Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Oktober 2012

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

> Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

> Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 12. Dezember 2012

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 621, 622
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3									
Lage der Messstationen und Bestückungsliste										
Kurzübersicht über die Einhaltung von Grenzwerten	5									
Kurzbericht	6									
Stationsvergleich	7									
Monatsauswertung der Stationen										
Höfen – Lärchbichl	10									
Heiterwang – Ort / B179	12									
Imst – A12	15									
Innsbruck – Andechsstrasse (Reichenau)	18									
Innsbruck – Fallmerayerstrasse (Zentrum)	21									
Innsbruck – Sadrach	25									
Nordkette	28									
Mutters – Gärberbach A13	30									
Hall in Tirol – Sportplatz	33									
Vomp – Raststätte A12	36									
Vomp – An der Leiten										
Brixlegg – Innweg	42									
Kramsach – Angerberg	45									
Kundl – A12	48									
Wörgl – Stelzhamerstrasse	51									
Kufstein – Praxmarerstrasse	54									
Kufstein – Festung	57									
Lienz – Amlacherkreuzung	59									
Lienz – Tiefbrunnen	62									
Beurteilungsunterlagen aus Gesetzen, Verordnungen und Richtlinien	65									
IG-L Überschreitungen										
Auflistung der Überschreitungen nach IG-L	67									

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

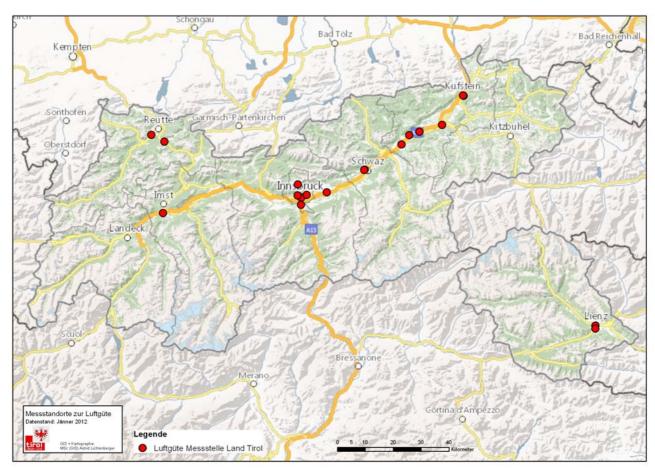
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

	BEST	ÜCKU	NGSLISTI	E			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	985 m	-	•/-	•	•	•	-
Imst – A12	719 m	-	•/-	•	•	1	-
Innsbruck-Andech sstrasse	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	1	•
Innsbruck - Sadrach	678 m	-	-/-	•	•	•	-
Nordkette	1958 m	-	-/-	-	-	•	-
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-
Brixlegg – Innweg	519 m	•	•/•	-	-	-	-
Kramsach – Angerberg	602 m	-	-/-	•	•	•	-
Kundl – A12	507 m	-	-/-	•	•	-	-
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	•	-
Kufstein – Praxmarerstrasse	498 m	-	•/-	•	•	-	-
Kufstein – Festung	550 m	-	-/-	-	-	•	-
Lienz – Amlacherkreuzung	675 m	-	•/•	•	•	-	•
Lienz – Tiefbrunnen	681 m	-	-/-	•	•	•	-

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten OKTOBER 2012

Bezeichnung der Messstelle	SO2	1) PM10 2)	NO	NO2 1)	O3 ¹⁾	CO
HÖFEN					Р	
HOFEN Lärchbichl					1	
HEITERWANG					Р	
Ort / B179					_	
IMST				Ö		
A12						
INNSBRUCK				Ö	P	
Andechsstrasse						
INNSBRUCK				Ö		
Fallmerayerstrasse						
INNSBRUCK					P	
Sadrach						
NORDKETTE					P	
MUTTERS				Ö		
Gärberbach A13						
HALL IN TIROL				Ö		
Sportplatz						
VOMP				Ö		
Raststätte A12						
VOMP				Ö		
An der Leiten						
BRIXLEGG						
Innweg						
KRAMSACH						
Angerberg				:		
KUNDL				Ö		
A12 WÖRGL						
Stelzhamerstrasse KUFSTEIN						
RUFSTEIN Praxmarerstrasse						
KUFSTEIN						
KUFSTEIN Festung						
LIENZ				Ö		
LIENZ Amlacherkreuzung						
LIENZ					P	
Tiefrbunnen						

	Grenzwerte und Zielwerte der im Anhang enthaltenen Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
ΙZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum Schutz von
IZ.	Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
IΡ	Überschreitung des Grenzwertes für PM10 gemäß IG-L. Da für dieses Kriterium auch eine auf das Kalenderjahr gültige
IF	Perzentilregelung gilt, wird die Ausweisung allfälliger Überschreitungen im Jahresbericht vorgenommen.
Z	Überschreitung des Zielwertes zum Schutz der menschlichen Gesundheit für Ozon
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem. Immissionsschutzgesetz Luft
IG	(BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der Informationsschwelle gemäß Ozongesetz.
	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss
·	Ozongesetz
1)	Die Ausweisung von Überschreitungen von Langzeitgrenzwerten/-zielwerten sowie Perzentilregelungen wird im Jahresbericht
1)	vorgenommen.
2)	In Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird
2)	PM10 mittels gravimetrischer Methode gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Oktober 2012

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit derzeit 19 Messstationen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2), Ozon (O3) und Feinstaub (PM10 und PM2,5) sowie über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o. a. Gesetze enthaltenen gesetzlichen Grenz- und Zielwerte sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (=Benzo-a-Pyren) im PM10, von Benzol sowie der Eintragsmessungen (über den nassen Niederschlag und Grobstaubniederschlag) werden in Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Häufige Südwest- bis Nordwestwetterlagen im raschen Wechsel verhinderten das klassische ruhige Herbstwetter. Von sommerlichen Temperaturen bis Schneefall im Inntal war alles dabei.

Bei den Temperaturen bilanzierte der Oktober 2012 an vielen Wetterstationen ausgeglichen, nur von der Brennergegend bis Osttirol war es um 1 bis knapp 2 Grad leicht überdurchschnittlich wärmer. Die Monatsmitteltemperatur in Innsbruck von 9,2 °C entsprach bis auf Zehntel Grad dem Normalwert. Mit 1,8 Grad positiver Abweichung war es in St. Jakob im Defereggental mit 4,3 °C Mitteltemperatur relativ am wärmsten. Mit einer Südföhnströmung gab es in Reutte am 19. Oktober mit 27,1 °C einen neuen Temperaturrekord. Das ist der höchste Oktoberwert seit Messbeginn im Jahr 1936. Interessant war, dass nur Reutte, Tannheim und Achenkirch jeweils einen Sommertag (Höchsttemperatur über 25 °C) verzeichneten, im Inntal und im Lienzer Becken dieser Wert nicht erreicht wurde. Zum Monatsende brachte ein Wintereinbruch Schnee und Kälte. Mit -14 °C wurde es am 30. Oktober in Galtür am kältesten in diesem Monat. Es schneite gegen Monatsende auch in Innsbruck und es gab 2 Tage mit Schneedecke, was für die Landeshauptstadt im Oktober unüblich ist.

Beim Niederschlag verzeichneten die meisten Regionen Tirols ein kleines Plus von 20 bis 40 %. Außergewöhnliche Niederschlagsereignisse traten nicht auf. Innsbruck kam auf 83 mm, normal wären 57 mm, ein Plus von 46 %. Im Oberland war es relativ etwas feuchter, Umhausen und Landeck erreichten ein Plus von 70 % bei Regenmengen von 76 und 78 mm. Mit 126 mm kam in Holzgau die größte Niederschlagsmenge zusammen, normal wären hier 82 mm.

Die sonst im Herbst so südföhngeplagte Landeshauptstadt kam in diesem Oktober nur auf einen Tag mit Südföhn, statistisch normal wären über 4 Tage mit Südföhn in Innsbruck.

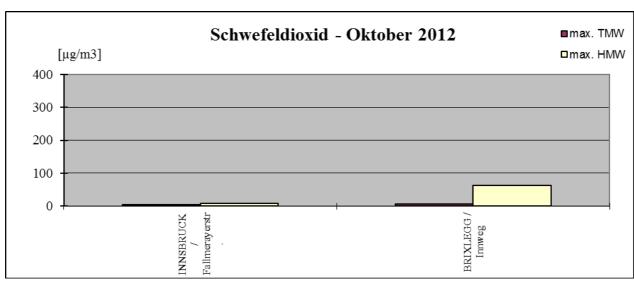
Die wechselhafte Witterung hatte zur Folge, dass die Sonnenscheindauer vielerorts in Nordtirol leicht unterdurchschnittliche bis normale Werte erreichte. 130 Sonnenstunden in Innsbruck bedeuten ein Minus von 15 % und damit war der heurige Oktober hier der sonnenärmste Oktober seit dem Jahr 2000. Lienz wurde mit 168 Sonnenstunden seinem Beinamen als Sonnenstadt wieder gerecht. Länger schien die Sonne nur auf den Bergen, der Patscherkofel war diesmal mit 192 Sonnenstunden sogar der sonnenscheinreichste Platz Österreichs.

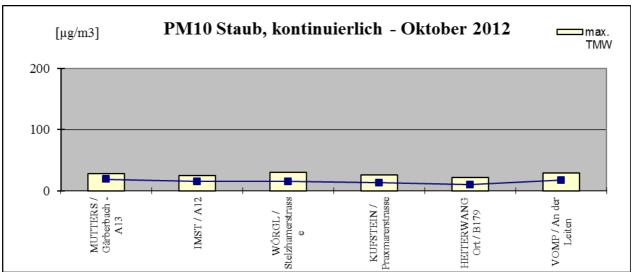
Luftschadstoffübersicht

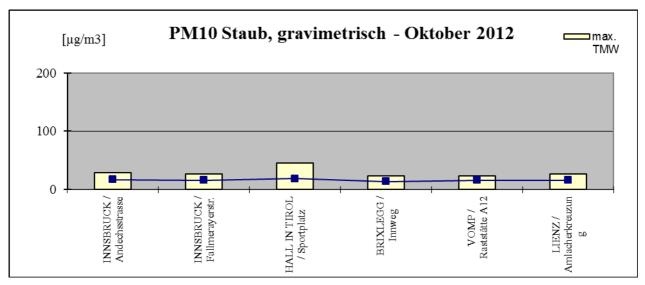
Das abwechslungsreiche Wetter im Oktober wirkte sich überaus günstig auf die Luftschadstoffsituation in Tirol aus: Bei allen Schadstoffkomponenten wurden verhältnismäßig geringe Immissionskonzentrationen verzeichnet.

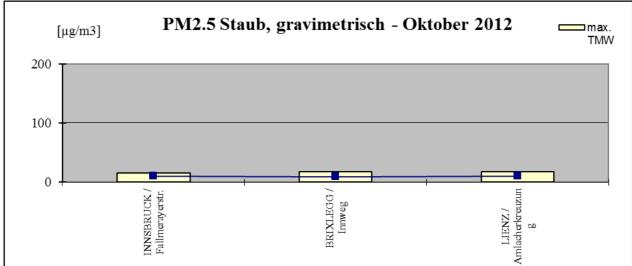
Die Monatsmittelwerte bei **Schwefeldioxid** lagen in Innsbruck bei $2\,\mu g/m^3$ und in Brixlegg bei $1\,\mu g/m^3$, wobei die höheren Kurzzeitbelastungen auf die Messstelle in Brixlegg (beeinflusst durch die dortige Buntmetallhütte) entfielen. Mit einem maximalen Halbstundenmittelwert von $64\,\mu g/m^3$ und einem maximalen Tagesmittelwert von $6\,\mu g/m^3$ wurden aber auch hier die Grenzwerte gemäß IG-L (=Immissionsschutzgesetz-Luft) beziehungsweise der zweiten Verordnung gegen forstschädliche Luftverunreinigungen klar eingehalten.

