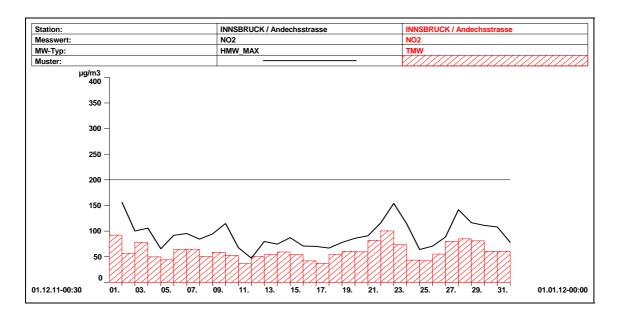
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		7		0		
Zielwerte menschliche Gesundheit		7		5		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29	1	

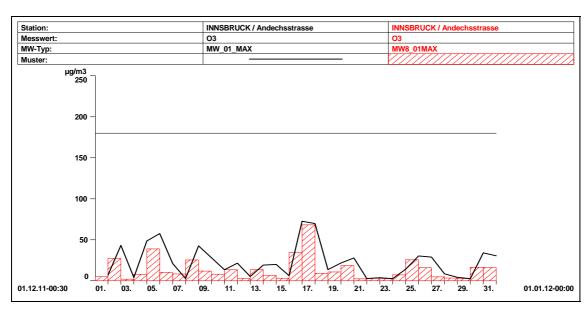
VDI-RL 2310: NO-Grenzwert

ÖAW: Zielvorstellungen Pflanzen, Ökosysteme


ÖAW: Richtwerte Mensch, Vegetation (nur NO2) ÖAW: SO2-Kriterium für Siedlungsgebiete


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

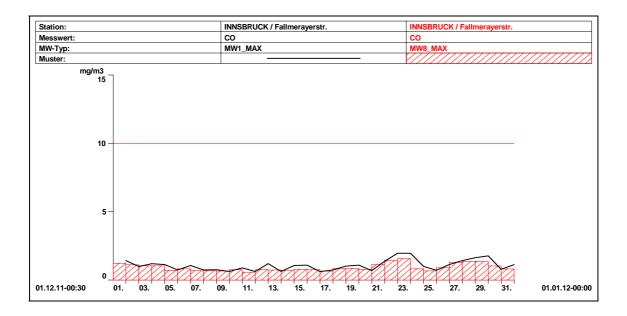
Messstelle: INNSBRUCK / Fallmerayerstrasse

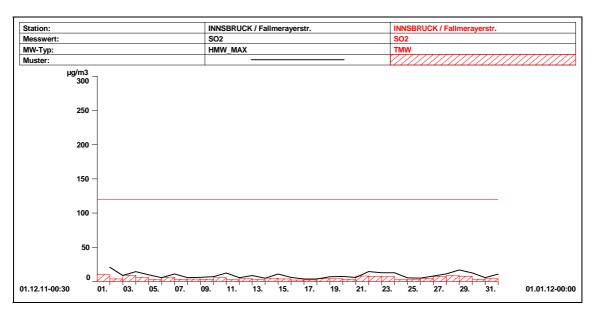
	SO)2	PM10	PM25	NO	_	NO2		03			СО				
	μg	/m3	grav. μg/m³	grav. μg/m³	μg/m³		μg/m³		$\mu g/m^3$				mg/m³			
	με	max	μg/III	μς/111	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	10	21	46	33	342	84	131	133						1.2	1.4	1.4
02.	4	9	26	18	111	60	89	93						1.1	1.0	1.0
03.	9	14	45	35	181	77	97	103						1.0	1.2	1.2
So 04.	6	10	36	30	136	45	68	69						1.0	1.1	1.2
05.	3	6	15	11	119	52	85	89						0.7	0.7	0.8
06.	6	11	25	17	197	66	106	109						0.8	1.1	1.1
07.	3	6	16	13	157	63	79	81						0.7	0.7	0.8
08.	3	6	16	12	109	55	87	94						0.7	0.8	0.8
09.	3	7	17	13	142	53	76	82						0.7	0.6	0.7
10.	5	12	25	20	153	56	72	72						0.8	0.9	0.9
So 11.	3	5	21	18	51	39	48	50						0.6	0.6	0.6
12.	4	9	25	19	250	54	86	100						0.8	1.0	1.2
13.	3	5	17	13	96	53	73	75						0.7	0.6	0.6
14.	5	11	24	17	220	62	95	99						0.7	1.1	1.2
15.	4	6	21	18	144	58	88	100						0.8	1.0	1.2
16.	2	4	10	9	50	44	67	71						0.8	0.6	0.7
17.	2	4	10	9	60	42	71	72						0.7	0.7	0.7
So 18.	4	7	20	17	182	53	92	93						0.9	1.0	1.1
19.	4	7	25	20	235	64	117	121						0.8	1.1	1.2
20.	3	6	23	16	101	60	88	94						0.8	0.7	0.7
21.	8	14	46	38	346	89	135	149						1.2	1.4	1.6
22.	7	13	36	33	346	94	129	134						1.5	1.9	2.1
23.	7	13	31	27	300	67	104	108						1.6	1.8	1.9
24.	3	5	19	16	129	44	62	65						0.8	1.0	1.0
So 25.	3	5	16		41	43	65	71						0.7	0.7	0.7
26.	4	8	26	14	112	53	91	91						0.9	1.1	1.3
27.	7	11	37	33	252	75	120	123						1.3	1.4	1.5
28.	9	17	47	42	335	84	125	139						1.4	1.4	1.8
29.	8	12	52	48	322	81	125	127						1.4	1.7	1.8
30.	3	6	16	14	106	60	90	106						1.0	0.7	0.8
31.	4	11	26	23	120	57	78	80						0.8	1.1	1.1

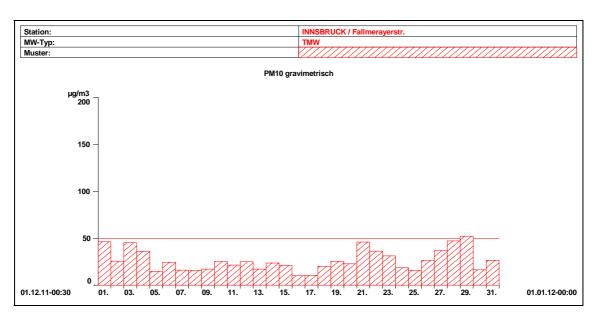
	SO2	PM10	PM25	NO	NO2	03	СО
	μg/m³	grav. μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	30	31	31		
Verfügbarkeit	98%	100%	97%	98%	98%		99%
Max.HMW	21			346	149		
Max.01-M					135		1.9
Max.3-MW	17				127		
Max.08-M							
Max.8-MW							1.6
Max.TMW	10	52	48	189	94		
97,5% Perz.	12						
MMW	5	26	22	73	61		0.7
Gl.JMW					45		

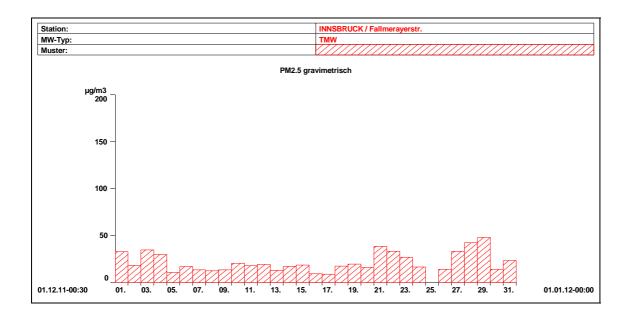
Messstelle: INNSBRUCK / Fallmerayerstrasse

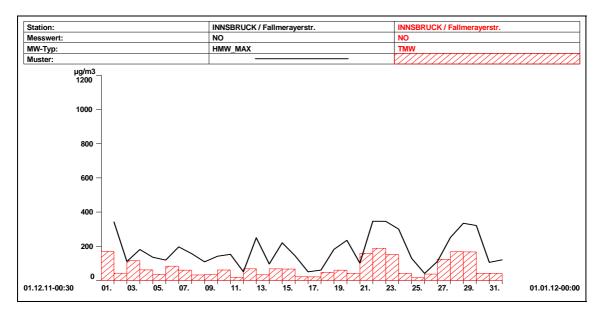
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	1		0		0
Zielwerte menschliche Gesundheit		1		5		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

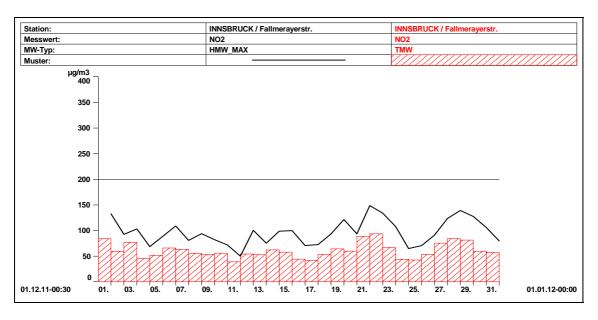

Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
2. VO gegen forstschädliche Luftverunreinigungen	0/0			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				5									
ÖAW: SO2-Kriterium für Siedlungsgebiete	0												
VDI-RL 2310: NO-Grenzwert			0										


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

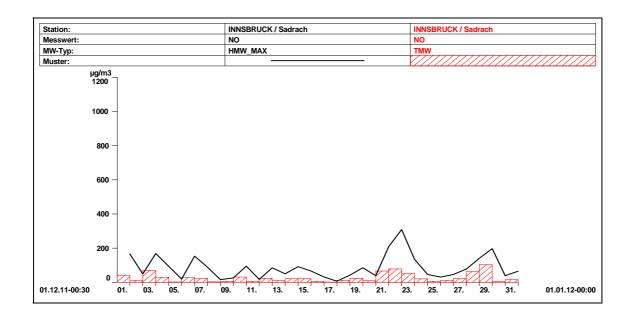

1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

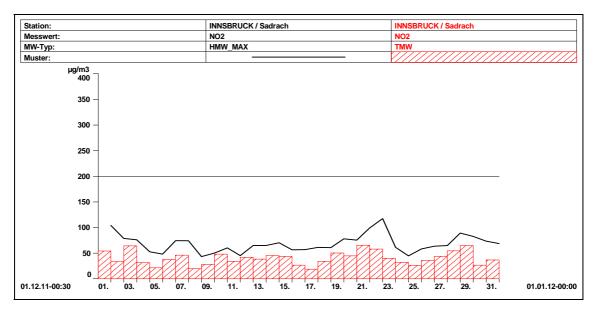


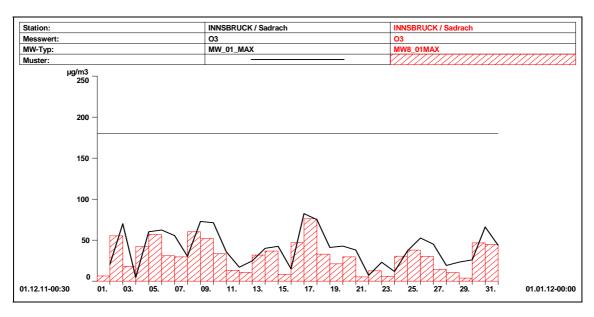
Zeitraum: DEZEMBER 2011 Messstelle: INNSBRUCK / Sadrach

	SO)2	PM10	PM10	NO	_	NO2			_	03				СО	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	I			mg/m³	l l
T	TMW	max	TMW	TMW	max	TMW	max	max	max 08-M	max	max	max 1-MW	max	max	max 01-M	max
Tag	1 IVI W	HMW	1 IVI W	1 IVI W	HMW		01-M	HMW		8-MW	01-M		HMW	8-MW	U1-M	HMW
01.					166	54	74	104	6	6	21	21	28			
02. 03.					49	33	75 75	79	55	55	70 5	70	72			
					169 94	64 32	52	76 52	18 42	22 40	60	5 60	5 61			
So 04.							32 44	53 48								
06.					19	21 37	72	48 74	57 31	58 32	62 56	62 56	62 58			
06.					153 89	37 46	66	74	30	30	30	31	31			
07.					16	20	38	43	60	61	73	73	74			
09.					26	28	49	50	52	52	71	71	73			
10.					95	48	58	60	33	35	36	40	37			
So 11.					17	34	44	45	13	15	17	18	20			
12.					85	42	62	65	11	11	25	25	25			
13.					50	39	56	65	32	32	40	47	50			
14.					92	45	66	70	37	37	42	46	47			
15.					66	44	54	57	8	10	15	19	22			
16.					32	27	52	57	47	49	82	82	83			
17.					7	19	58	61	76	76	75	75	75			
So 18.					42	34	60	61	33	33	41	41	44			
19.					85	50	76	78	21	21	43	43	43			
20.					39	45	74	75	30	30	38	38	38			
21.					209	65	97	99	5	6	7	14	14			
22.					309	58	113	117	13	13	23	24	28			
23.					135	40	61	61	6	6	12	12	12			
24.					47	32	41	45	30	31	37	40	43			
So 25.					31	26	47	58	38	38	53	53	54			
26.					46	36	61	64	30	31	45	45	46			
27.					78	44	64	65	14	14	19	21	22			
28.					140	55	86	89	10	10	23	23	24			
29.					197	65	82	83	4	4	26	26	29			
30.					38	27	59	73	47	47	66	66	68			
31.					65	37	68	69	45	45	44	49	49			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				309	117	83	
Max.01-M					113	82	
Max.3-MW					94		
Max.08-M							
Max.8-MW						76	
Max.TMW				104	65	53	
97,5% Perz.							
MMW			·	26	40	19	
Gl.JMW					23		


Zeitraum: DEZEMBER 2011 Messstelle: INNSBRUCK / Sadrach


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				14	2	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

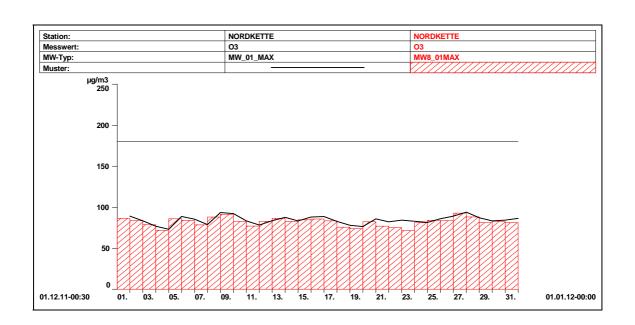

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011 Messstelle: NORDKETTE

	SC	02	PM10	PM10	NO		NO2		_		03			_	СО	
			kont.	grav.			, ,									
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	I			mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
	1101 00	111/1//	1101 00	1101 00	11101 00	1101 00	01-101	11101 00						Q-1V1 VV	01-101	11101 00
01.									86	86	89	89	89			
02.									84	84	83	83	84			
03.									79	79	77	78	78			
So 04.									72	72	73	73	74			
05.									86	86	89	89	89			
06.									84	84	85	85	85			
07.									78	79	79	79	79			
08.									88	88	93	93	94			
09.									91	91	92	93	93			
10.									82	83	83	84	83			
So 11.									77	77	78	79	79			
12.									83	83	84	84	84			
13.									86	87	88	88	88			
14.									82	83	83	83	84			
15.									85	85	88	88	88			
16.									86	86	89	89	89			
17.									83	84	83	84	84			
So 18.									76	76	78	78	78			
19.									74	74	76	76	77			
20.									82	82	86	86	86			
21.									77	77	82	82	83			
22.									75	75	84	84	85			
23.									71	72	83	83	83			
24.									81	81	82	82	82			
So 25.									84	84	86	86	86			
26.									84	84	89	90	90			
27.									93	93	94	94	94			
28.									88	88	87	87	87			
29.									81	81	83	83	85			
30.									83	83	84	84	84			
31.									81	81	86	86	86			


	SO2	PM10	PM10	NO	NO2	О3	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						94	
Max.01-M						94	
Max.3-MW							
Max.08-M							
Max.8-MW						93	
Max.TMW						91	
97,5% Perz.							
MMW						76	
Gl.JMW							

Zeitraum: DEZEMBER 2011 Messstelle: NORDKETTE

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: MUTTERS / Gärberbach - A13