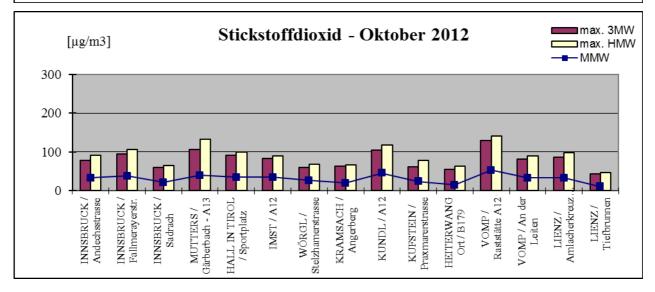
Auf einem seit Monaten anhaltend geringen Niveau liegen die Feinstaubimmissionen. An keinem Standort wurden $20~\mu g/m^3$ im Monatsmittel überschritten. Auch die maximalen Tagesmittelwerte lagen mit Ausnahme der Messstelle in Hall überall sonst zwischen $20~\mu g/m^3$ und damit deutlich unter dem gesetzlichen Tagesgrenzwert von $50~\mu g/m^3$. Am Standort HALL IN TIROL/Sportplatz kam es zu Monatsende im Zuge von Erdbewegungsarbeiten auf den Feldern östlich der Messstelle zum höchsten Tagesmittelwert mit $45~\mu g/m$. Die **PM2.5**-Monatsmittelwerte lagen bei $9~-10~\mu g/m^3$ und lagen damit sogar geringfügig tiefer als in den Vormonaten.

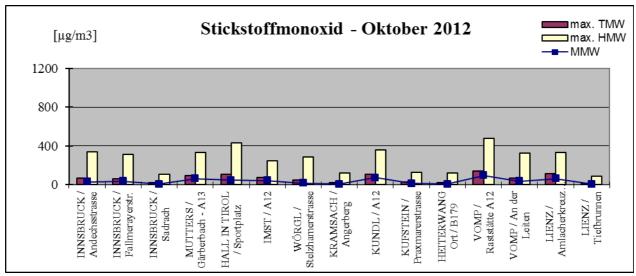

Die **Stickoxid**belastung hat zwar im Vergleich zum Vormonat zugenommen, kann aber für die Jahreszeit immer noch als relativ gering eingestuft werden. Die Grenzwerte für **Stickstoffmonoxid** gemäß VDI-Richtlinie 2310 (1000 μ g/m³ als Halbstundenmittelwert sowie 500 μ g/m³ als Tagesmittelwert) wurden mit 141 μ g/m³ als maximalen Tagesmittelwert und 480 μ g/m³ als maximalen Halbstundenmittwert deutlich unterschritten.

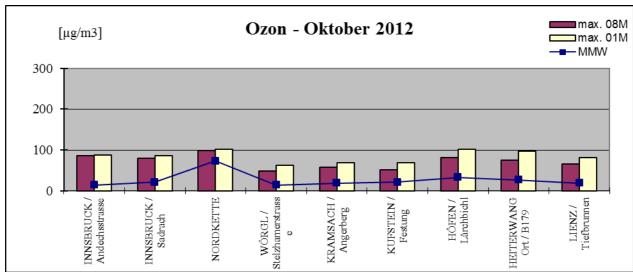

Schwerpunkt für **Stickstoffdioxid** - wie auch bei Stickstoffmonoxid – ist einmal mehr die Messstelle VOMP/Raststätte A12. Mit einem maximalen Tagesmittelwert von 76 μ g/m³ und einem maximalen Halbstundenmittelwert von 140 μ g/m³ wurde jedoch weder der Zielwert (80 μ g/m³ als Tagesmittelwert) noch der Kurzeitgrenzwert (200 μ g/m³ als Halbstundenmittelwert) gemäß IG-L überschritten, wohl aber die wirkungsbezogenen Grenzwerte der ÖAW (Österreichische Akademie der Wissenschaften) zum Schutz des Ökosystems an 9 der 15 Messstellen; an der vegetationsbezogenen Messstelle KRAMSACH/Angerberg sind diese Kriterien eingehalten.

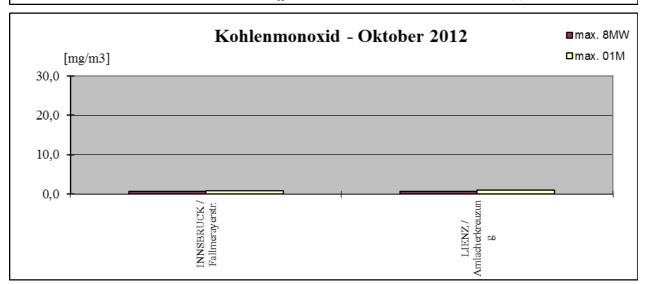

Die **Ozons**ituation ist entsprechend der Jahreszeit entspannt. Die gesetzlichen Vorgaben laut Ozongesetz wurden im gesamten Messnetz deutlich eingehalten. Der maximale Achtstundenmittelwert entfiel mit 98 μ g/m³ auf die Messstelle NORDKETTE und der maximale Stundenmittelwert mit 102 μ g/m³ auf die Messstelle HÖFEN/Lärchbichl. Das ÖAW-Kriterium (Österreichische Akademie der Wissenschaften) zum Schutz des Menschen wurde ebenfalls im gesamten Messnetz eingehalten; das Kriterium zum Schutze der Vegetation laut ÖAW konnte - mit Ausnahme der 3 Messstellen im unteren Inntal - an allen Standorten in Tirol allerdings nicht eingehalten werden.


Bei der Schadstoffkomponente **Kohlenmonoxid** wurde der festgesetzte Grenzwert (10 mg/m³ als Achtstundenmittelwert) an beiden Messstellen deutlich eingehalten. Der höchste Achtstundenmittelwert wurde an der Messstelle INNSBRUCK/Fallmerayerstraße mit 0,7 mg/m³ ausgewertet.


Stationsvergleich

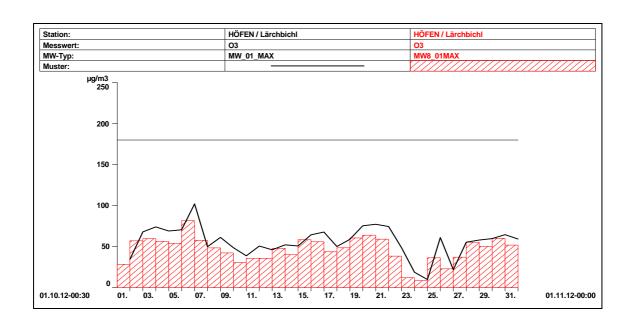






Zeitraum: OKTOBER 2012 Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2			_	03				СО	-
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									28	29	34	35	35			
02.									57	57	68	68	68			
03.									60	60	74	74	75			
04.									56	56	69	72	72			
05.									54	55	70	70	71			
06.									81	81	102	103	104			
So 07.									58	60	50	51	52			
08.									48	48	61	61	62			
09.									42	44	49	50	51			
10.									30	31	39	39	41			
11.									35	35	51	52	57			
12.									36	36	46	46	52			
13.									48	48	52	52	53			
So 14.									40	40	51	51	51			
15.									58	58	64	66	71			
16.									56	56	68	68	69			
17.									44	44	50	50	51			
18.									49	49	59	60	60			
19.									60	61	75	75	76			
20.									64	64	77	79	79			
So 21.									59	59	74	75	75			
22.									38	39	49	49	50			
23.									12	12	19	19	20			
24.									8	8	10	10	10			
25.									36	36	61	61	61			
26.									23	24	22	22	22			
27.									37	39	55	58	60			
So 28.									55	55	58	59	59			
29.									50	50	60	60	61			
30.									60	60	65	65	65			
31.									52	52	59	59	60			


	SO2 μg/m³	PM10 kont. μg/m³	PM10 grav. μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
	μg/III	μg/III	μg/III	μg/III	μg/III		mg/m
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						104	
Max.01-M						102	
Max.3-MW							
Max.08-M							
Max.8-MW						81	
Max.TMW						52	
97,5% Perz.							
MMW						33	
Gl.JMW							

Zeitraum: OKTOBER 2012 Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					3	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

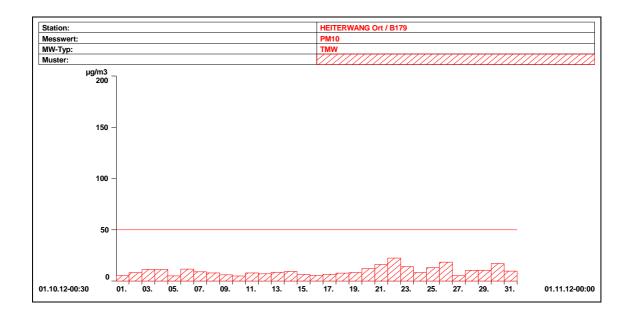
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

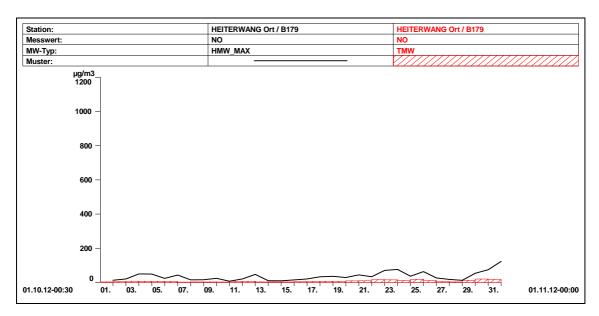
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

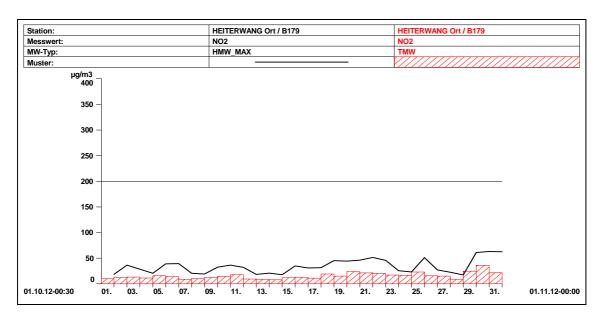
Messstelle: HEITERWANG Ort / B179

	SO)2	PM10	PM10	NO		NO2			_	03				CO	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			5		13	10	17	18	30	30	38	38	39			
02.			8		20	12	31	36	55	56	72	72	72			
03.			11		50	13	25	28	60	60	74	74	74			
04.			11		49	11	17	21	56	56	70	70	71			
05.			5		23	16	37	39	48	49	71	71	71			
06.			12		43	14	35	39	73	73	97	97	98			
So 07.			9		15	9	18	20	50	50	55	56	57			
08.			8		16	10	19	19	49	49	58	59	60			
09.			6		24	12	31	32	33	44	51	51	52			
10.			5		7	14	36	36	41	41	47	47	48			
11.			8		20	18	31	32	37	37	43	46	49			
12.			7		47	9	14	18	46	46	51	53	53			
13.			9		10	8	19	21	49	48	52	53	54			
So 14.			9		9	8	16	18	46	46	53	54	55			
15.			6		14	12	29	35	53	53	64	64	67			
16.			5		20	13	26	31	51	52	67	67	69			
17.			7		33	11	30	31	61	62	71	71	71			
18.			8		36	19	44	45	60	60	78	78	80			
19.			8		29	15	42	44	75	75	82	82	82			
20.			12		44	24	45	46	47	49	74	74	76			
So 21.			16		33	21	50	51	38	38	57	60	64			
22.			22		70	20	44	46	40	40	75	75	76			
23.			14		76	17	25	26	15	16	29	29	29			
24.			8		36	17	23	23	7	7	10	10	10			
25.			13		63	23	48	51	35	35	65	65	69			
26.			18		26	16	24	27	14	14	18	18	20			
27.			5		17	15	22	23	37	39	52	54	55			
So 28.			10		12	9	16	17	53	53	56	56	57			
29.			11		54	25	61	61	51	51	54	55	56			
30.			17		74	36	56	63	40	40	49	49	50			
31.			10		123	22	57	62	70	70	77	77	77			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31	31	
Verfügbarkeit		100%		98%	98%	98%	
Max.HMW				123	63	98	
Max.01-M					61	97	
Max.3-MW					55		
Max.08-M							
Max.8-MW						75	
Max.TMW		22		20	36	50	
97,5% Perz.							
MMW		10		7	15	27	
Gl.JMW					18		


Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	5	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						_
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012 Messstelle: IMST / A12

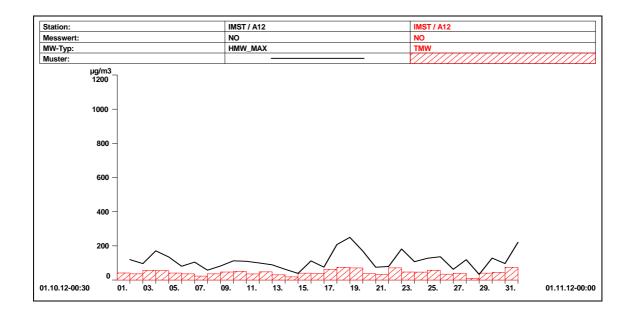
	SO)2	PM10	PM10	NO	_	NO2	_	03				СО			
		/3	kont.	grav.		_			_	μg/m³					_	
	μg	/m³ max	μg/m³	$\mu g/m^3$	μg/m³		μg/m³ max	max	max	max	max	mov	max	max	mg/m³ max	max
Tag	TMW	HMW	TMW	TMW	max HMW	TMW	01-M	HMW	08-M	8-MW	01-M	max 1-MW	HMW	8-MW	01-M	HMW
01.			17		120	27	47	48								
02.			10		96	27	47	50								
03.			17		171	33	54	57								
04.			19		135	33	52	54								
05.			11		81	35	55	61								
06.			16		105	30	42	45								
So 07.			19		58	33	53	57								
08.			12		82	32	55	56								
09.			10		113	35	58	58								
10.			12		110	37	57	59								
11.			13		100	30	48	58								
12.			15		89	30	45	47								
13.			11		63	28	40	46								
So 14.			12		39	22	46	48								
15.			12		112	45	73	80								
16.			6		75	36	67	71								
17.			17		208	38	62	67								
18.			17		250	40	67	68								
19.			18		170	46	79	82								
20.			14		75	38	67	72								
So 21.			16		79	37	76	78								
22.			25		182	39	61	68								
23.			22		108	33	48	49								
24.			17		128	33	46	50								
25.			18		136	37	54	59								
26.			23		63	27	45	45								
27.			10		119	26	44	47								
So 28.			10		33	21	45	50								
29.			12		128	42	72	74								
30.			20		97	51	80	80								
31.			22		221	55	85	89								

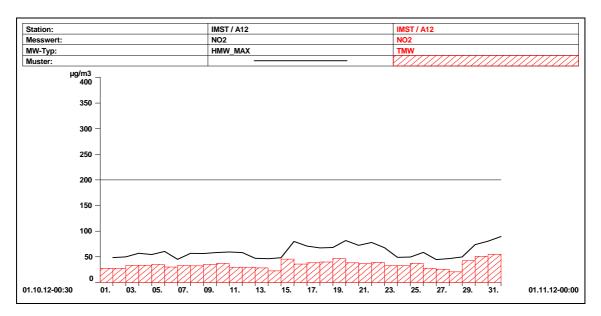
	SO2 μg/m³	PM10 kont. μg/m³	PM10 grav. μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
A 36 /	μg/111		ру/ш			μg/111	mg/m
Anz. Messtage		31		31	31		
Verfügbarkeit		99%		98%	98%		
Max.HMW				250	89		
Max.01-M					85		
Max.3-MW					83		
Max.08-M							
Max.8-MW							
Max.TMW		25		75	55		
97,5% Perz.							
MMW		15		44	35		
Gl.JMW					43		

0

Zeitraum: **OKTOBER 2012** Messstelle: IMST / A12

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				5		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

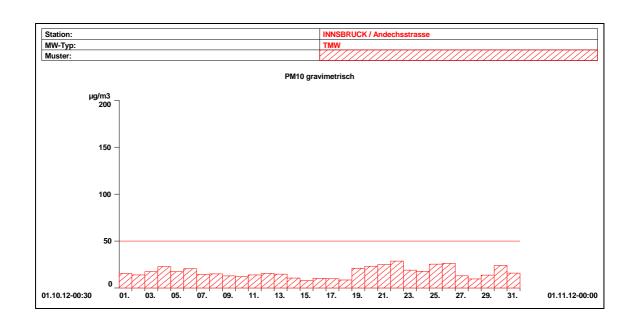
¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Andechsstrasse

	SC)2	PM10	PM10	NO		NO2			03			СО			
			kont.	grav.												
	μg/	m³	$\mu \text{g}/\text{m}^3$	$\mu \text{g/m}^3$	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				15	45	28	40	41	14	14	23	23	23			
02.				14	100	30	51	55	34	34	48	48	49			
03.				17	94	31	78	84	22	22	31	31	33			
04.				23	108	33	66	68	9	11	50	50	51			
05.				17	113	34	57	59	36	37	51	51	51			
06.				21	108	34	66	68	25	25	39	40	42			
So 07.				14	41	26	45	46	29	29	38	38	39			
08.				15	99	34	50	56	29	30	26	31	35			
09.				13	115	34	49	51	8	8	19	19	20			
10.				12	96	39	53	57	3	4	12	12	14			
11.				14	61	29	46	53	18	17	27	27	31			
12.				15	93	28	45	48	8	8	15	17	20			
13.				15	49	24	49	51	36	36	43	45	45			
So 14.				11	48	12	24	24	84	83	87	87	88			
15.				8	32	29	48	54	86	85	85	86	86			
16.				10	55	39	64	65	36	36	51	51	53			
17.				10	79	25	35	37	58	58	65	65	66			
18.				9	27	23	41	44	71	71	86	86	86			
19.				21	338	47	87	92	36	38	31	31	31			
20.				23	163	50	84	90	28	28	45	45	46			
So 21.				25	114	43	86	90	34	34	49	49	50			
22.				29	318	41	76	77	10	10	14	14	16			
23.				19	88	32	37	37	2	2	5	5	6			
24.				18	108	33	39	40	2	2	3	3	3			
25.				25	146	36	58	64	8	8	11	13	14			
26.				26	93	29	37	38	5	5	8	8	9			
27.				13	43	24	30	33	12	12	20	20	23			
So 28.				10	15	19	38	42	42	42	49	49	49			
29.				14	90	40	77	78	33	34	48	48	50			
30.				24	130	50	71	79	21	21	30	32	31			
31.				16	97	39	56	64	56	57	78	78	79			

	SO2 μg/m³	PM10 kont. μg/m³	PM10 grav. μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
Anz. Messtage			31	31	31	31	-
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				338	92	88	
Max.01-M					87	87	
Max.3-MW					78		
Max.08-M							
Max.8-MW						85	
Max.TMW			29	71	50	42	
97,5% Perz.							
MMW			17	32	33	14	-
Gl.JMW					39		

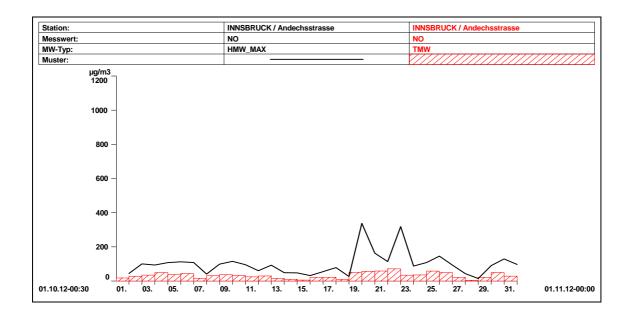
Messstelle: INNSBRUCK / Andechsstrasse

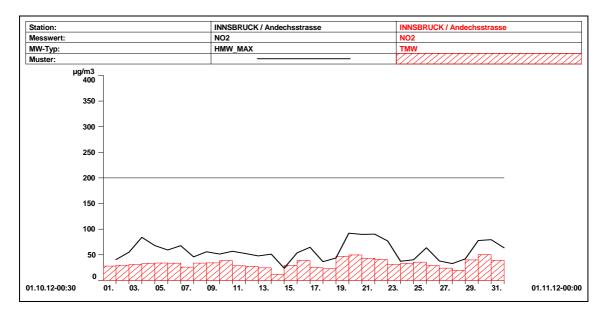

Anzahl der Tage mit Grenzwertüberschreitungen

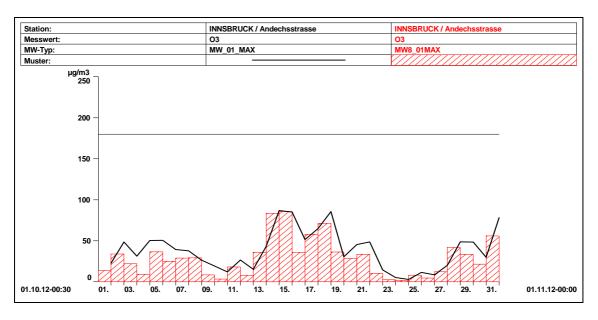
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				6	3	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert


0




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

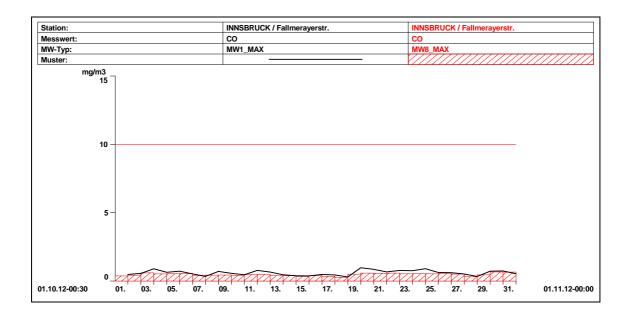
Messstelle: INNSBRUCK / Fallmerayerstrasse

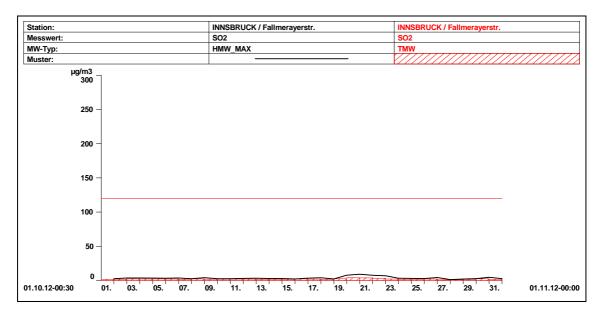
	SO	02	PM10 kont.	PM10	NO	_	NO2		03					СО		
	μg	/m³	μg/m³	grav. μg/m³	μg/m³	_	μg/m³		_		$\mu g/m^3$				mg/m³	
	1.0	max	1.0	1.0	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	2	16	10	90	33	45	52						0.4	0.5	0.6
02.	2	4	14	9	215	38	69	83						0.4	0.6	0.6
03.	2	4	18	10	143	41	101	106						0.6	0.9	0.9
04.	2	3	21	12	113	39	67	74						0.5	0.6	0.6
05.	2	3	16	10	134	46	84	85						0.5	0.7	0.8
06.	2	4	17	10	82	40	78	83						0.6	0.5	0.5
So 07.	2	2	13	8	38	27	44	48						0.4	0.3	0.4
08.	2	4	15	8	153	41	88	90						0.4	0.7	0.7
09.	2	2	13	9	90	39	61	64						0.4	0.5	0.6
10.	2	2	12	7	90	43	57	63						0.4	0.5	0.5
11.	2	3	14	9	143	37	74	83						0.5	0.8	0.9
12.	2	3	17	10	131	37	64	66						0.5	0.6	0.8
13.	2	3	13	7	56	32	62	63						0.4	0.5	0.5
So 14.	2	3	11	6	57	16	27	35						0.4	0.4	0.4
15.	2	2	7	5	47	37	65	75						0.3	0.4	0.4
16.	2	3	15	9	133	43	76	82						0.4	0.5	0.5
17.	2	4	11	7	153	29	49	56						0.3	0.4	0.5
18.	1	2	10	6	46	29	56	56						0.3	0.3	0.3
19.	2	8	18	10	316	47	101	106						0.5	0.9	1.0
20.	4	9	20	14	173	56	87	90						0.6	0.8	0.9
So 21.	4	8	20	14	89	49	73	85						0.6	0.7	0.7
22.	3	7	27	15	242	45	75	81						0.6	0.8	0.9
23.	2	3	20	13	130	35	46	52						0.5	0.7	0.9
24.	2	3	18	12	150	39	54	62						0.5	0.9	1.1
25.	1	3	21	13	178	41	79	85						0.5	0.6	0.7
26.	2	4	22	15	77	29	41	45						0.6	0.6	0.7
27.	1	1	11	8	48	24	31	33						0.5	0.5	0.6
So 28.	1	2	9	8	23	22	41	43						0.3	0.3	0.4
29.	1	3	12	9	139	45	95	97						0.4	0.7	0.8
30.	2	5	20	14	131	55	101	104						0.7	0.7	0.8
31.	1	3	14	9	75	44	85	87						0.7	0.5	0.5