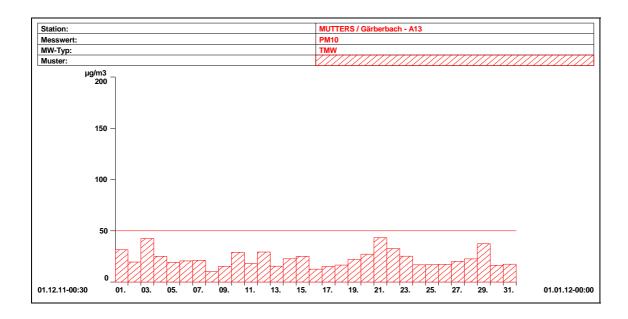
	SO)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			32		229	61	96	105								
02.			20		186	48	109	115								
03.			42		207	70	98	106								
So 04.			25		146	41	82	83								
05.			19		166	57	102	109								
06.			21		256	60	91	99								
07.			21		291	68	96	99								
08.			10		96	45	78	83								
09.			15		300	41	84	86								
10.			29		228	32	71	84								
So 11.			18		108	45	76	78								
12.			29		237	63	86	92								
13.			16		158	49	76	82								
14.			23		223	52	101	103								
15.			25		204	40	83	88								
16.			13		79	39	64	69								
17.			15		111	52	100	100								
So 18.			17		136	45	83	95								
19.			22		211	56	93	96								
20.			27		166	62	99	105								
21.			43		320	83	121	129								
22.			33		386	84	130	137								
23.			25		186	52	84	85								
24.			17		152											
So 25.			17		72											
26.			17		137											
27.			20		181		97	100								
28.			23		183	61	96	100								
29.			37		294	67	109	119								
30.			16		182	58	125	131								
31.			17		108	54	80	82								

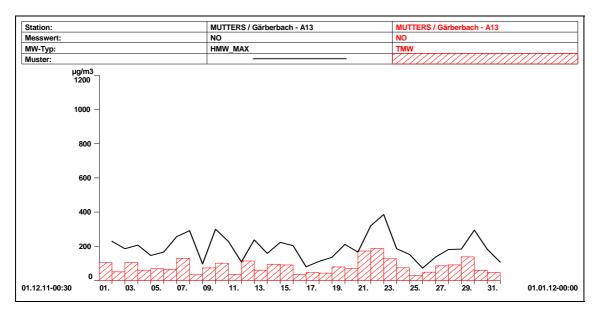
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	27		
Verfügbarkeit		100%		98%	86%		
Max.HMW				386	137		
Max.01-M					130		
Max.3-MW					127		
Max.08-M							
Max.8-MW							
Max.TMW		43		186	84		
97,5% Perz.							
MMW		23		81	55		
Gl.JMW					51		

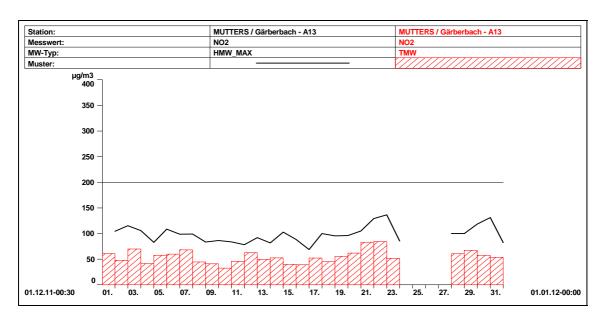
Messstelle: MUTTERS / Gärberbach - A13

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		2		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				2		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


0


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

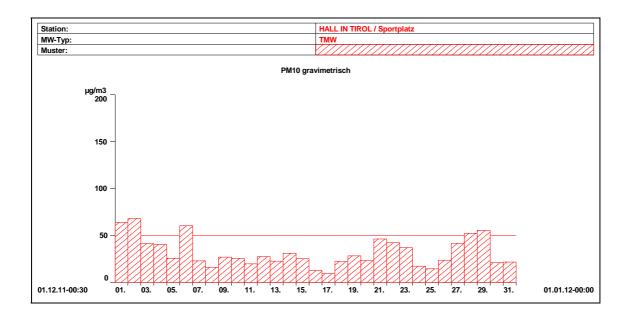
Messstelle: HALL IN TIROL / Sportplatz

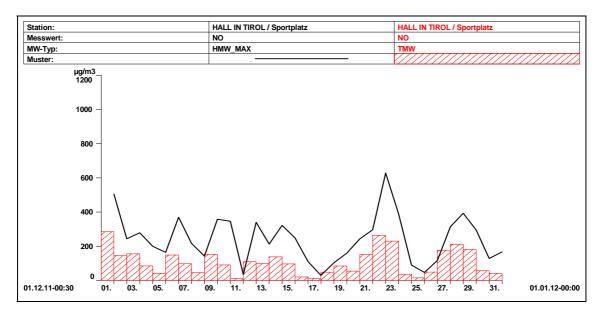
	SO)2	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	l			μg/m³	I			mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				64	506	98	146	152								
02.				68	244	86	114	116								
03.				41	279	74	89	89								
So 04.	_			40	200	52	88	90								
05.				26	164	49	86	93								
06.				60	370	72	110	111								
07.				23	217	72	93	100								
08.				16	142	55	91	94								
09.				27	358	76	117	126								
10.				26	347	56	83	87								
So 11.				20	35	41	49	51								
12.				28	340	58	85	85								
13.				23	213	66	90	91								
14.				31	322	70	98	108								
15.				25	249	58	74	84								
16.				13	110	42	67	72								
17.				9	29	37	62	68								
So 18.				22	103	55	84	86								
19.				28	160	65	93	96								
20.				23	243	67	86	88								
21.				46	296	90	123	123								
22.				42	629	113	215	230								
23.				37	391	88	124	134								
24.				17	90	42	60	62								
So 25.				15	47	42	68	71								
26.				24	117	55	79	81								
27.				42	314	78	108	114								
28.				52	393	87	118	134								
29.				56	295	86	114	123								
30.				21	128	69	100	100								
31.				22	167	61	90	90								

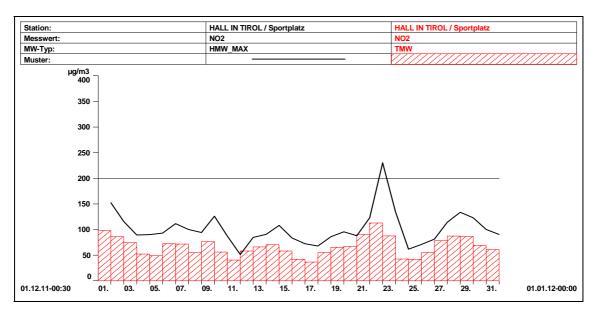
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				629	230		
Max.01-M					215		
Max.3-MW					207		
Max.08-M							
Max.8-MW							
Max.TMW			68	285	113		
97,5% Perz.							
MMW			32	107	66		
Gl.JMW					43		

Messstelle: HALL IN TIROL / Sportplatz

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		5		1		
Zielwerte menschliche Gesundheit		5		7		
Zielwerte Ökosysteme, Vegetation				n.a.		


Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
		•		
2. VO gegen forstschädliche Luftverunreinigungen				


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)						
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				7		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

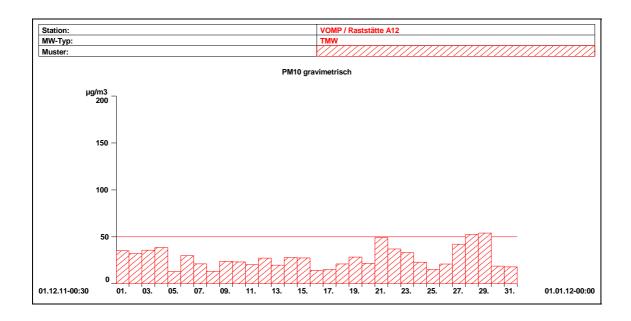
1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

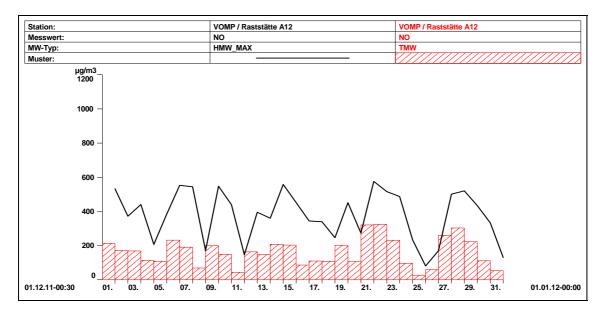
Zeitraum: DEZEMBER 2011 Messstelle: VOMP / Raststätte A12