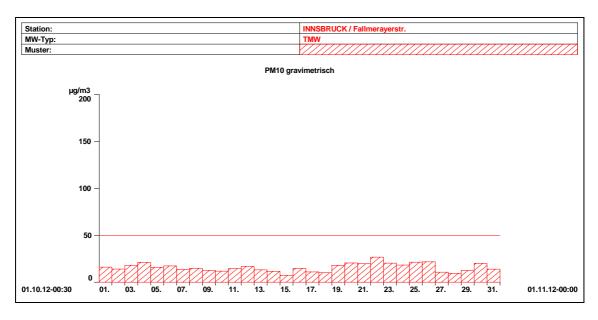
	SO2	PM10 grav.	PM25 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	9			316	106		
Max.01-M					101		0.9
Max.3-MW	7				94		
Max.08-M							
Max.8-MW							0.7
Max.TMW	4	27	15	64	56		
97,5% Perz.	5						
MMW	2	16	10	38	38		0.4
Gl.JMW					44		

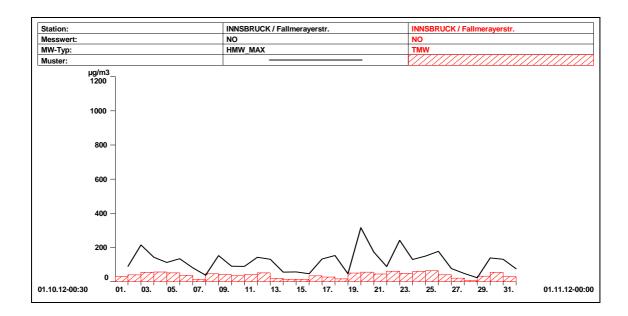
Messstelle: INNSBRUCK / Fallmerayerstrasse

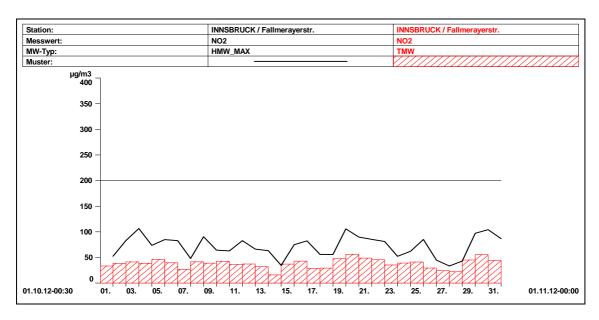
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		


Ozongesetz				
Alarmschwelle				
Informationsschwelle				
langfristiger Zielwert menschliche Gesundheit				
2. VO gegen forstschädliche Luftverunreinigungen	0/0			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)			
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				16	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	
ÖAW: SO2-Kriterium für Siedlungsgebiete	0				
VDI-RL 2310: NO-Grenzwert			0		


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO	_	NO2				03				со	
	μg	/m3	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
	μg/	max	μg/III	μg/III			max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	max HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					28	23	31	32	19	19	28	28	29			
02.					23	17	30	34	45	45	56	56	57			
03.					42	19	44	48	31	31	39	39	43			
04.					49	25	46	50	15	17	53	53	54			
05.					36	22	49	51	47	47	54	54	54			
06.					40	20	32	35	41	41	53	57	57			
So 07.					16	17	28	30	42	42	48	48	50			
08.					34	25	40	41	39	39	36	40	42			
09.					39	23	38	40	18	18	27	27	29			
10.					39	30	48	50	22	22	35	35	36			
11.					31	25	33	36	19	19	28	30	32			
12.					22	21	37	41	11	11	18	18	19			
13.					8	15	29	30	41	41	48	48	49			
So 14.					25	11	22	23	79	79	82	82	83			
15.					3	22	54	56	80	81	81	81	82			
16.					32	19	47	50	48	48	57	58	59			
17.					77	15	25	29	65	65	72	73	74			
18.					16	12	19	21	78	79	86	86	87			
19.					47	23	36	41	55	57	55	55	57			
20.					67	24	46	51	45	45	61	61	62			
So 21.					52	23	39	40	45	45	57	57	58			
22.					105	29	44	46	24	25	27	29	30			
23.					62	29	37	38	5	5	8	8	8			
24.					43	31	35	35	3	3	4	4	4			
25.					64	32	44	44	12	12	17	17	17			
26.					43	26	33	34	7	7	9	9	13			
27.					32	21	28	28	13	14	25	26	30			
So 28.					3	12	18	23	44	44	53	53	53			
29.					15	26	52	56	49	49	56	57	57			
30.					33	39	62	63	21	21	33	33	35			
31.					29	25	47	65	65	68	79	79	80			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				105	65	87	
Max.01-M					62	86	
Max.3-MW					60		
Max.08-M							
Max.8-MW						81	
Max.TMW				25	39	48	
97,5% Perz.							
MMW				9	22	21	
Gl.JMW					24		

0

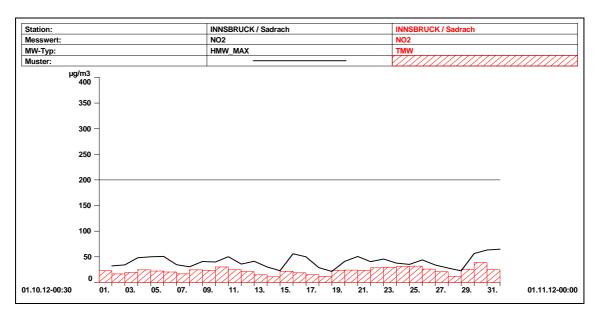
Zeitraum: **OKTOBER 2012**

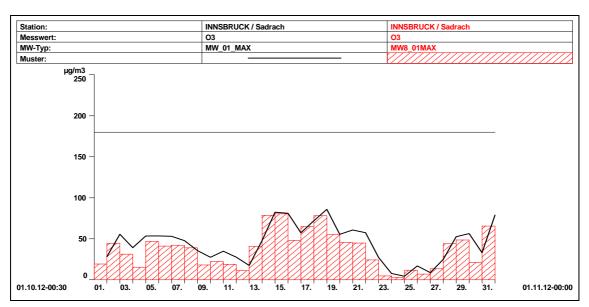
Messstelle: INNSBRUCK / Sadrach

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	5	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	

ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert

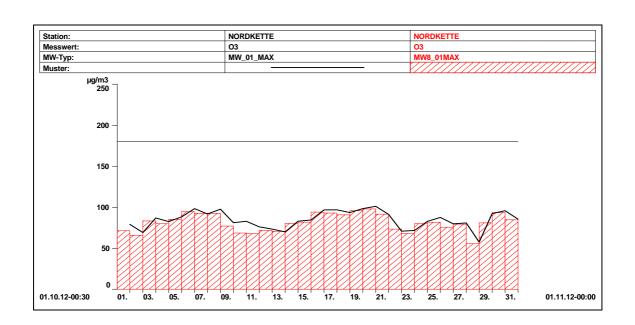

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012 Messstelle: NORDKETTE

	SC)2	PM10	PM10	NO	NO2		03					со			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									78	78	79	79	80			
02.									66	66	69	70	71			
03.									83	83	87	87	88			
04.									80	80	82	83	83			
05.									85	85	88	88	89			
06.									95	94	98	99	99			
So 07.									93	94	92	92	92			
08.									93	93	98	98	98			
09.									77	78	81	83	85			
10.									69	69	83	83	83			
11.									68	68	76	78	79			
12.									72	71	73	74	75			
13.									71	71	70	70	70			
So 14.									80	80	83	83	83			
15.									82	82	84	86	89			
16.									94	94	97	97	98			
17.									93	93	97	97	97			
18.									91	91	93	93	94			
19.									96	96	98	98	99			
20.									98	98	101	101	101			
So 21.									92	92	91	92	92			
22.									73	73	71	71	71			
23.									68	68	72	72	73			
24.									80	80	83	83	83			
25.									82	82	88	88	88			
26.									76	76	80	80	81			
27.									79	79	81	81	81			
So 28.									55	55	57	57	58			
29.									81	81	92	92	92			
30.									94	94	96	96	96			
31.									85	85	85	85	86			


	SO2 μg/m³	PM10 kont. μg/m³	PM10 grav. μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						101	
Max.01-M						101	
Max.3-MW							
Max.08-M							
Max.8-MW						98	
Max.TMW						93	
97,5% Perz.							
MMW						73	
Gl.JMW							

Zeitraum: OKTOBER 2012 Messstelle: NORDKETTE

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: MUTTERS / Gärberbach - A13

	SC)2	PM10	PM10	NO		NO2	_		_	03				СО	_
			kont.	grav.												_
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	l l		l	μg/m³	l			mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	11/1//	111/1//	19	114144	139	36	61	69	00 141	0 141 44	01 141	1 141 44	111/1//	O IVI VV	01 141	111/1//
02.			19		330	48	122	132								
03.			21		199	33	109	113								
04.			26		231	35	71	83								
05.			17		263	42	108	118								
06.			22		165	35	97	98								
So 07.			20		129	39	85	90								
08.			16		195	35	74	76								
09.			19		209	39	70	74								
10.			22		207	44	70	71								
11.			21		311	38	109	123								
12.			23		186	32	61	68								
13.			16		122	42	73	90								
So 14.			13		92	18	41	52								
15.			12		194	52	106	109								
16.			11		176	44	73	75								
17.			12		204	29	46	49								
18.			8		62	25	45	49								
19.			17		180	49	117	128								
20.			17		180	46	111	132								
So 21.			15		134	37	108	114								
22.			28		279	45	95	99								
23.			27		190	40	64	68								
24.			22		157	36	47	49								
25.			20		238	41	85	92								
26.			28		121	36	58	61								
27.			18		165	37	55	58								
So 28.			14		92	39	69	75								
29.			17		200	51	92	94								
30.			23		283	52	103	104								
31.			15		224	51	102	109								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				330	132		
Max.01-M					122		
Max.3-MW					107		
Max.08-M							
Max.8-MW							
Max.TMW		28		94	52		
97,5% Perz.							
MMW		19		65	40		
Gl.JMW					49		

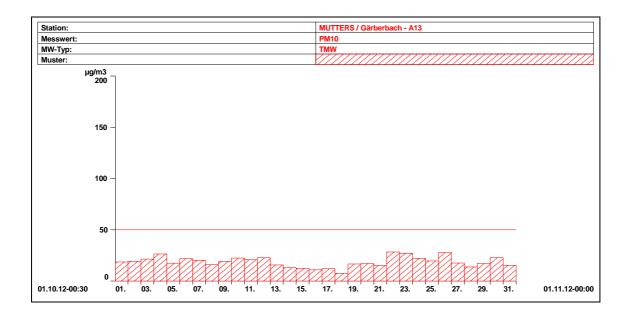
Messstelle: MUTTERS / Gärberbach - A13

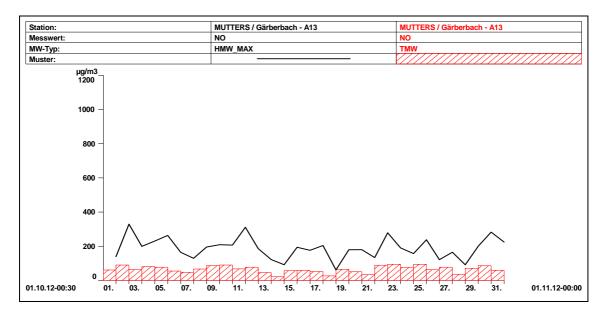
Anzahl der Tage mit Grenzwertüberschreitungen

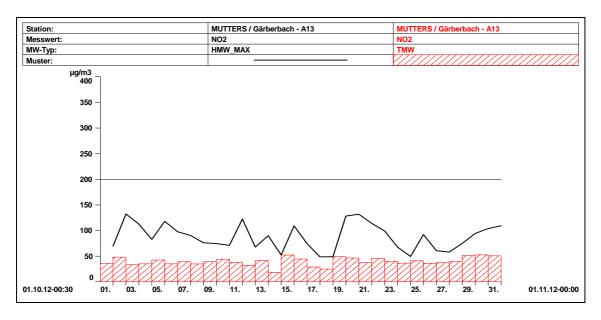
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				19		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

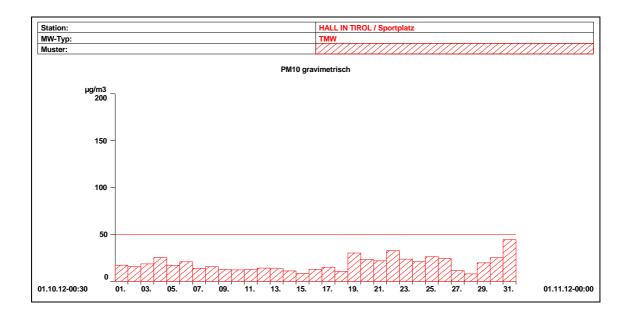
Messstelle: HALL IN TIROL / Sportplatz

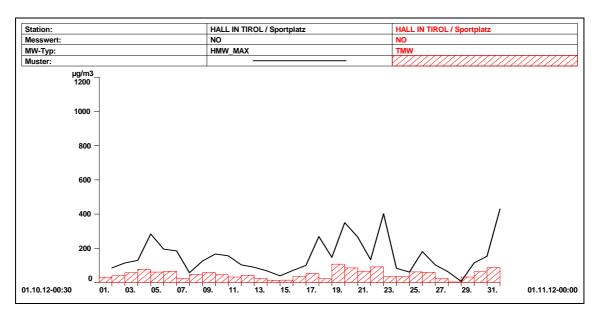
	SC)2	PM10 kont.	PM10 grav.	NO	_	NO2		_		03	_		_	со	_
	μg	/m³	μg/m³	grav. μg/m³	μg/m³	_	$\mu g/m^3$		_		$\mu g/m^3$				mg/m³	
	με	max	μς/ΙΙΙ	μς/111	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				17	85	28	39	40								
02.				16	114	31	58	60								
03.				19	129	33	70	72								
04.				25	283	35	59	60								
05.				17	195	38	64	64								
06.				21	185	35	61	66								
So 07.				14	57	27	43	45								
08.				16	125	33	58	59								
09.				13	166	35	52	53								
10.				12	156	38	56	62								
11.				13	103	29	48	50								
12.				14	89	30	47	49								
13.				14	67	25	53	59								
So 14.				11	38	15	25	38								
15.				8	70	37	67	67								
16.				13	100	41	63	63								
17.				15	268	36	66	67								
18.				11	147	32	64	66								
19.				30	350	61	97	100								
20.				23	266	51	75	81								
So 21.				22	133	45	71	74								
22.				33	402	40	82	88								
23.				24	82	31	36	36								
24.				21	61	31	35	36								
25.				26	180	36	68	70								
26.				24	102	27	38	39								
27.				11	62	20	24	26								
So 28.				8	6	14	23	24								
29.				20	114	42	83	85								
30.				25	153	54	84	85								
31.				45	430	55	93	98								

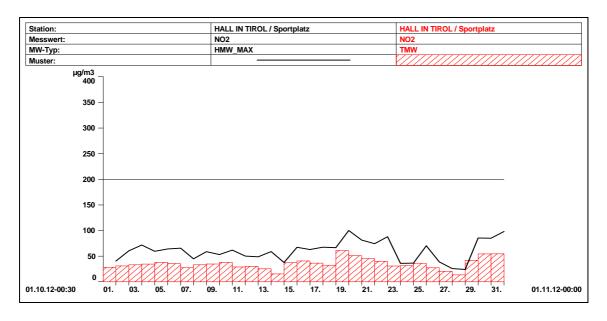
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				430	100		
Max.01-M					97		
Max.3-MW					92		
Max.08-M							
Max.8-MW							
Max.TMW			45	107	61		
97,5% Perz.							
MMW			19	47	35		
Gl.JMW					44		

Messstelle: HALL IN TIROL / Sportplatz

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		


Ozongesetz			
Alarmschwelle			
Informationsschwelle			
langfristiger Zielwert menschliche Gesundheit			
2. VO gegen forstschädliche Luftverunreinigungen			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				8							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1							
ÖAW: SO2-Kriterium für Siedlungsgebiete											
VDI-RL 2310: NO-Grenzwert			0								


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

	SO2		PM10	PM10	NO	NO2		03				СО				
			kont.	grav.												
	$\mu g/m^3$		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$			$\mu g/m^3$			mg/m³			
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				15	301	45	84	95								
02.				12	196	55	83	86								
03.				16	278	49	100	103								
04.				21	462	50	103	112								
05.				16	362	58	98	108								
06.				22	412	56	92	95								
So 07.				16	195	48	130	130								
08.				15	351	52	103	112								
09.				15	265	58	98	107								
10.				14	342	55	93	104								
11.				15	389	52	99	119								
12.				15	254	48	106	110								
13.				11	148	44	75	79								
So 14.				14	127	36	85	89								
15.				9	207	59	113	129								
16.				12	266	57	116	118								
17.				14	322	58	113	116								
18.				11	259	63	112	127								
19.				18	224	64	109	113								
20.				19	400	62	107	118								
So 21.				18	157	54	116	121								
22.				24	454	54	127	141								
23.				16	218	41	64	69								
24.				15	330	45	82	90								
25.				20	262	52	78	83								
26.				23	151	45	76	81								
27.				13	218	36	56	60								
So 28.				11	68	34	70	72								
29.				15	244	72	120	125								
30.				19	293	69	133	134								
31.				21	480	76	140	141								

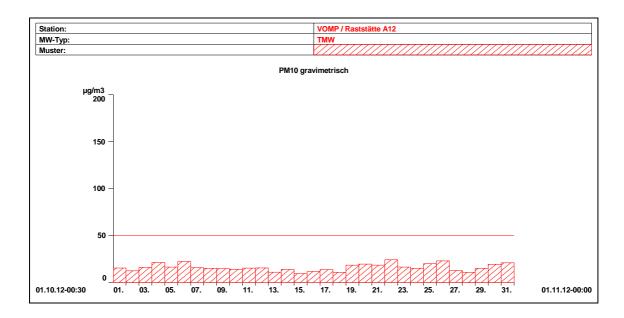
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				480	141		
Max.01-M					140		
Max.3-MW					130		
Max.08-M							
Max.8-MW							
Max.TMW			24	141	76		
97,5% Perz.							
MMW			16	97	53		
Gl.JMW					65		

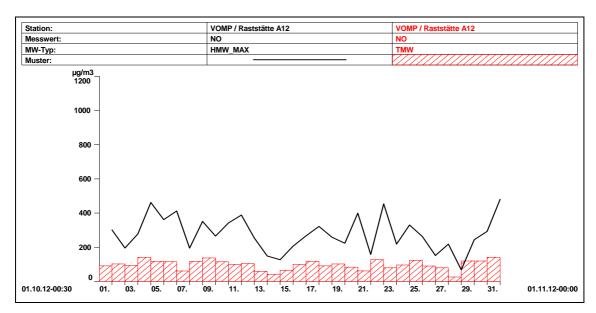
Zeitraum: **OKTOBER 2012**

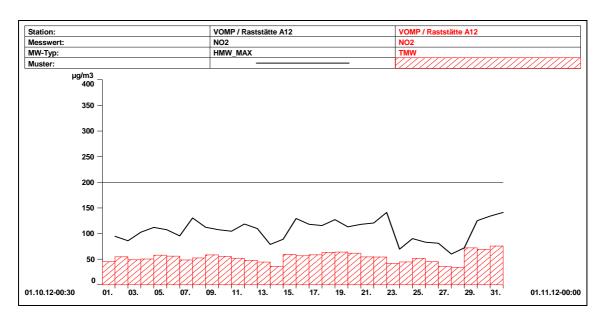
Messstelle: VOMP / Raststätte A12

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		_
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


0


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012 Messstelle: VOMP / An der Leiten

	SC)2	PM10	PM10	NO		NO2			_	О3				СО	
			kont.	grav.		_			_							
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			13		82	28	41	41								
02.			10		91	34	57	58								
03.			16		112	29	59	61								
04.			24		269	32	51	54								
05.			16		148	35	59	60								
06.			22		208	33	57	60								
So 07.			16		62	29	59	63								
08.			15		197	32	60	61								
09.			18		89	32	48	49								
10.			15		76	34	48	49								
11.			12		75	31	49	54								
12.			12		117	28	55	57								
13.			11		44	25	50	53								
So 14.			16		64	24	55	61								
15.			10		42	37	66	73								
16.			12		97	36	54	57								
17.			16		157	35	62	65								
18.			10		95	36	80	82								
19.			20		171	44	81	89								
20.			20		158	43	76	77								
So 21.			22		98	39	77	81								
22.			25		325	38	71	89								
23.			18		47	29	37	38								
24.			16		43	28	33	34								
25.			22		149	33	50	55								
26.			29		108	27	40	41								
27.			10		76	25	31	32								
So 28.			10		14	22	44	46								
29.			18		108	44	76	81								
30.			24		132	50	72	74								
31.			18		266	48	87	90								

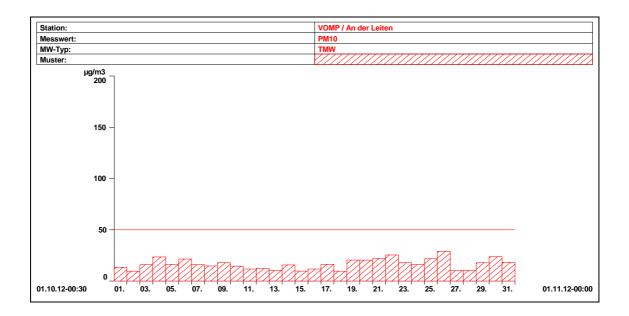
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				325	90		
Max.01-M					87		
Max.3-MW					81		
Max.08-M							
Max.8-MW							
Max.TMW		29		69	50		
97,5% Perz.							
MMW		17		36	33		
Gl.JMW					42		

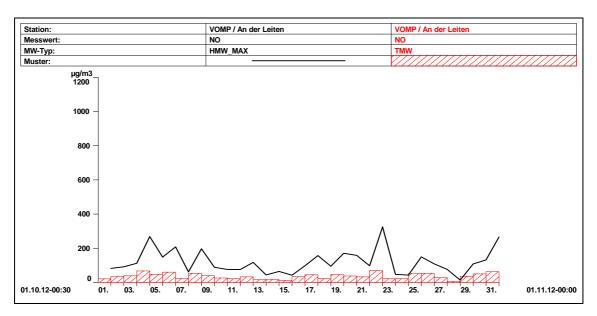
0

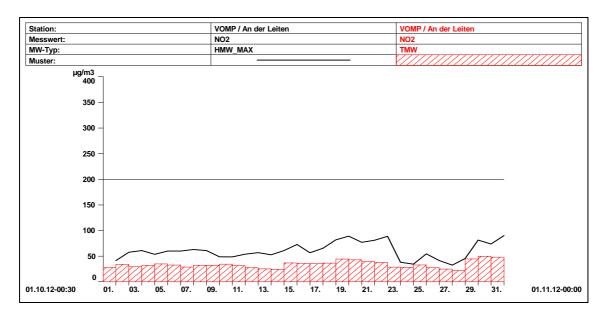
Zeitraum: **OKTOBER 2012** Messstelle: VOMP / An der Leiten