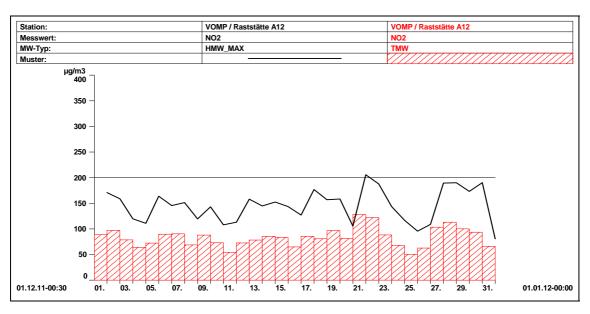
	SC)2	PM10	PM10	NO		NO2				03		_		СО	
			kont.	grav.				_								
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$	1			$\mu g/m^3$	1	1		mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				35	533	89	158	171								
02.				32	372	97	151	159								
03.				36	441	79	115	120								
So 04.				39	207	64	108	111								
05.				13	384	72	156	164								
06.				30	553	90	144	146								
07.				21	544	90	140	151								
08.				13	171	69	112	120								
09.				24	548	88	140	143								
10.				23	440	73	102	108								
So 11.				20	147	54	101	113								
12.				27	396	73	145	158								
13.				20	360	78	135	145								
14.				28	558	86	143	152								
15.				27	452	83	138	143								
16.				14	344	65	120	127								
17.				15	340	85	150	177								
So 18.				21	247	81	145	157								
19.				28	451	97	154	158								
20.				22	274	81	100	105								
21.				49	576	128	198	206								
22.				37	516	122	162	188								
23.				33	487	88	140	144								
24.				23	233	68	105	117								
So 25.				15	81	50	86	96								
26.				21	170	63	100	109								
27.				42	501	103	182	190								
28.				52	521	113	186	190								
29.				54	434	100	157	173								
30.				19	333	94	168	190								
31.				18	131	66	79	81								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				576	206		
Max.01-M					198		
Max.3-MW					194		
Max.08-M							
Max.8-MW							
Max.TMW			54	324	128		
97,5% Perz.							
MMW			27	161	83		
Gl.JMW					66		

Zeitraum: DEZEMBER 2011 Messstelle: VOMP / Raststätte A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		2		1		
Zielwerte menschliche Gesundheit		2		18		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	[Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				18		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011 Messstelle: VOMP / An der Leiten

	SC)2	PM10	PM10	NO		NO2				03	_			СО	
			kont.	grav.												_
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			41		324	62	108	112								
02.			33		256	69	116	120								
03.			40		263	58	75	82								
So 04.			43		142	45	69	71								
05.			9		116	43	84	88								
06.			29		285	61	81	88								
07.			22		234	65	79	87								
08.			12		111	46	74	77								
09.			23		397	61	89	90								
10.			25		272	48	62	71								
So 11.			20		41	36	59	61								
12.			28		210	48	73	88								
13.			17		178	54	82	85								
14.			26		337	61	96	102								
15.			26		180	50	72	76								
16.			10		143	41	72	77								
17.			11		84	46	93	100								
So 18.			22		165	59	102	108								
19.			29		219	67	104	107								
20.			23		108	63	78	79								
21.			43		343	86	127	133								
22.			36		301	86	118	120								
23.			30		300	65	90	92								
24.			25		133	50	72	79								
So 25.			17		31	40	60	70								
26.			22		112	49	80	84								
27.			39		350	75	110	121								
28.			58		436	87	138	157								
29.			55		253	77	102	107								
30.			19		173	62	112	118								
31.			20		59	51	58	59								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				436	157		
Max.01-M					138		
Max.3-MW					128		
Max.08-M							
Max.8-MW							
Max.TMW		58		227	87		
97,5% Perz.							
MMW		27		87	58		
Gl.JMW					42		

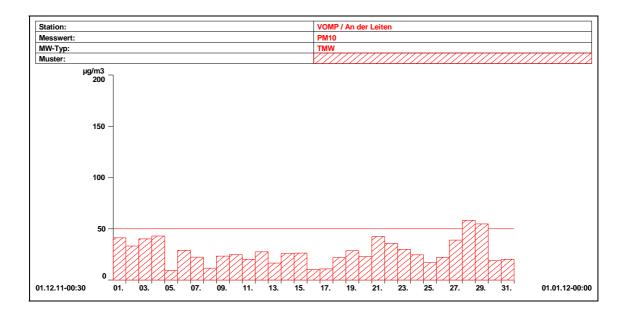
0

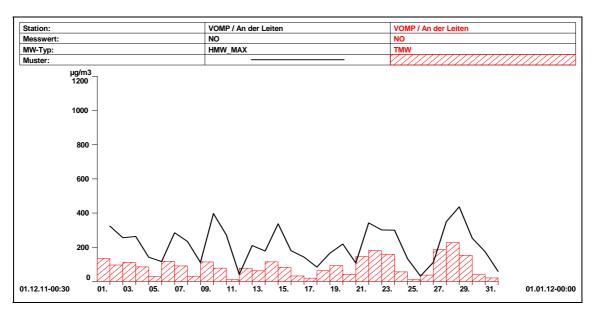
Zeitraum: DEZEMBER 2011 Messstelle: VOMP / An der Leiten

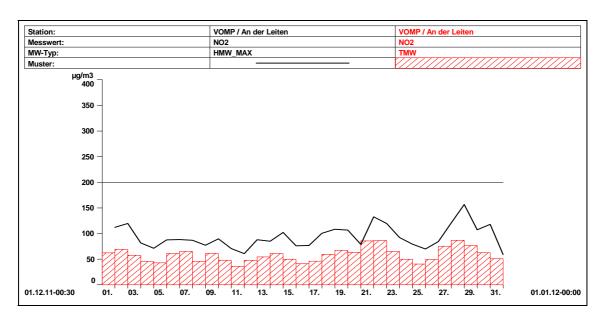
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		2		0		
Zielwerte menschliche Gesundheit		2		3		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3		

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

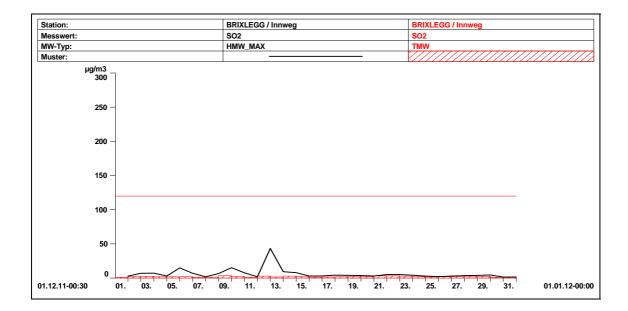
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

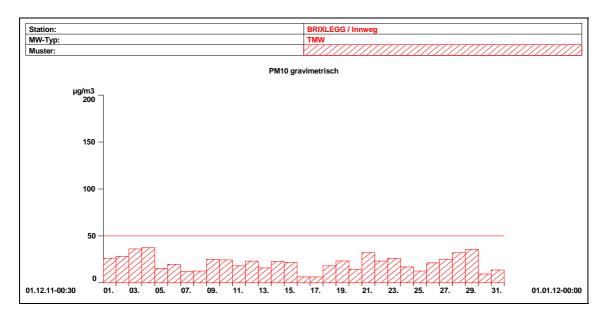
¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011 Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO		NO2	_			03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	3		26												
02.	2	7		28												
03.	3	7		36												
So 04.	2	3		37												
05.	2	15		15												
06.	2	7		20												
07.	1	2		12												
08.	1	7		13												
09.	3	15		25												
10.	3	8		24												
So 11.	1	2		18												
12.	3	43		23												
13.	2	9		16												
14.	3	8		23												
15.	2	3		22												
16.	1	3		6												
17.	2	4		6												
So 18.	2	4		18												
19.	3	4		23												
20.	2	3		14												
21.	3	5		32												
22.	3	5		23												
23.	3	4		26												
24.	2	3		17												
So 25.	2	2		13												
26.	2	3		21												
27.	2	4		25												
28.	3	4		32												
29.	3	5		36												
30.	1	1		9												
31.	1	2		14												

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	43						
Max.01-M							
Max.3-MW	13						
Max.08-M							
Max.8-MW							
Max.TMW	3		37				
97,5% Perz.	5						
MMW	2		21				
Gl.JMW							


Zeitraum: DEZEMBER 2011 Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	0				
Zielwerte menschliche Gesundheit		0				
Zielwerte Ökosysteme, Vegetation	0					
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011