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				8		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

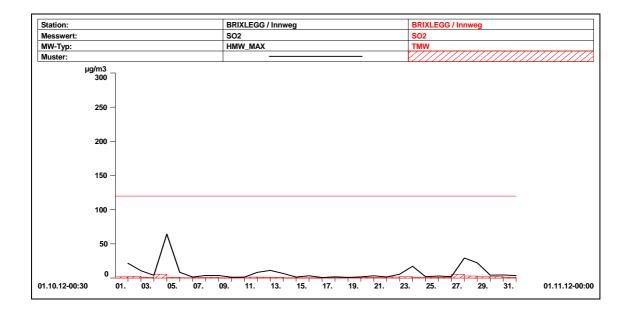
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

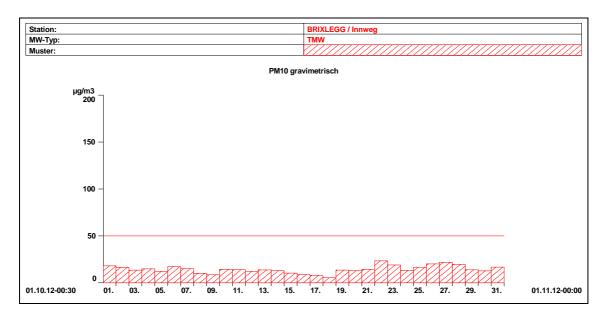
¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012 Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	22	18	12												
02.	2	11	16	10												
03.	1	4	13	7												
04.	6	64	15	10												
05.	1	8	12	8												
06.	0	1	17	9												
So 07.	1	4	15	9												
08.	1	4	10	6												
09.	0	1	9	6												
10.	1	1	14	12												
11.	1	8	14	10												
12.	1	11	12	7												
13.	1	7	14	8												
So 14.	0	1	13	8												
15.	0	3	10	6												
16.	0	1	9	6												
17.	1	2	8	4												
18.	0	1	5	2												
19.	1	2	14	7												
20.	1	3	13	8												
So 21.	1	2	14	9												
22.	2	6	23	15												
23.	2	17	19	13												
24.	1	2	13	9												
25.	1	3	17	11												
26.	1	2	20	15												
27.	5	29	22	15												
So 28.	3	22	20	17												
29.	2	4	14	10												
30.	2	5	13	9												
31.	1	4	17	12												

	SO2	PM10 grav.	PM25 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31				
Verfügbarkeit	98%	100%	100%				
Max.HMW	64						
Max.01-M							
Max.3-MW	33						
Max.08-M							
Max.8-MW							
Max.TMW	6	23	17				
97,5% Perz.	6						
MMW	1	14	9				
Gl.JMW							


Zeitraum: **OKTOBER 2012** Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	0				
Zielwerte menschliche Gesundheit		0				
Zielwerte Ökosysteme, Vegetation	0					
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0				<u>'</u>	
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012

Messstelle: KRAMSACH / Angerberg

	SC	02	PM10 kont.	PM10	NO	_	NO2			_	03	_			со	_
	μg	/m³	μg/m ³	grav. μg/m³	μg/m³	_	μg/m³				$\mu g/m^3$				mg/m³	
	μβ	max	м _В , ш	μ ₈ / III	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					40	14	20	32	17	17	23	23	27			
02.					17	10	29	32	36	36	42	42	42			
03.					58	16	26	29	34	34	42	42	43			
04.					91	19	29	31	29	30	55	55	56			
05.					75	19	35	41	45	45	47	52	49			
06.					28	19	28	30	37	37	45	45	46			
So 07.					19	15	26	27	43	43	53	56	60			
08.					44	18	34	37	41	41	42	42	43			
09.					19	22	32	34	16	16	27	27	31			
10.					39	21	39	41	26	27	32	32	32			
11.					36	22	39	40	25	25	31	31	34			
12.					24	15	25	26	35	36	53	58	60			
13.					8	8	16	17	40	40	47	49	49			
So 14.					16	13	24	25	28	28	36	36	39			
15.					5	18	43	48	54	54	69	73	74			
16.					27	18	29	33	40	40	60	60	62			
17.					34	22	31	33	38	38	46	46	46			
18.					7	16	31	33	58	58	68	68	73			
19.					18	25	49	50	52	54	45	47	48			
20.					76	26	40	46	43	43	48	48	51			
So 21.					37	25	36	39	32	32	46	46	46			
22.					120	28	37	41	15	16	19	20	22			
23.					32	23	28	28	4	4	6	6	7			
24.					64	25	30	30	3	3	5	5	5			
25.					34	27	38	42	7	8	11	11	12			
26.					33	22	31	31	5	5	8	9	9			
27.					32	16	21	23	30	29	51	51	52			
So 28.					2	8	14	16	46	46	51	52	52			
29.					11	16	44	47	45	45	49	49	49			
30.					48	40	66	66	31	34	46	46	47			
31.					65	31	48	49	35	35	45	45	46			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				120	66	74	
Max.01-M					66	69	
Max.3-MW					63		
Max.08-M							
Max.8-MW						58	
Max.TMW				22	40	48	
97,5% Perz.							
MMW				8	20	19	
Gl.JMW					23		

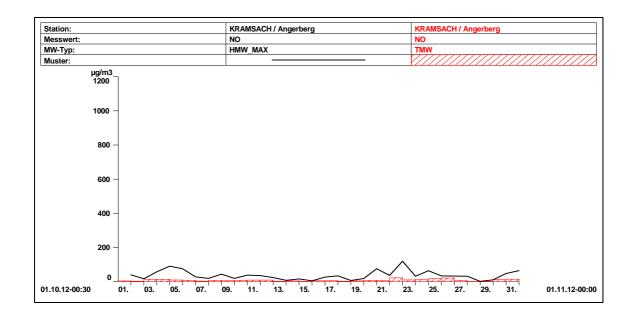
0

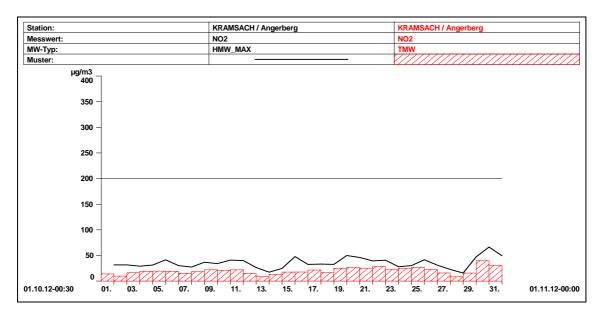
Zeitraum: **OKTOBER 2012**

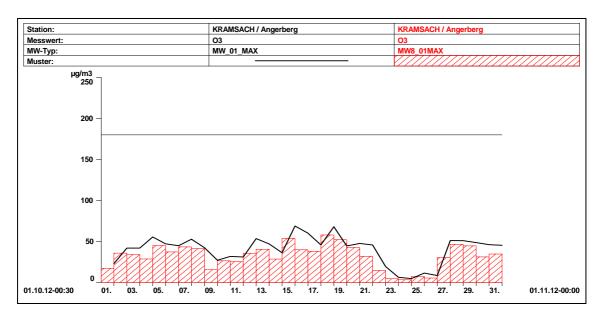
Messstelle: KRAMSACH / Angerberg

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	0	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

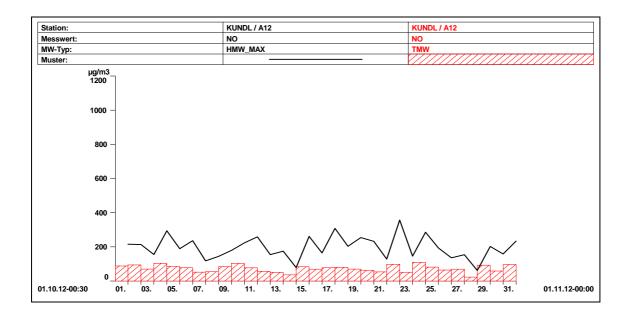
¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

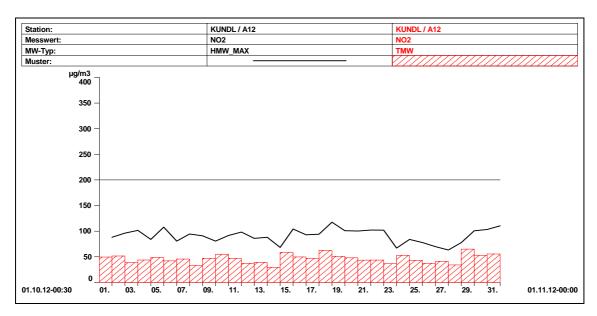
Zeitraum: OKTOBER 2012 Messstelle: KUNDL / A12

	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					216	49	74	88								
02.					214	52	94	96								
03.					155	39	98	102								
04.					294	44	75	84								
05.					190	49	105	108								
06.					236	42	77	81								
So 07.					118	46	80	94								
08.					144	33	79	91								
09.					180	47	76	81								
10.					223	55	87	92								
11.					259	47	96	98								
12.					155	37	81	86								
13.					175	39	86	88								
So 14.					79	29	62	68								
15.					262	59	96	104								
16.					165	50	90	93								
17.					308	47	80	94								
18.					204	63	116	117								
19.					254	51	93	101								
20.					233	48	92	100								
So 21.					128	43	92	102								
22.					357	44	92	102								
23.					146	37	64	67								
24.					286	53	78	84								
25.					194	43	73	78								
26.					136	37	66	70								
27.					154	41	63	63								
So 28.					62	34	76	78								
29.					202	65	98	101								
30.					158	53	90	103								
31.					234	55	105	110								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	CO
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage				31	31		
Verfügbarkeit				98%	98%		
Max.HMW				357	117		
Max.01-M					116		
Max.3-MW					105		
Max.08-M							
Max.8-MW							
Max.TMW				110	65		
97,5% Perz.							
MMW				73	46		
Gl.JMW					56		

Zeitraum: OKTOBER 2012 Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012

Messstelle: WÖRGL / Stelzhamerstrasse

	SC)2	PM10	PM10	NO		NO2			_	03			_	СО	_
	μg	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
	μ	max	м _В , ш	мь/ ш	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			11		22	36	52	52	22	22	30	30	30			
02.			12		53	34	52	53	33	33	49	51	51			
03.			17		101		29	31	29	29	46	47	48			
04.			20		44		42	46	29	29	53	59	59			
05.			14		53	25	41	45	39	39	46	46	48			
06.			19		106	25	46	51	36	36	50	51	51			
So 07.			18		28	23	29	30	36	36	50	50	50			
08.			12		49	23	42	44	33	34	46	49	49			
09.			12		46	26	43	44	15	15	29	29	30			
10.			15		31	29	43	44	24	24	32	32	32			
11.			14		27	30	43	43	25	25	30	30	32			
12.			11		38	23	36	37	27	27	40	40	44			
13.			11		25	15	35	38	48	48	52	52	52			
So 14.			16		34	17	33	38	27	27	42	46	48			
15.			9		86	32	63	63	38	38	50	50	52			
16.			10		33	27	47	50	37	37	50	51	51			
17.			19		127	26	42	44	24	24	36	36	42			
18.			15		144	28	48	55	34	34	47	48	48			
19.			19		96	37	60	62	29	29	37	39	41			
20.			20		145	33	57	58	43	43	62	64	66			
So 21.			23		49	29	49	51	33	34	52	52	52			
22.			25		284	30	66	69	12	12	16	16	16			
23.			14		30	25	31	32	5	5	9	9	9			
24.			9		25	25	31	31	4	4	6	6	6			
25.			16		88	28	46	47	7	7	12	12	12			
26.			30		73	24	33	34	4	4	6	6	6			
27.			10		59	20	25	25	29	30	50	51	53			
So 28.					3	13	24	31	44	45	51	51	52			
29.			17		23	25	56	69	46	46	61	61	61			
30.			12		57	35	55	57	31	31	43	44	45			
31.			16		121	40	62	64	28	28	44	47	49			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		30		29	29	31	
Verfügbarkeit		99%		94%	94%	98%	
Max.HMW				284	69	66	
Max.01-M					66	62	
Max.3-MW					60		
Max.08-M							
Max.8-MW						48	
Max.TMW		30		46	40	39	
97,5% Perz.							
MMW		15		17	27	14	
Gl.JMW					32		