Messstelle: KRAMSACH / Angerberg

	SO)2	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	1			mg/m³	l l
T	TMW	max	TMW	TMW	max	TMW	max	max	max 08-M	max	max	max 1-MW	max	max	max	max
Tag	1 M W	HMW	1 M W	1 M W	HMW		01-M	HMW		8-MW	01-M		HMW	8-MW	01-M	HMW
01.					78	50	66	68	15	15	29	29	32			
02.					176	54	70	73	20	20	40	42	43			
03.					155	48	58	63	4	4	6	7	9			
So 04.					54	39	46	47	4	4	6	6	6			
05.					14	17	38	47	64	64	80	80	80			
06.					133	45	65	65	35	35	26	26	28			
07.					55	45	64	65	34	36	69	71	73			
08.					21	19	38	40	62	63	69	69	69			
09.					147	44	61	61	21	22	26	26	27			
10.					128	36	51	51	24	25	50	50	53			
So 11.					13	26	36	37	31	31	29	29	33			_
12.					85	36	54	54	5	6	15	15	19			
13.					36	44	63	64	20	21	28	28	29			
14.					100	43	62	62	10	10	19	20	22			
15.					87	41	51	53	7	7	7	8	10			
16.					52	22	48	50	68	68	73	73	76			
17.					5	11	32	37	73	73	74	75	75			
So 18.					47	36	60	64	49	49	38	38	42			
19.					108	52	72	76	14	14	21	24	25			
20.					69	50	79	81	18	18	26	26	28			
21.					153	56	75	85	21	22	28	29	31			
22.					142	59	79	81	5	5	11	11	13			
23.					130	47	59	62	3	3	12	12	13			
24.					35	28	41	43	47	48	62	62	62			
So 25.					4	20	48	52	57	58	63	63	64			
26.					27	39	64	65	28	28	37	37	37			
27.					80	37	50	51	11	11	17	19	19			
28.					122	47	62	63	6	6	9	9	9			
29.					133	58	72	72	4	4	10	10	12			
30.					25	27	56	57	51	51	65	65	67			
31.					10	24	31	34	51	51	51	53	52			

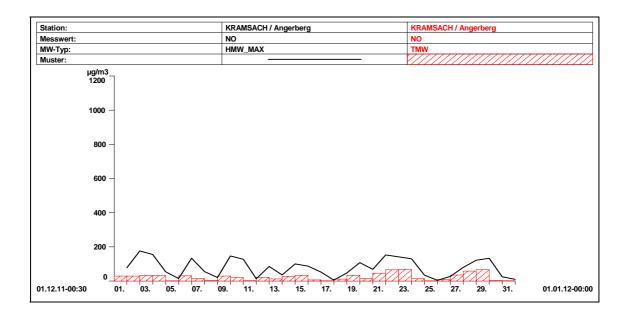
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				176	85	80	
Max.01-M					79	80	
Max.3-MW					78		
Max.08-M							
Max.8-MW						73	
Max.TMW				68	59	59	
97,5% Perz.							
MMW				24	39	16	
Gl.JMW					25		

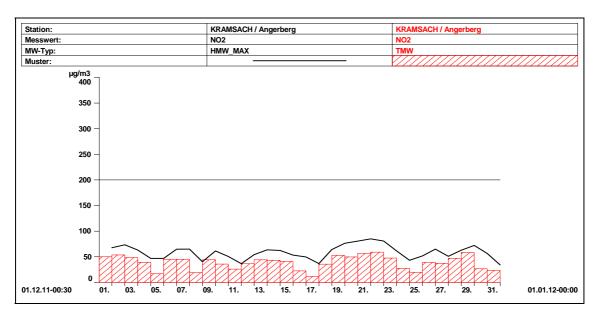
0

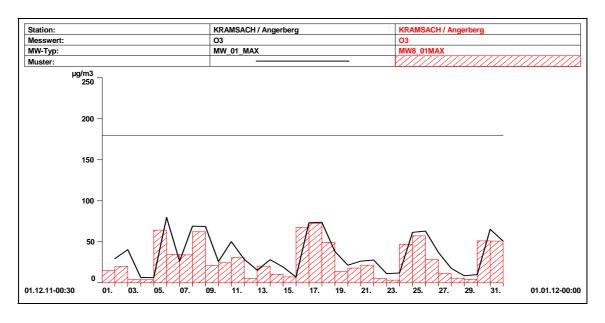
Zeitraum: DEZEMBER 2011

Messstelle: KRAMSACH / Angerberg

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				16	4	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

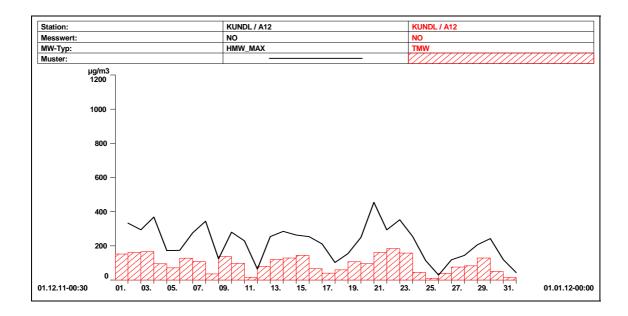
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

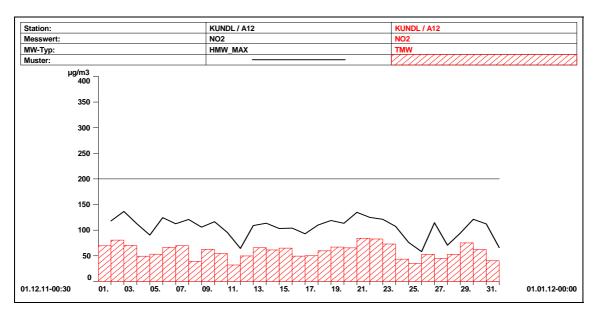
1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011 Messstelle: KUNDL / A12

	SC	02	PM10	PM10	NO		NO2		_		03				СО	
			kont.	grav.		-										_
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				$\mu g/m^3$	1			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					333	69	118	118								
02.					294	81	128	136								
03.					369	70	94	112								
So 04.					172	49	90	91								
05.					174	53	104	124								
06.					276	66	106	113								
07.					344	70	119	121								
08.					124	39	90	106								
09.					280	62	100	117								
10.					230	54	91	95								
So 11.					64	32	63	64								
12.					254	50	107	109								
13.					285	66	114	114								
14.					263	61	97	103								
15.					254	65	94	104								
16.					211	49	84	93								
17.					102	50	95	110								
So 18.					154	60	104	119								
19.					249	67	113	113								
20.					455	65	124	135								
21.					294	84	122	125								
22.					353	83	103	121								
23.					255	73	102	107								
24.					114	44	70	76								
So 25.					29	35	55	58								
26.					119	53	102	114								
27.					144	45	67	71								
28.					206	53	83	94								
29.					243	75	114	121								
30.					119	62	110	112								
31.					44	40	59	66								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31		
Verfügbarkeit				98%	98%		
Max.HMW				455	136		
Max.01-M					128		
Max.3-MW					122		
Max.08-M							
Max.8-MW							
Max.TMW				184	84		
97,5% Perz.							
MMW				95	59		
Gl.JMW					53		


Zeitraum: DEZEMBER 2011 Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				3		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3		
ÖAW: SO2-Kriterium für Siedlungsgebiete						_
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011

Messstelle: WÖRGL / Stelzhamerstrasse

	SO)2	PM10	PM10	NO	_	NO2			-	03				со	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	ı		1	μg/m³	1			mg/m³	1
	TD 4337	max	TD 4337	TD 4337	max	TD 4337	max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			35		202	48	72	79	9	9	23	23	24			
02.			38		183	57	89	94	13	13	29	30	31			
03.			41		138	53	63	65	2	2	7	7	7			
So 04.			41		118	36	50	56	4	4	8	8	9			
05.			13		55	33	53	59	47	47	64	64	66			
06.			31		181	53	75	76	10	11	17	23	25			
07.			15		78	49	67	69	18	21	63	63	67			
08.			16		76	28	55	58	59	59	62	62	64			
09.			25		215	50	79 72	86	19	19	33	33	34			
10.			27		107	39	53	53	22	24	38	40	41			
So 11.			17		24	25	36	38	36	36	39	39	40			
12.			18		96	32	54	56	14	14	16	17	17			
13.			15		137	42	61	65	12	12	17	18	18			
14.			24		138	43	60	64	10	10	22	22	23			
15.			23		123	42	58	61	2	2	4	4	4			
16.			13		116	37	67	74	42	44	70	70	75			
17.			12		32	34	76	77	73	74	77	77	77			
So 18.			26		74	45	66	68	20	20	31	33	33			
19.			29		116	57	82	86	8	8	13	13	15			
20.			22		121	58	70	74	14	14	22	22	23			
21.			36		179	70	93	98	4	4	7	7	8			
22.			34		200	70	86	87	2	2	3	3	3			
23.			30		181	55	69	71	3	3	4	4	5			
24.			20		67	42	61	64	14	16	31	39	42			
So 25.			16		18	34	50	53	28	28	35	37	38			
26.			23		76	43	62	64	20	20	31	32	32			
27.			23		145	44	66	68	9	10	16	17	18			
28.			32		146	51	72	73	6	6	8	9	9			
29.			38		210	65	95	100	2	2	3	3	4			
30.			15		47	49	74	77	23	23	49	49	52			
31.			27		34	46	60	60	29	28	27	27	30			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31	31	
Verfügbarkeit		100%		98%	98%	98%	
Max.HMW				215	100	77	
Max.01-M					95	77	
Max.3-MW					91		
Max.08-M							
Max.8-MW						74	
Max.TMW		41		132	70	40	
97,5% Perz.							
MMW		25		48	46	9	
Gl.JMW					30		