Ü1

0

0

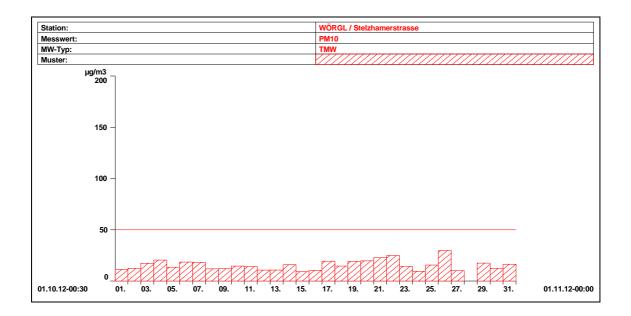
Zeitraum: OKTOBER 2012

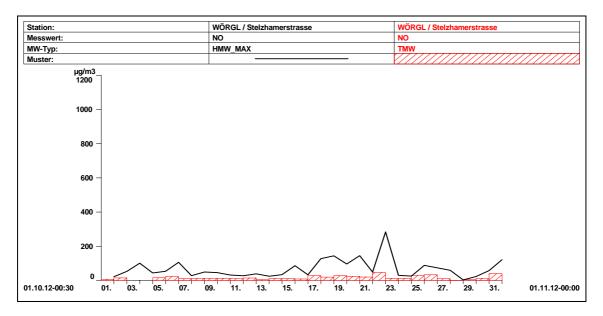
Messstelle: WÖRGL / Stelzhamerstrasse

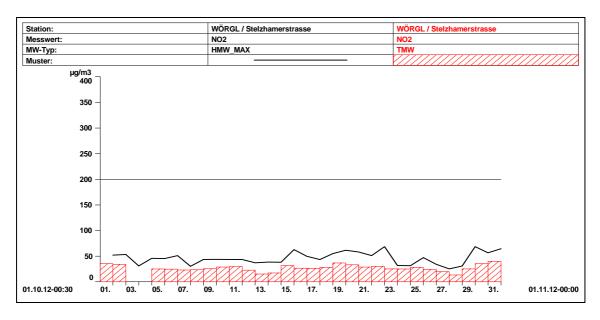
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	[Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	0	

VDI-RL 2310: NO-Grenzwert


ÖAW: Richtwerte Mensch, Vegetation (nur NO2)
ÖAW: SO2-Kriterium für Siedlungsgebiete


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012

Messstelle: KUFSTEIN / Praxmarerstrasse

	SO)2	PM10	PM10	NO		NO2			_	03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			9		30	16	29	32								
02.			13		40	22	42	46								
03.			13		78	21	43	57								
04.			16		125	25	41	43								
05.			13		44	24	48	60								
06.			16		47	25	44	48								
So 07.			14		107	19	31	32								
08.			11		57	20	31	34								
09.			13		50	27	42	44								
10.			11		35	25	43	43								
11.			12		38	24	37	38								
12.			9		78	22	32	39								
13.			9		15	13	19	20								
So 14.			13		21	18	28	29								
15.			9		29	27	59	79								
16.			10		40	27	42	45								
17.			11		57	27	51	54								
18.			14		47	34	69	69								
19.			16		48	37	58	62								
20.			16		55	34	51	51								
So 21.			16		29	27	37	39								
22.			19		109	24	32	32								
23.			15		57	26	32	36								
24.			13		32	26	33	34								
25.			15		58	29	42	44								
26.			26		44	23	33	33								
27.			7		15	16	25	26								
So 28.			11		4	11	21	21								
29.			10		23	22	43	45								
30.			14		36	30	49	52								
31.			15		50	37	44	49								

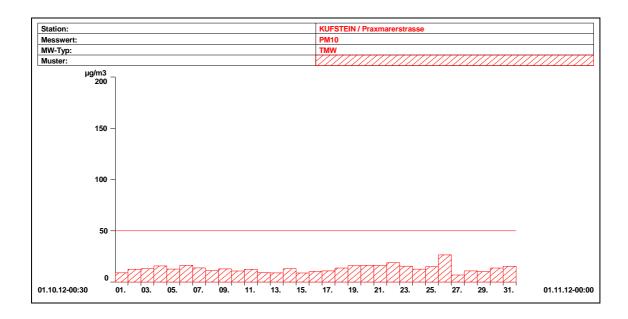
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				125	79		
Max.01-M					69		
Max.3-MW					62		
Max.08-M							
Max.8-MW							
Max.TMW		26		28	37		
97,5% Perz.							
MMW		13		14	24		
Gl.JMW					28		

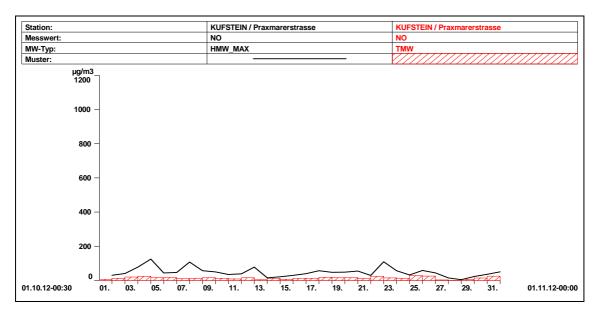
Zeitraum: **OKTOBER 2012**

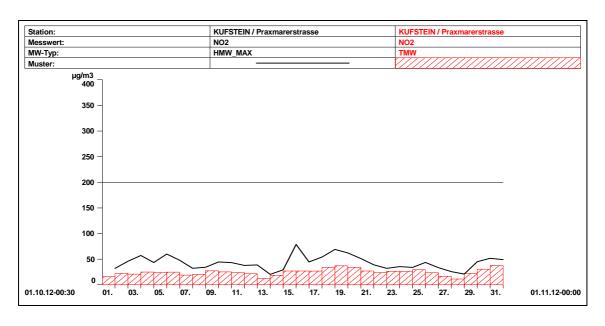
Messstelle: KUFSTEIN / Praxmarerstrasse

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


0

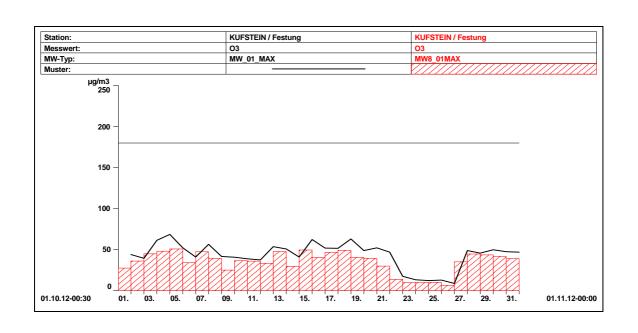

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: OKTOBER 2012 Messstelle: KUFSTEIN / Festung

	SO	02	PM10	PM10	NO		NO2		_	_	03	_	_	_	СО	_
	це	/m³	kont. μg/m³	grav. μg/m³	μg/m³	_	μg/m³		-		$\mu g/m^3$				mg/m³	_
	1.0	max	1.0	1.0	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									27	27	44	45	46			
02.									36	37	39	43	44			
03.									45	45	61	63	65			
04.									48	49	69	69	70			
05.									51	52	52	52	57			
06.									34	34	41	41	41			
So 07.									47	48	56	56	57			
08.									39	40	42	42	42			
09.									25	25	41	41	41			
10.									36	36	39	40	40			
11.									36	36	37	37	39			
12.									33	33	54	54	54			
13.									48	48	51	53	54			
So 14.									30	30	41	43	43			
15.									49	50	62	66	67			
16.									40	40	52	52	54			
17.									46	46	52	52	53			
18.									49	49	63	65	65			
19.									40	41	49	50	51			
20.									39	39	52	52	54			
So 21.									30	30	47	47	51			
22.									14	14	17	18	18			
23.									10	10	13	13	14			
24.									10	10	12	12	13			
25.									10	10	13	13	14			
26.									6	6	9	9	9			
27.									35	36	49	50	50			
So 28.									45	45	46	46	46			
29.									43	43	50	50	51			
30.									42	42	47	48	48			
31.									39	37	47	47	49			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						30	
Verfügbarkeit						97%	
Max.HMW						70	
Max.01-M						69	
Max.3-MW							
Max.08-M							
Max.8-MW						52	
Max.TMW						40	
97,5% Perz.							
MMW						21	
Gl.JMW							

Zeitraum: OKTOBER 2012 Messstelle: KUFSTEIN / Festung

	1					
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					0	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

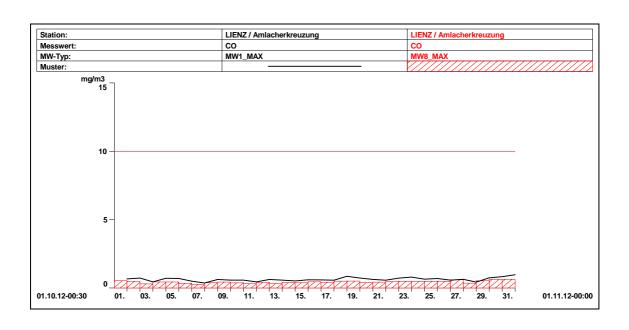
Zeitraum: OKTOBER 2012

Messstelle: LIENZ / Amlacherkreuzung

	SC)2	PM10 kont.	PM10 grav.	NO	_	NO2		_		03	_			СО	_
	μg	/m³	μg/m³	grav. μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
	10	max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			12	8	241	45	87	94						0.5	0.6	0.7
02.			13	7	302	28	64	96						0.5	0.7	0.8
03.			12	5	100	19	38	45						0.3	0.4	0.5
04.			23	13	222	36	88	90						0.4	0.7	0.8
05.			20	12	255	31	61	63						0.4	0.7	0.9
06.			17	10	118	23	40	41						0.3	0.5	0.5
So 07.			13	8	71	22	42	55						0.3	0.3	0.4
08.			14	8	211	34	70	74						0.4	0.6	0.7
09.			16	11	195	36	66	71						0.4	0.6	0.6
10.			17	10	227	31	66	67						0.4	0.6	0.7
11.			17	11	116	23	40	43						0.3	0.4	0.5
12.			17	10	188	27	46	52						0.4	0.6	0.7
13.			10	5	118	20	39	44						0.3	0.6	0.7
So 14.			13	8	97	23	57	59						0.4	0.5	0.6
15.			12	7	173	33	52	56						0.4	0.6	0.7
16.			14		205	39	85	92						0.4	0.6	0.7
17.			14	7	198	33	84	93						0.4	0.5	0.7
18.			15	7	308	34	71	77						0.5	0.8	0.9
19.			16	8	193	39	71	75						0.5	0.7	0.9
20.			13	7	110	33	59	70						0.4	0.6	0.6
So 21.			14	8	91	26	53	61						0.4	0.6	0.6
22.			22	13	272	40	62	75						0.5	0.6	0.8
23.			22	13	332	35	64	78						0.5	0.7	1.0
24.			21	13	255	36	55	62						0.5	0.6	0.7
25.			24	15	304	42	67	74						0.5	0.7	0.7
26.			20	17	104	27	39	39						0.5	0.6	0.6
27.			8		143	34	55	57						0.6	0.6	0.6
So 28.			5		44	21	41	45						0.4	0.4	0.4
29.			16	10	199	51	86	88						0.5	0.7	0.8
30.			19	12	229	52	92	98						0.6	0.8	0.8
31.			27	16	235	53	89	95						0.6	1.0	1.0

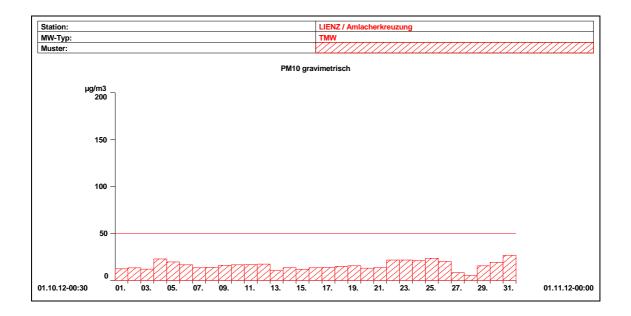
	SO2	PM10 grav.	PM25 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31	28	31	31		
Verfügbarkeit		100%	90%	98%	98%		99%
Max.HMW				332	98		
Max.01-M					92		1.0
Max.3-MW					86		
Max.08-M							
Max.8-MW							0.6
Max.TMW		27	17	112	53		
97,5% Perz.							
MMW		16	10	62	33		0.3
Gl.JMW					40		

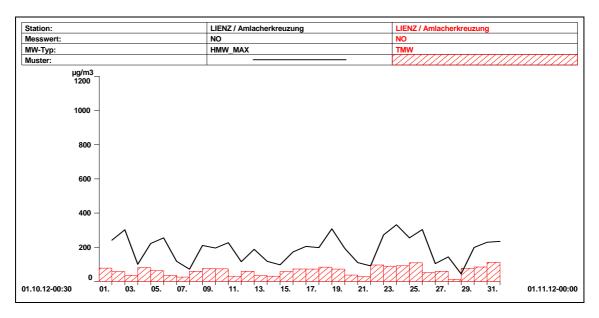
Zeitraum: OKTOBER 2012

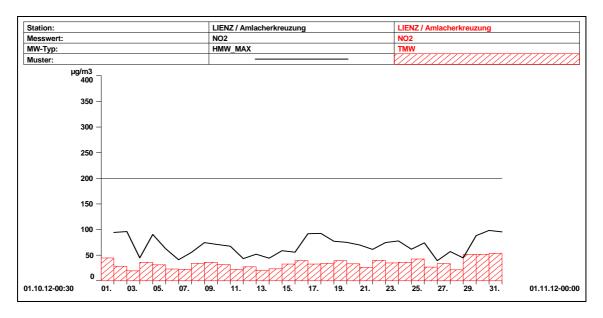

Messstelle: LIENZ / Amlacherkreuzung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz										
Alarmschwelle										
Informationsschwelle										
langfristiger Zielwert menschliche Gesundheit										
2. VO gegen forstschädliche Luftverunreinigungen										


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				9					
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1					
ÖAW: SO2-Kriterium für Siedlungsgebiete									
VDI-RL 2310: NO-Grenzwert			0						


¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



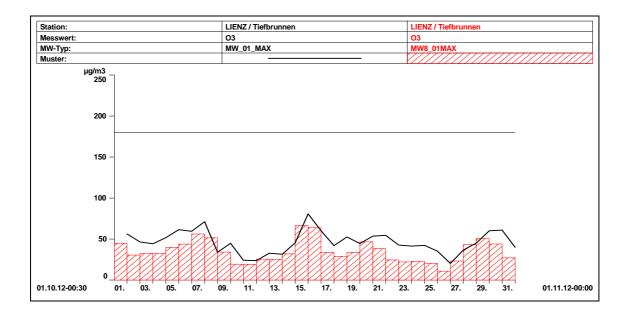
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

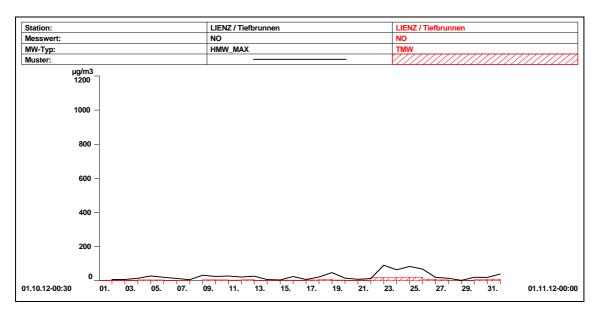
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

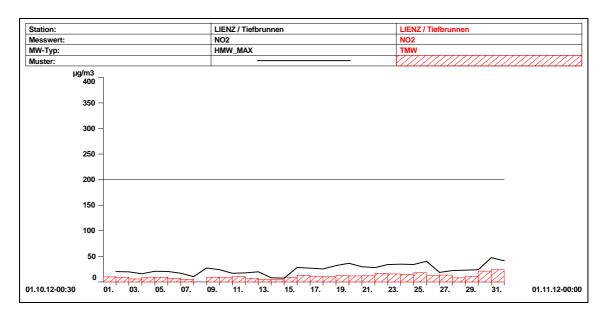
Zeitraum: OKTOBER 2012 Messstelle: LIENZ / Tiefbrunnen

	SC)2	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$	1			$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					6	10	20	20	45	45	56	56	57			
02.					7	9	17	20	30	31	46	48	49			
03.					14	6	13	16	33	33	44	45	45			
04.					27	9	19	21	32	32	52	52	53			
05.					19	9	20	20	40	40	61	61	62			
06.					13	7	16	17	44	44	59	60	60			
So 07.					5	5	9	10	56	56	71	73	79			
08.					32		25	27	51	52	34	35	36			
09.					25	9	23	24	34	33	45	47	50			
10.					27	8	16	17	19	20	24	24	26			
11.					22	10	16	18	19	19	24	24	24			
12.					26	7	18	20	25	25	33	35	35			
13.					7	5	7	8	25	25	31	33	33			
So 14.					4	4	7	7	32	32	45	46	46			
15.					24	9	24	28	66	66	81	82	82			
16.					7	13	24	27	64	64	60	61	62			
17.					21	11	25	25	34	34	42	42	43			
18.					47	10	30	32	29	29	52	52	53			
19.					15	12	36	36	34	34	45	45	46			
20.					8	12	29	30	47	47	53	53	55			
So 21.					12	12	26	28	38	39	55	55	56			
22.					90	16	33	34	25	25	43	46	46			
23.					64	16	32	35	22	22	41	42	43			
24.					83	15	33	34	23	23	42	43	43			
25.					68	18	39	40	20	20	35	37	38			
26.					19	12	17	19	11	11	20	21	21			
27.					14	13	21	22	23	23	37	37	37			
So 28.					2	8	13	23	43	43	45	45	46			
29.					19	11	24	24	50	50	60	61	66			
30.					19	21	45	47	44	44	61	62	62			
31.					39	24	36	41	27	27	40	40	44			

	SO2 μg/m³	PM10 kont. μg/m³	PM10 grav. μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
Anz. Messtage				30	30	30	
Verfügbarkeit				97%	97%	98%	
Max.HMW				90	47	82	
Max.01-M					45	81	
Max.3-MW					44		
Max.08-M							
Max.8-MW						66	
Max.TMW				19	24	41	
97,5% Perz.							
MMW				6	11	19	
Gl.JMW					12		


Zeitraum: OKTOBER 2012 Messstelle: LIENZ / Tiefbrunnen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO				
IG-Luft										
Warnwerte				0						
Grenzwerte menschliche Gesundheit				0						
Zielwerte menschliche Gesundheit				0						
Zielwerte Ökosysteme, Vegetation				n.a.						
Ozongesetz										
Alarmschwelle					0					
Informationsschwelle					0					
langfristiger Zielwert menschliche Gesundheit					0					
2. VO gegen forstschädliche Luftverunreinigungen										
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	2					
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0					
ÖAW: SO2-Kriterium für Siedlungsgebiete										
VDI-RL 2310: NO-Grenzwert			0							


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Gren	Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)									
Luftschadstoff	HMW	MW3	MW8	TMW	JMW					
Schwefeldioxid	200 *)			120						
Kohlenmonoxid			10							
Stickstoffdioxid	200				30 **)					
PM_{10}				50 ***)	40					
PM _{2.5}					25****)					
	Alar	mwerte in μg/m³								
Schwefeldioxid		500								
Stickstoffdioxid		400								
	Zie	lwerte in μg/m³								
Stickstoffdioxid				80						
PM_{10}				50	20					
PM _{2.5}					25					

^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³									
Luftschadstoff	HMW	MW3	MW8	TMW	JMW				
Schwefeldioxid					201)				
Stickstoffoxide					30				
	Ziel	werte in μg/m³							
Schwefeldioxid				50					
Stickstoffdioxid				80					
1) für das Kalenderjahr und Winterhalbjahr (1.	¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)								

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)						
Alarmschwelle	240 µg/m³ als Einstundenmittelwert (stündlich gleitend)						
Zielwert	120 μg/m³ als Achtstundenmittelwert *)						
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.							

Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge von 5 μg/m3 gilt gleich bleibend ab 1. Jänner 2010 und wird 2012 evaluiert. Auf Grundlage dieser Evaluierung hat der Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft im Einvernehmen mit dem Bundesminister für Wirtschaft, Familie und Jugend gegebenenfalls den Entfall der Toleranzmarge mit Verordnung anzuordnen.

^{***)} Pro Kalenderjahr sind 25 Tagesgrenzwertüberschreitungen zulässig.

^{****)} Der Immissionsgrenzwert von 25 µg/m³ ist ab 1.1.2015 einzuhalten, die Toleranzmarge von 20% wird von 1.1.2009 und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0% am 1. Jänner 2015 reduziert.

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO_2):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)									
April - Oktober November - März									
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³							
(HMW) in den Monaten									
Die zulässige Überschreitung des Grenzwertes	s, die sich aus der Perzentilregelung ergibt, da	urf höchstens 100% des Grenzwertes betragen.							
Tagesmittelwert (TMW)	0,05 mg/m ³	0,10 mg/m³							
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³							

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	August 1989: Luftqualitätskriterien Ozon (O ₃)							
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO ₂ in mg/m³			Wirkungsbezogene Immissionsgrenzkonzentrationen für $\rm O_3$ in $\rm mg/m^3$					
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode								

Die höchstzulässige Konzentration von Schwefeldioxid (SO_2) in der freien Luft beträgt									
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten						
		Schwefeldioxid	l in mg/m³ Luft						
	April - Oktober	November – März							
Tagesmittelwert	0,05	0,10	0,20						
Halbstundenmittelwert	0,07	0,15	0,20						
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.						

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)	
Tagesmittelwert	$500~\mu\mathrm{g/m^3}$
Halbstundenmittelwert	$1000~\mu\text{g/m}^3$

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Tagesmittelwerte > $50\mu g/m3$

 $\label{eq:messstelle} MESSSTELLE & Datum & WERT[\mu g/m3]$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Tagesmittelwerte > $50 \mu g/m3$

 $\label{eq:messstelle} MESSSTELLE \qquad \qquad Datum \qquad WERT [\mu g/m3\,]$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Dreistundenmittelwert > 400µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Tagesmittelwert > 80μg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Halbstundenmittelwert > $200\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.10.12-00:30 -01.11.12-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE

Datum

WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Tagesmittelwert > 120µg/m3

MESSSTELLE

Datum

WERT[μ g/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.12-00:30 - 01.11.12-00:00 Achtstundenmittelwert > 10mg/m3

MESSSTELLE

Datum

WERT[µg/m3]

_____ Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.10.12-00:30 -01.11.12-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE

Datum

WERT[μ g/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.10.12-00:30 - 01.11.12-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE

Datum

WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.10.12-00:30 - 01.11.12-

Achtstundenmittelwert > 120µg/m3

MESSSTELLE

WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!