0

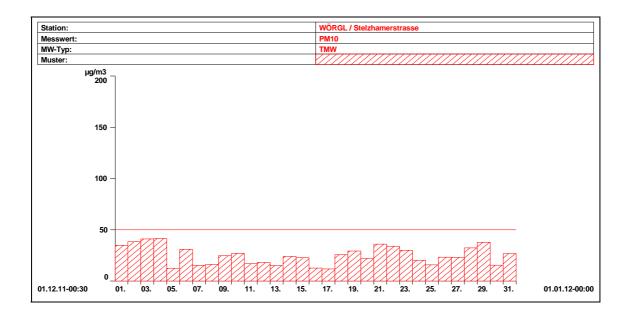
Zeitraum: DEZEMBER 2011

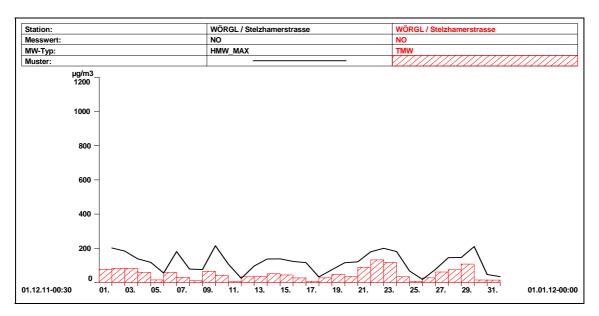
Messstelle: WÖRGL / Stelzhamerstrasse

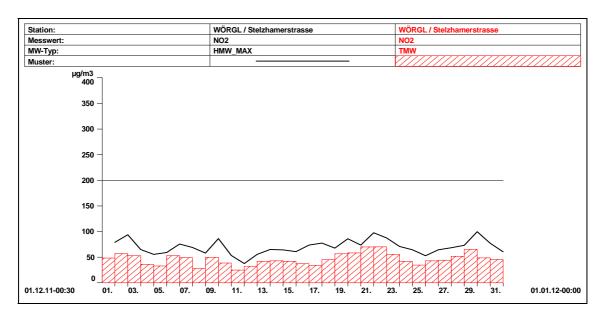
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				22	1	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011

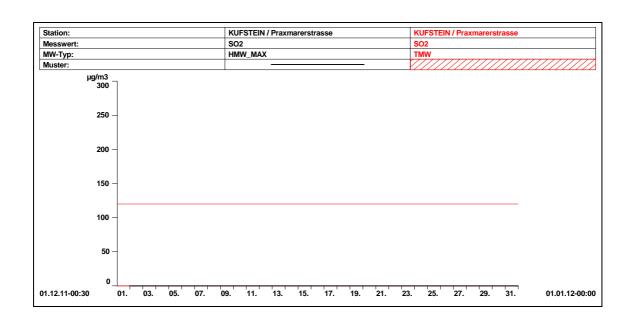
Messstelle: KUFSTEIN / Praxmarerstrasse

	SO)2	PM10	PM10	NO		NO2				03				СО	_
	μg	/3	kont. μg/m³	grav.	3						/3				/3	-
	μg		μg/III	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	2	4	32		129	49	68	70								
02.	3	5	33		161	58	78	79								
03.	3	5	33		150	46	59	62								
So 04.	2	3	29		73	30	40	41								
05.	1	2	12		60	35	68	70								
06.	2	3	19		96	52	74	76								
07.	1	3	8		77	37	63	68								
08.	1	2	12		43	23	44	48								
09.	2	4	18		141	47	65	67								
10.	1	3	13		82	30	45	46								
So 11.	1	2	17		66	27	37	40								
12.	1	3	19		101	36	60	64								
13.	1	2	11		56	36	60	62								
14.	2	5	22		142	41	56	61								
15.	1	3	17		78	42	58	60								
16.	1	2	9		43	28	52	53								
17.	1	2	10		35	32	67	69								
So 18.	1	3	21		55	41	61	62								
19.	3	5	31		136	57	75	76								
20.	1	2	18		46	52	70	74								
21.	3	6	33		163	68	83	86								
22.	4	6	28		207	68	83	87								
23.	3	6	25		210	52	71	74								
24.	2	3	17		89	38	57	59								
So 25.	1	1	11		17	26	49	51								
26.	1	2	19		44	40	55	56								
27.	2	4	26		104	42	53	55								
28.	3	5	27		164	50	76	77								
29.	4	6	34		177	61	85	88								
30.	1	4	9		106	47	77	80								
31.	1	3	14		70	33	42	45								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	6			210	88		
Max.01-M					85		
Max.3-MW	6				83		
Max.08-M							
Max.8-MW							
Max.TMW	4	34		136	68		
97,5% Perz.	5						
MMW	2	20		43	43		
Gl.JMW					29		

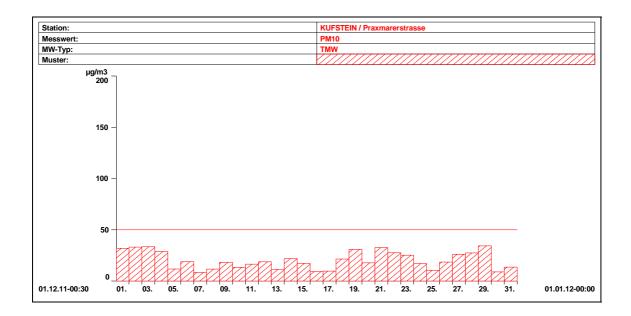
Zeitraum: DEZEMBER 2011

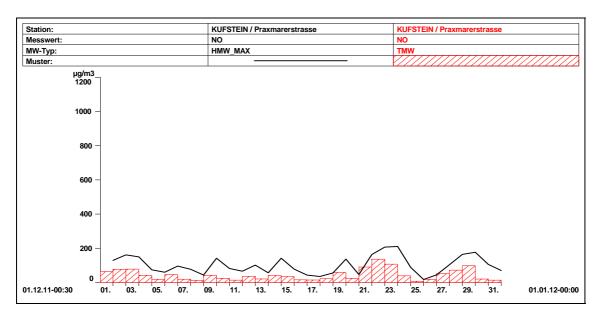
Messstelle: KUFSTEIN / Praxmarerstrasse

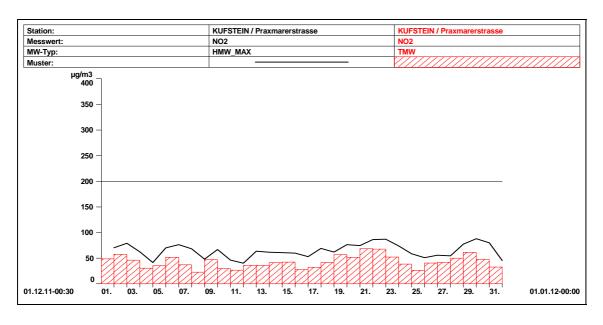

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
2. VO gegen forstschädliche Luftverunreinigungen	0			

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				17								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0								
ÖAW: SO2-Kriterium für Siedlungsgebiete	0											
VDI-RL 2310: NO-Grenzwert			0									


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

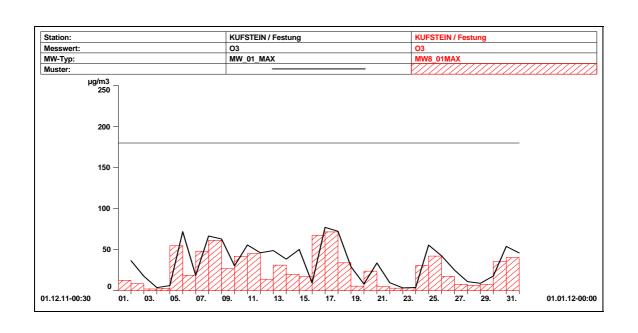


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: DEZEMBER 2011 Messstelle: KUFSTEIN / Festung

	SO)2	PM10 kont.	PM10	NO	_	NO2	_	03						со	
	μg	/m³	μg/m ³	grav. μg/m³	μg/m³	_	μg/m³				$\mu g/m^3$				mg/m³	
	10	max	10	10	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									12	12	37	37	37			
02.									8	8	17	17	18			
03.									2	2	4	5	6			
So 04.									3	3	6	7	8			
05.									55	55	72	73	74			
06.									19	20	19	19	23			
07.									48	48	67	67	69			
08.									61	61	63	64	64			
09.									27	27	30	32	32			
10.									42	42	56	56	57			
So 11.									45	45	46	46	47			
12.									14	14	49	49	50			
13.									31	31	38	44	39			
14.									20	21	50	50	51			
15.									17	18	9	9	9			
16.									67	68	77	78	78			
17.									72	72	72	74	76			
So 18.									34	33	29	29	30			
19.									5	5	8	8	9			
20.									24	24	34	36	37			
21.									5	5	10	10	13			
22.									3	3	3	4	4			
23.									3	3	4	4	4			
24.									31	31	56	56	56			
So 25.									42	42	42	42	46			
26.									17	17	25	25	27			
27.									8	8	11	11	11			
28.									6	6	9	10	10			
29.									8	8	18	21	24			
30.									35	35	54	54	59			
31.									40	40	46	46	46			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						78	
Max.01-M						77	
Max.3-MW							
Max.08-M							
Max.8-MW						72	
Max.TMW						45	
97,5% Perz.							
MMW						15	
Gl.JMW							

Zeitraum: DEZEMBER 2011 Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	[Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					3	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: DEZEMBER 2011

Messstelle: LIENZ / Amlacherkreuzung

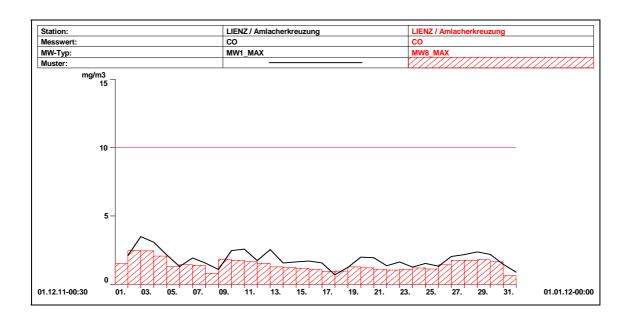
	SC)2	PM10	PM10	NO	_	NO2		О3					CO		
			kont.	grav.					_		-					
	μg		μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	3	6		47	472	73	137	143						1.5	2.0	2.2
02.	3	6		57	471	86	137	146						2.5	3.3	3.9
03.	2	4		53	350	65	105	113						2.4	2.8	3.6
So 04.	1	3		30	266	41	93	96						2.1	2.1	2.2
05.	2	4		24	341	57	105	105						1.3	1.3	1.5
06.	2	4		36	362	60	112	121						1.4	1.9	2.0
07.	1	5		25	354	56	85	92						1.4	1.3	1.7
08.	1	2		14	108	37	76	81						0.8	1.1	1.2
09.	2	5		34	425	76	128	153						1.8	2.5	2.5
10.	1	3		34	261	62	105	109						1.8	2.6	2.7
So 11.	1	3		29	256	47	91	97						1.7	1.7	1.7
12.	3	7		33	556	71	134	162						1.5	2.5	3.1
13.	2	4		21	329	58	116	122						1.3	1.6	1.6
14.	2	4		35	364	68	127	139						1.2	1.6	1.8
15.	2	5		26	443	58	100	104						1.2	1.7	1.8
16.	2	4		25	366	58	100	106						1.1	1.4	1.7
17.	1	1		9	68	29	52	55						0.9	0.7	0.7
So 18.	1	2		31	154	42	82	85						1.0	1.2	1.4
19.	2	4		43	289	72	126	127						1.3	1.8	2.1
20.	2	5		44	349	70	131	137						1.2	1.9	2.3
21.	2	4		31	279	64	105	111						1.1	1.3	1.4
22.	1	3		21	278	63	111	120						1.0	1.4	1.8
23.	1	2		25	180	49	77	80						1.1	1.3	1.3
24.	1	2		20	167	36	69	73						1.2	1.5	1.5
So 25.	1	2		31	156	46	93	103						1.1	1.3	1.4
26.	1	3		38	179	57	102	103						1.4	1.9	2.1
27.	2	5		45	391	69	123	129						1.8	2.2	2.9
28.	2	5		47	426	71	123	157						1.8	2.4	2.8
29.	2	4		43	332	64	103	122						1.8	2.2	2.2
30.	1	3		24	234	48	92	96						1.7	1.5	1.5
31.	0	1		14	81	30	50	57						0.6	0.9	1.0

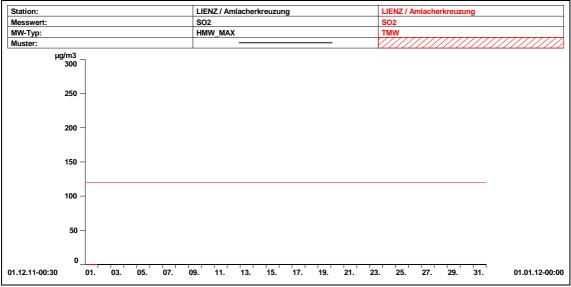
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31	31	31		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	7			556	162		
Max.01-M					137		3.3
Max.3-MW	5				128		
Max.08-M							
Max.8-MW							2.5
Max.TMW	3		57	223	86		
97,5% Perz.	4						
MMW	2		32	118	57		0.9
Gl.JMW					40		

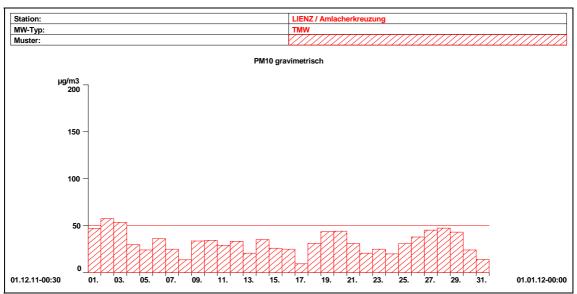
Zeitraum: DEZEMBER 2011

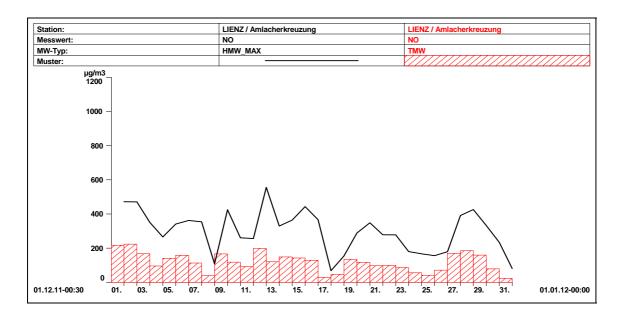
Messstelle: LIENZ / Amlacherkreuzung

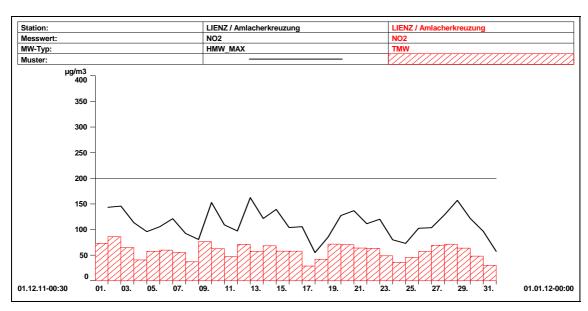
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	2		0		0
Zielwerte menschliche Gesundheit		2		1		
Zielwerte Ökosysteme, Vegetation	0			n.a.		


Ozongesetz									
Alarmschwelle									
Informationsschwelle									
langfristiger Zielwert menschliche Gesundheit									
2. VO gegen forstschädliche Luftverunreinigungen	0								


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28					
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1					
ÖAW: SO2-Kriterium für Siedlungsgebiete	0								
VDI-RL 2310: NO-Grenzwert			0						

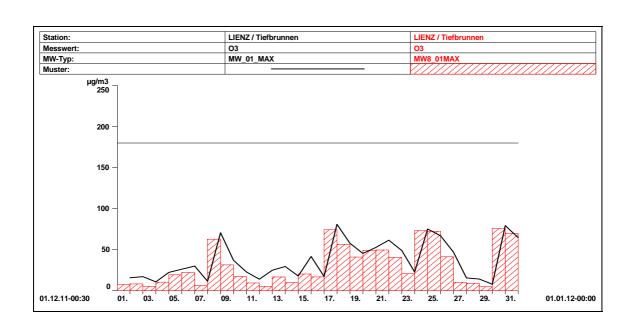

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: DEZEMBER 2011 Messstelle: LIENZ / Tiefbrunnen

	SC)2	PM10	PM10	NO	_	NO2				03				со	_
			kont.	grav.					_							
	μg	m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$			1	μg/m³	1			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									7	7	16	16	16			
02.									8	8	17	17	20			
03.									5	5	11	11	11			
So 04.									10	10	22	22	23			
05.									19	18	26	31	33			
06.									22	22	30	31	32			
07.									6	6	11	13	13			
08.									63	63	71	71	72			
09.									31	31	37	37	38			
10.									17	17	23	24	24			
So 11.									9	9	14	14	15			
12.									5	5	25	25	28			
13.									17	17	29	29	30			
14.									10	10	18	18	19			
15.									20	23	42	42	51			
16.									17	17	17	17	18			
17.									74	74	81	81	81			
So 18.									56	58	58	58	58			
19.									41	41	45	46	46			
20.									49	49	53	53	53			
21.									49	51	61	66	72			
22.									41	41	49	51	52			
23.									21	21	23	24	24			
24.									73	73	75	75	75			
So 25.									72	73	67	73	70			
26.									41	42	47	47	47			
27.									10	10	15	15	16			
28.									9	9	14	14	16			
29.									5	5	8	8	8			
30.									76	76	79	80	80			
31.									70	72	65	65	65			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						30	
Verfügbarkeit						96%	
Max.HMW						81	
Max.01-M						81	
Max.3-MW							
Max.08-M							
Max.8-MW						76	
Max.TMW						65	
97,5% Perz.							
MMW						19	
Gl.JMW							

Zeitraum: DEZEMBER 2011 Messstelle: LIENZ / Tiefbrunnen

	1	1		1		
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					6	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Gree	nzwerte in µg/m³ (aus	sgenommen CO: ang	egeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **)
PM_{10}				50 ***)	40
PM _{2.5}					25****)
	Alaı	rmwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Zie	elwerte in μg/m³			
Stickstoffdioxid				80	
PM_{10}				50	20
PM _{2.5}					25

^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

	Gren	zwerte in μg/m³									
Luftschadstoff	HMW	MW3	MW8	TMW	JMW						
Schwefeldioxid					201)						
Stickstoffoxide					30						
	Ziel	werte in μg/m³									
Schwefeldioxid				50							
Stickstoffdioxid 80											
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)											

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)			
Alarmschwelle	240 µg/m³ als Einstundenmittelwert (stündlich gleitend)			
Zielwert	120 μg/m³ als Achtstundenmittelwert *)			
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.				

Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge von 5 μg/m3 gilt gleich bleibend ab 1. Jänner 2010 und wird 2012 evaluiert. Auf Grundlage dieser Evaluierung hat der Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft im Einvernehmen mit dem Bundesminister für Wirtschaft, Familie und Jugend gegebenenfalls den Entfall der Toleranzmarge mit Verordnung anzuordnen.

^{***)} Pro Kalenderjahr sind 25 Tagesgrenzwertüberschreitungen zulässig.

^{****)} Der Immissionsgrenzwert von 25 µg/m³ ist ab 1.1.2015 einzuhalten, die Toleranzmarge von 20% wird von 1.1.2009 und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0% am 1. Jänner 2015 reduziert.

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)							
April - Oktober November - März							
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³					
(HMW) in den Monaten							
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.							
Tagesmittelwert (TMW)	0.05 mg/m^3	0,10 mg/m³					
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³					

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Stickstof	fdioxid ((NO ₂)	August 1989: Luftqu	alitätskr	iterien C	Ozon (O ₃)
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in $\mathrm{mg/m^3}$		Wirkungsbezogene Immissionsgrenzkonzentrationen für O_3 in $\mathrm{mg/m^3}$						
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der				Zeit von 09.00 – 16.00 Uhr MEZ wä	hrend de	r Vegetat	ionsperio	ode

Die höchstzulässige Konzentration von Schwefeldioxid (SO_2) in der freien Luft beträgt						
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten			
	Schwefeldioxid in mg/m³ Luft					
	April - Oktober	November – März				
Tagesmittelwert	0,05	0,10	0,20			
Halbstundenmittelwert	0,07	0,15	0,20			
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.			

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)				
Tagesmittelwert	500 μg/m³			
Halbstundenmittelwert	$1000~\mu \mathrm{g/m^3}$			

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum	WERT[μg/m	13]
VOMP / An der Leiten VOMP / An der Leiten Anzahl: 2		.2011	58 55

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum WERT[μ	
INNSBRUCK / Andechsstrasse Anzahl: 7	01.12.2011 03.12.2011 21.12.2011 22.12.2011 27.12.2011 28.12.2011	54 52 62 54 67
INNSBRUCK / Fallmerayerstr. Anzahl: 1	29.12.2011	52
HALL IN TIROL / Sportplatz Anzahl: 5	02.12.2011 06.12.2011 28.12.2011	68 60 52
VOMP / Raststätte A12 VOMP / Raststätte A12 Anzahl: 2	28.12.2011 29.12.2011	
LIENZ / Amlacherkreuzung LIENZ / Amlacherkreuzung Anzahl: 2	02.12.2011 03.12.2011	57 53

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00 Halbstundenmittelwert > $200\mu/m3$

MESSSTELLE	Datum	WERT[礸/m3]
IMST / A12 IMST / A12 Anzahl: 2	02.12.2011-1 02.12.2011-1	
HALL IN TIROL / Sportplatz HALL IN TIROL / Sportplatz HALL IN TIROL / Sportplatz Anzahl: 3	22.12.2011-2 22.12.2011-2 22.12.2011-2	20:30 220
VOMP / Raststätte Al2 Anzahl: 1	21.12.2011-1	7:30 206

IG-L Alarmwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00 Dreistundenmittelwert > $400 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00 Tagesmittelwert > $80\mu g/m3$

MESSSTELLE	Datum	WERT[µg/m3]
IMST / A12 IMST / A12 IMST / A12 Anzahl: 3	27.12	2.2011 99 2.2011 81 2.2011 91
INNSBRUCK / Andechsstrasse Anzahl: 5	22.12 28.12	8.2011 82 8.2011 100
<pre>INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. Anzahl: 5</pre>	21.12 22.12 28.12	
MUTTERS / Gärberbach - A13 MUTTERS / Gärberbach - A13 Anzahl: 2		8.2011 83 8.2011 84
HALL IN TIROL / Sportplatz Anzahl: 7	02.12 21.12 22.12 23.12 28.12	
VOMP / Raststätte A12	01.12	2.2011 89

VOMP / Raststätte A12	02.12.2011	97
VOMP / Raststätte A12	06.12.2011	90
VOMP / Raststätte A12	07.12.2011	90
VOMP / Raststätte A12	09.12.2011	88
VOMP / Raststätte A12	14.12.2011	86
VOMP / Raststätte A12	15.12.2011	83
VOMP / Raststätte A12	17.12.2011	85
VOMP / Raststätte A12	18.12.2011	81
VOMP / Raststätte A12	19.12.2011	97
VOMP / Raststätte A12	20.12.2011	81
VOMP / Raststätte A12	21.12.2011	128
VOMP / Raststätte A12	22.12.2011	122
VOMP / Raststätte A12	23.12.2011	88
VOMP / Raststätte A12	27.12.2011	
VOMP / Raststätte A12	28.12.2011	_
VOMP / Raststätte A12	29.12.2011	
VOMP / Raststätte A12	30.12.2011	94
Anzahl: 18		
VOMP / An der Leiten	21.12.2011	86
VOMP / An der Leiten	22.12.2011	86
VOMP / An der Leiten	28.12.2011	87
Anzahl: 3		
KUNDL / A12	02.12.2011	81
KUNDL / A12	21.12.2011	
KUNDL / A12	22.12.2011	83
Anzahl: 3		30
	00 10 0011	0.5
LIENZ / Amlacherkreuzung	02.12.2011	86
Anzahl: 1		

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[μg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.12.11-00:30 - 01.01.12-00:00 Tagesmittelwert > $120 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschrei	itungen im	Zeitraum	01.12.11-00:30	-	01.01.12-00:00
Achtstundenmittelwert >	10mg/m3				

MESSSTELLE

Datum

WERT[μ g/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.12.11-00:30 -01.01.12-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE

Datum

WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.12.11-00:30 - 01.01.12-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE

Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.12.11-00:30 - 01.01.12-

Achtstundenmittelwert > 120µg/m3

MESSSTELLE

Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!